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Shannon’s seminal 1948 work gave rise to two distinct areas of research:
information theory and mathematical coding theory. While information
theory has had a strong influence on theoretical neuroscience, ideas from
mathematical coding theory have received considerably less attention.
Here we take a new look at combinatorial neural codes from a mathemat-
ical coding theory perspective, examining the error correction capabilities
of familiar receptive field codes (RF codes). We find, perhaps surprisingly,
that the high levels of redundancy present in these codes do not support
accurate error correction, although the error-correcting performance of re-
ceptive field codes catches up to that of random comparison codes when
a small tolerance to error is introduced. However, receptive field codes
are good at reflecting distances between represented stimuli, while the
random comparison codes are not. We suggest that a compromise in error-
correcting capability may be a necessary price to pay for a neural code
whose structure serves not only error correction, but must also reflect
relationships between stimuli.

1 Introduction

Shannon’s seminal work (Shannon, 1948) gave rise to two distinct though
related areas of research: information theory (Cover & Thomas, 2006) and
mathematical coding theory (MacWilliams & Sloane, 1983; Huffman &
Pless, 2003). While information theory has had a strong influence on theoret-
ical neuroscience (Attick, 1992; Borst & Theunissen, 1999; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1999; Quiroga & Panzeri, 2009), ideas
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central to mathematical coding theory have received considerably less
attention. This is in large part due to the fact that the neural code is typically
regarded as a description of the mapping, or encoding map, between stimuli
and neural responses. Because this mapping is not in general understood,
identifying which features of neural responses carry the most information
about a stimulus is often considered to be the main goal of neural coding
theory (Bialek, Rieke, de Ruyter van Stevenick, & Warland, 1991; deCharms
& Zador, 2000; Jacobs et al., 2009; London, Roth, Beeren, Häusser, & Latham,
2010). In particular, information-theoretic considerations have been used to
suggest that encoding maps ought to maximize information and minimize
the redundancy of stimulus representations (Attneave, 1954; Barlow, 1961;
Adelesberger-Mangan & Levy, 1992; Attick, 1992; Rieke et al., 1999), al-
though recent experiments point increasingly to high levels of redundancy
in retinal and cortical codes (Puchalla, Schneidman, Harris, & Berry, 2005;
Luczak, Barthó, & Harris, 2009).

In contrast, mathematical coding theory has been primarily motivated
by engineering applications, where the encoding map is always assumed to
be well known and can be chosen at will. The primary function of a “code”
in Shannon’s original work is to allow accurate and efficient error correction
following transmission across a noisy channel. “Good codes” do this in a
highly efficient manner, so as to achieve maximal channel capacity while
allowing arbitrarily accurate error correction. Mathematical coding theory
grew out of Shannon’s challenge to design good codes, a question largely
independent of either the nature of the information being transmitted or
the specifics of the encoding map. In this perspective, redundancy is critical
to the function of a code, as error correction is possible only because a code
introduces redundancy into the representation of transmitted information
(MacWilliams & Sloane, 1983; Huffman & Pless, 2003).

Given this difference in perspective, can mathematical coding theory be
useful in neuroscience? Because of the inherent noise and variability that is
evident in neural responses, it seems intuitive that enabling error correction
should also be an important function of neural codes (Schneidman, Berry,
Segev, & Bialek, 2006; Hopfield, 2008; Sreenivasan & Fiete, 2011). Moreover,
in cases where the encoding map has become more or less understood, as
in systems that exhibit robust and reliable receptive fields, we can begin to
look beyond the encoding map and study the features of the neural code
itself. An immediate advantage of this new perspective is that it can help
clarify the role of redundancy. From the viewpoint of information theory,
it may be puzzling to observe so much redundancy in the way neurons
are representing information (Barlow, 1961), although the advantages of re-
dundancy in neural coding are gaining appreciation (Barlow, 2001; Puchalla
et al., 2005). Experimentally, redundancy is apparent even without an un-
derstanding of the encoding map from the fact that only a small fraction of
the possible patterns of neural activity is actually observed in both stimulus-
evoked and spontaneous activity (Luczak et al., 2009). On the other hand,
it is generally assumed that redundancy in neural responses, as in good
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codes, exists primarily to allow reliable signal estimation in the presence of
noisy information transmission. This is precisely the kind of question that
mathematical coding theory can address: Does the redundancy apparent in
neural codes enable accurate and efficient error correction?

To investigate this question, we take a new look at neural coding from
a mathematical coding theory perspective, focusing on error correction in
combinatorial codes derived from neurons with idealized receptive fields.
These codes can be thought of as binary codes, with 1s and 0s denoting
neurons that are “on” or “off” in response to a given stimulus, and thus
lend themselves particularly well to traditional coding-theoretic analyses.
Although it has been recently argued that the entorhinal grid cell code may
be very good for error correction (Sreenivasan & Fiete, 2011), we show that
more typical receptive field codes (RF codes), including place field codes,
perform quite poorly as compared to random codes with matching length,
sparsity, and redundancy. The error-correcting performance of receptive
field codes catches up, however, when a small tolerance to error is intro-
duced. This error tolerance is measured in terms of a metric inherited from
the stimulus space and reflects the fact that perception of parametric stimuli
is often inexact. We conclude that the nature of the redundancy observed in
receptive field codes cannot be fully explained as a mechanism to improve
error correction, since these codes are far from optimal in this regard. On the
other hand, the structure of receptive field codes does allow them to natu-
rally encode distances between stimuli, a feature that could be beneficial for
making sense of the transmitted information within the brain. We suggest
that a compromise in error-correcting capability may be a necessary price
to pay for a neural code whose structure not only serves error correction
but must also reflect relationships between stimuli.

2 Combinatorial Neural Codes

Given a set of neurons labeled {1, . . . , n} def= [n], we define a neural code
C ⊂ 2[n] as a set of subsets of the n neurons, where 2[n] denotes the set of
all possible subsets. In mathematical coding theory, a binary code is simply
a set of patterns in {0, 1}n. These notions coincide in a natural way once we
identify any element of {0, 1}n with its support,

c ∈ {0, 1}n ↔ supp(c)
def= {i ∈ [n] | ci = 1} ∈ 2[n],

and we use the two notions interchangeably in the sequel. The elements of
the code are called codewords: a codeword c ∈ C corresponds to a subset of
neurons and serves to represent a stimulus. Because we discard the details
of the precise timing or rate of neural activity, what we mean by “neural
code” is often referred to in the neural coding literature as a combinatorial
code (Osborne, Palmer, Lisberger, & Bialek, 2008).
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We will consider parameters of neural codes, such as size, length, spar-
sity, and redundancy. The size of a code C is simply the total number of
codewords, |C|. The length of a code C ⊂ 2[n] is n, the number of neurons.
The (Hamming) weight wH(c) of a codeword c ∈ C is the number of neurons
in c when viewed as a subset of [n] or, alternatively, the number of 1s in
the word when viewed as an element of {0, 1}n. We define the sparsity s of a
code as the average proportion of 1s appearing among all codewords,

s = 1
|C|

∑
c∈C

wH(c)

n
.

Closely related to the size of a code C is the code’s redundancy, which
quantifies the idea that typically more neurons are used than would be nec-
essary to encode a given set of stimuli.1 Formally, we define the redundancy
ρ of a code C of length n as

ρ = 1 − log2(|C|)
n

.

For example, the redundancy of the repetition code C = {∅, [n]} of length
n, consisting only of the all-zeros word and the all-ones word, is ρ = n−1

n ;
this may be interpreted as saying that all but one of the n neurons are
extraneous. At the other end of the spectrum, the redundancy of the code
C = 2[n], consisting of all possible subsets of [n], is ρ = 0. It is clear that ρ

takes values between 0 and 1 and that any pair of codes with matching size
and length will automatically have the same redundancy.2

2.1 Receptive Field Codes. Neurons in many brain areas have activity
patterns that can be characterized by receptive fields. Abstractly, a receptive
field is a map fi : X → R≥0 from a space of stimuli X to the average (nonneg-
ative) firing rate of a single neuron, i, in response to each stimulus. Receptive
fields are computed by correlating neural responses to independently mea-
sured external stimuli. We follow a common abuse of language, where both
the map and its support (i.e., the subset of X where fi takes on positive
values) are referred to as receptive fields. Convex receptive fields are convex
subsets of X. The main examples we have in mind pertain to orientation-
selective neurons and hippocampal place cells. Orientation-selective neu-
rons have tuning curves that reflect a neuron’s preference for a particular

1See Puchalla et al. (2005) and Levy and Baxter (1996) for related notions.
2In the coding theory literature, the rate of a code C of length n is given by

log2(|C|)
n , so

that the redundancy as we have defined it is simply 1 minus the rate. Because “rate” has
a very different meaning in neuroscience than in coding theory, we will avoid this term
and use the notion of redundancy instead.
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angle (Watkins & Berkley, 1974; Ben-Yishai, Bar-Or, & Sompolinsky, 1995).
Place cells are neurons that have place fields: each cell has a preferred (con-
vex) region of the animal’s physical environment where it has a high firing
rate (O’Keefe & Dostrovsky, 1971; McNaughton, Battaglia, Jensen, Moser, &
Moser, 2006). Both tuning curves and place fields are examples of receptive
fields.3

The neural code is the brain’s representation of the stimulus space cov-
ered by the receptive fields. When a stimulus lies in the intersection of
several receptive fields, the corresponding neurons tend to co-fire while the
rest remain silent. The active subset σ of neurons is a neural codeword and
is identified as usual with a binary codeword c such that supp(c) = σ ,

c = (c1, . . . , cn) ∈ {0, 1}n, where ci =
{

1, i ∈ σ

0, i /∈ σ
.

For a given set of receptive fields on a stimulus space X, the receptive
field code (RF code) C ⊂ {0, 1}n is simply the set of all binary codewords
corresponding to stimuli in X. The dimension of an RF code is the dimension
of the underlying stimulus space.4 In the case of orientation tuning curves,
the stimulus space is the interval [0, π ), and the corresponding RF code
is one-dimensional. In the case of place fields for an animal exploring a
two-dimensional environment, the stimulus space is the environment, and
the RF code is two-dimensional. From now on, we will refer to such codes
as 1D RF codes and 2D RF codes, respectively.

Figure 1 shows examples of receptive fields covering one- and two-
dimensional stimulus spaces. Recall that fi : X → R≥0 is the receptive field
of a single neuron, and let f = ( f1, . . . , fn) : X → R

n
≥0 denote the population

activity map, associating with each stimulus a firing rate vector that contains
the response of each neuron as dictated by the receptive fields. For a given
choice of threshold θ , we can define a binary response map, � : X → {0, 1}n,
from the stimulus space X to codewords by

�i(x) =
{

1 if fi(x) ≥ θ

0 if fi(x) < θ
.

The corresponding RF code C is the image of �. Notice that many stimuli
will produce the same binary response; in particular, � maps an entire

3In the vision literature, the term receptive field is reserved for subsets of the visual
field. Here we use the term in a more general sense that is applicable to any modality, as
in Curto and Itskov (2008).

4Note that this is distinct from the notion of “dimension of a code” in the coding theory
literature.
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Figure 1: Receptive field overlaps determine codewords in 1D and 2D RF codes.
(A) Neurons in a 1D RF code have receptive fields that overlap on a line segment
(or circle). Each stimulus on the line corresponds to a binary codeword, with
1s corresponding to neurons whose receptive fields include the stimulus and
0s for neurons that are not active in response to the stimulus. (B) Neurons in
a 2D RF code, such as a place field code, have receptive fields that partition a
two-dimensional region into nonoverlapping intersection regions, such as the
shaded area. All stimuli within one of these regions will activate the same set
of neurons, and hence have the same corresponding codeword.

region of intersecting receptive fields to the same codeword, and so � is far
from injective.

2.2 Comparison Codes. In order to analyze the performance of RF
codes, we use two types of randomly generated comparison codes with
matching size, length, and sparsity. In particular, these codes have the same
redundancy as their corresponding RF codes. We choose random codes as
our comparison codes for three reasons. First, as demonstrated by Shan-
non (1948) in the proof of his channel coding theorem, random codes are
expected to have near-optimal performance. Second, the parameters can be
tuned to match those of the RF codes; we describe the two ways in which
we do this. Finally, random codes are a biologically reasonable alternative
for the brain, since they may be implemented by random neural networks.

2.2.1 Shuffled Codes. Given a RF code C, we generate a shuffled code C̃
in the following manner. Fix a collection of permutations {πc | c ∈ C} such
that (cπc(1), . . . , cπc(n)) 	= (cπc′ (1), . . . , cπc′ (n)) for all distinct c, c′ ∈ C, and set

C̃ = {(cπc(1), . . . , cπc(n)) | c = (c1, . . . , cn) ∈ C}.5 The shuffled code C̃ has the
same length, size, and weight distribution (and hence the same sparsity
and redundancy) as C. In our simulations, each permutation πc is cho-
sen uniformly at random with the modification that a new permutation is

5If the same permutation were used to shuffle all codewords, the resulting
permutation-equivalent code would be nothing more than the code obtained from a
relabeling of the neurons.
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selected if the resulting shuffled codeword has already been generated. This
ensures that no two codewords of C correspond to the same word in the
shuffled code.

2.2.2 Random Constant-Weight Codes. Constant-weight codes are subsets
of {0, 1}n in which all codewords have the same weight. Given an RF code
C on n neurons, we compute the average weight of the codewords in C and
round this to obtain an integer w. We then generate a constant-weight code
by randomly choosing subsets of size w from [n]. These subsets give the
positions of the codeword that are assigned a 1, and the remaining positions
are all assigned zeros. This process is repeated until |C| distinct codewords
are generated, and the resulting code is then a random constant-weight
code with the same length, size, and redundancy as C, and approximately
the same sparsity as C.

3 Stimulus Encoding and Decoding

3.1 The Mathematical Coding Theory Perspective. The central goal of
this letter is to analyze our main examples of combinatorial neural codes,
1D and 2D RF codes, from a mathematical coding theory perspective. We
draw on this field because it provides a complementary perspective on the
nature and function of codes that is unfamiliar to most neuroscientists. We
first discuss the standard paradigm of coding theory and then explain the
function of codes from this perspective. Note that to put neural codes into
this framework, we must discretize the stimulus space and encoding map
so that we have an injective map from the set of stimuli to the code; we
describe this in the next section.

Figure 2A illustrates the various stages of information transmission using
the standard coding theory paradigm, adapted for RF codes. A stimulus
x ∈ X̌ gets mapped to a neural codeword c ∈ C under an (injective) encoding
map ϕ : X̌ → C, where X̌ is the (discretized) stimulus space. This map sends
each stimulus to a neural activity pattern that is considered to be the ideal
response of a population of neurons. The codeword, viewed as a string of
0s and 1s, then passes through a noisy channel, where each 0/1 bit may
be flipped with some probability. A 1 �→ 0 flip corresponds to a neuron in
the ideal response pattern failing to fire, while a 0 �→ 1 flip corresponds
to a neuron firing when it is not supposed to. The resulting word is not
necessarily a codeword and is referred to as the received word. This noisy
channel output is then passed through a decoder to yield an estimate ĉ ∈ C for
the original codeword c, corresponding to an estimate of the ideal response.
Finally, if an estimate x̂ ∈ X̌ of the original stimulus is desired, the inverse of
the encoding map may be applied to the estimated codeword ĉ. Because the
brain has access only to neural activity patterns, we will consider the ideal
response as a proxy for the stimulus itself; the estimated neural codeword
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Figure 2: Stimulus encoding and decoding from a mathematical coding theory
perspective. Here X̌ is the discretized stimulus space and C is the neural code.
(A) A stimulus x ∈ X̌ is mapped, via an (injective) encoding map ϕ : X̌ → C,
to a neural codeword c ∈ C representing the ideal response of a population of
neurons. The effect of noise is modeled by passing the codeword through a noisy
channel. The output of the channel is the received word r ∈ {0, 1}n, representing
the actual response of the population to a particular presentation of the stimulus;
typically the received word is not an element of the neural code. In order to
estimate the ideal response, the received word is passed through a decoder
to produce an estimated neural codeword ĉ ∈ C. Decoding is considered to be
“correct” if this codeword matches the ideal response for the original stimulus.
Finally, the inverse of the encoding map can be used to identify the estimated
neural codeword with an estimate for the stimulus. (B) The binary asymmetric
channel (BAC) acts independently on individual bits of a binary word in {0, 1}n.
The effect of noise is to flip 0/1 bits according to a false-positive probability p
and a false-negative probability q.

thus represents the brain’s estimate of the stimulus, and so we can ignore
this last step.

The mathematical coding theory perspective on stimulus encoding and
decoding has several important differences from the way neuroscientists
typically think about neural coding. First, a clear distinction is made be-
tween a code, which is simply a set of codewords (or neural response
patterns) devoid of any intrinsic meaning, and the encoding map, which
is a function that assigns a codeword to each element in the set of objects
to be encoded. Second, this map is always deterministic, as the effects of
noise are considered to arise purely from the transmission of codewords
through a noisy channel.6 For neuroscientists, the encoding of a signal into

6In engineering applications, one can always assume the encoding map is deter-
ministic. In the neuroscience context, however, it may be equally appropriate to use a
probabilistic encoding map.
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a pattern of neural activity is itself a noisy process, and so the encoding
map and the channel are difficult to separate. If we consider the output of
the encoding map to be the ideal response of a population of neurons, how-
ever, it is clear that actual response patterns in the brain correspond not to
codewords but rather to received words. (The ideal response, on the other
hand, is always a codeword and corresponds intuitively to the average re-
sponse across many trials of the same stimulus.) In the case of RF codes, a
natural encoding map sends each stimulus to the codeword corresponding
to the subset of neurons that contain the stimulus in their receptive fields.
In the case of the random comparison codes, an encoding map that assigns
codewords to stimuli is chosen randomly (details are given in the next
section).

Another important difference offered by the coding theory perspective
is in the process of decoding. Given a received word, the objective of the
decoder is to estimate the original codeword that was transmitted through
the channel. In the case of neural codes, this amounts to taking the actual
neural response and producing an estimate of the ideal response, which
serves as a proxy for the stimulus. The function of the decoder is therefore to
correct errors made by transmission through the noisy channel. In a network
of neurons, this would be accomplished by network interactions that evolve
the original neural response (the received word) to a closely related activity
pattern (the estimated codeword) that corresponds to an ideal response for
a likely stimulus.

This leads us to the coding theory perspective on the function (or pur-
pose) of a code. Error correction is possible only when errors produced
by the channel lead to received words that are not themselves codewords,
and it is most effective when codewords are “far away” from each other
in the space of all words, so that errors can be corrected by returning the
“nearest” codeword to the received word. The function of a code, therefore,
is to represent information in a way that allows accurate error correction
in a high percentage of trials. The fact that there is redundancy in how a
code represents information is therefore a positive feature of the code rather
than an inefficiency, since it is precisely this redundancy that makes error
correction possible.

3.2 Encoding Maps and the Discretization of the Stimulus Space. In
the definition of RF codes above, the stimulus space X is a subset of Eu-
clidean space, having a continuum of stimuli. Via the associated binary
response maps, a set of n receptive fields partitions the stimulus space X
into distinct overlap regions, such as the shaded regions in Figure 1. For
each codeword c ∈ C, there is a corresponding overlap region �−1(c), all
of whose points map to c. The combinatorial code C therefore has limited
resolution and is not able to distinguish among stimuli in the same overlap
region. This leads to a natural discretization of the stimulus space, where we
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assign a single representative stimulus, the center of mass,7 to each overlap
region, and we write

x̌(c)
def=

∫
�−1(c)

x dx∫
�−1(c)

dx
,

where x ∈ X refers to a one- or two-dimensional vector, and the integral is
either a single or double integral, depending on the context. In practice, for
2D RF codes we use a fine grid to determine the center of mass associated
with each codeword (see appendix B.2).

From now on, we will use the term stimulus space to refer to the discretized
stimulus space:

X̌ = {x̌(c) | c ∈ C} ⊂ X.

Note that |X̌| = |C|, so we now have a one-to-one correspondence between
stimuli and codewords. The restriction of the binary response map � to the
discretized stimulus space is the encoding map of the RF code,

ϕ = �|X̌ : X̌ → C.

Note that unlike �, the encoding map ϕ is injective, and so its inverse is
well defined. This further supports the idea, introduced in the previous
section, that the ideal response estimate returned by the decoder can serve
as a proxy for the stimulus itself.

In the case of the comparison codes, we use the same discretized stimulus
space X̌ as in the corresponding RF code and associate a codeword to
each stimulus using a random (one-to-one) encoding map ϕ : X̌ → C. This
map is generated by ordering both the stimuli in X̌ and the codewords in
the random code C, and then selecting a random permutation to assign a
codeword to each stimulus.

3.3 The Binary Asymmetric Channel. In all our simulations, we model
the channel as a binary asymmetric channel (BAC). As seen in Figure 2B, the
BAC is defined by a false-positive probability p, the probability of a 0 being
flipped to a 1, and a false-negative probability q, the probability of a 1 being
flipped to a 0. Since errors are always assumed to be less likely than faithful
transmission, we assume p, q < 1/2. The channel operates on each individ-
ual bit, but it is customary to extend it to operate on full codewords via

7Although many of the overlap regions will be nonconvex, instances of the center of
mass falling outside the corresponding region will be rare enough that this pathological
case need not be considered.
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the assumption that each bit is affected independently. This is reasonable in
our context because it is often assumed (though not necessarily believed)
that neurons within the same area experience independent and identically
distributed noise. The BAC has as special cases two other channels com-
monly considered in mathematical coding theory: p = q gives the binary
symmetric channel (BSC), and p = 0 reduces to the Z-channel.

We will assume p ≤ q, meaning that it is at least as likely that a 1 will
flip to a 0 as it is that a 0 will flip to a 1. This is because the failure of
a neuron to fire (due to, for example, synaptic failure) is considered more
likely than a neuron firing when it is not supposed to. Recall that the sparsity
s reflects the probability that a neuron fires due to error-free transmission.
We will require p < s, as a false-positive response should be less likely than
a neuron firing appropriately in response to a stimulus. Finally, since our
neural codes are assumed to be sparse, we require s < 1/2. In summary, we
assume

p ≤ q < 1/2, and p < s < 1/2.

Note that the probability of an error across this channel depends on the
sparsity of the code. For a given bit (or neuron), the probability of an error
occurring during transmission across the BAC is p(1 − s) + qs, assuming
that all codewords are transmitted with equal probability and all neurons
participate in approximately the same number of codewords.

3.4 The ML and MAP Decoders. A decoder takes an actual response (or
received word) r ∈ {0, 1}n and returns a codeword ĉ ∈ C that is an estimate
of the ideal response (or sent word), c ∈ C. For each combination of code and
channel, the decoder that is optimal, in the sense of minimizing errors, is the
one that returns a codeword ĉ with maximal probability of having been sent,
given that r was received.8 This is called the maximum a posteriori (MAP)
decoder, also known in the neuroscience literature as Bayesian inference
(Ma, Beck, Latham, & Pouget, 2006) or an ideal observer decoder (Deneve,
Latham, & Pouget, 1999):

ĉMAP = arg max
c∈C

P(sent = c | rec = r).

Although always optimal, this decoder can be difficult to implement in the
neural context, as it requires knowing the probabilities P(sent = c) for each
codeword, which is equivalent to knowing the probability distribution of
stimuli.

8In all of our decoders, we assume that ties are broken randomly, with uniform dis-
tribution on equally optimal codewords.
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The maximum likelihood (ML) decoder,

ĉML = arg max
c∈C

P(rec = r | sent = c),

is much more easily implemented. ML decoding is often used in lieu of
MAP decoding because it amounts to optimizing a simple function that can
be computed directly from the channel parameters. As shown in appendix
A.1, on the BAC with parameters p and q we have

ĉML = arg max
c∈C

[
(c · r) ln

(
(1 − p)(1 − q)

pq

)
− wH(c) ln

(
1 − p

q

)]
.

The ML decoder thus returns a codeword c that maximizes the dot product
c · r with the received word r, subject to a penalty term proportional to
its weight wH(c). In other words, it returns the codeword that maximizes
the number of matching 1s with r while minimizing the introduction of
additional 1s.

For p = q < 1/2, as on the BSC, the maximization becomes (see
appendix A.1)

ĉML = arg min
c∈C

dH(c, r),

where dH(c, r) = |{i ∈ [n] | ci 	= ri}| is the Hamming distance between two
words in {0, 1}n. This is the well-known result that ML decoding is equiv-
alent to nearest neighbor decoding, with respect to Hamming distance, on
the BSC.

3.5 An Approximation of MAP Decoding for Sparse Codes. In cases
where all codewords are sent with equal probability, it is easy to see from
Bayes’ rule that ĉML = ĉMAP (see appendix A.2). When codewords are not
equally likely, MAP decoding will outperform ML decoding, but it is im-
practical in the neural context because we cannot know the exact probability
distribution on stimuli. In some cases, however, it may be possible to ap-
proximate MAP decoding, leading to a decoder that outperforms ML while
being just as easy to implement. Here we illustrate this possibility in the case
of sparse codes, where sparser (lower-weight) codewords are more likely.

For the BAC with parameters p and q and a code C with sparsity s, we can
approximate MAP decoding as the following maximization (see appendix
A.2):

ĉMAP ≈ arg max
c∈C

[
(c · r) ln

(
(1 − p)(1 − q)

pq

)
− wH(c) ln

(
(1 − p)(1 − s)

qs

)]
.
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Since we assume that s < 1/2, we see that the difference between this ĉMAP
approximation and ĉML is only that the coefficient of the −wH(c) penalty
term is larger and now depends on s. Clearly, this decoder is no more
difficult to implement than the ML decoder.

Figure 3 shows the results of two simulations comparing the MAP ap-
proximation to ML decoding on a 2D RF code. In the first case, Figure 3A,
the probability distribution is biased toward sparser codewords, corre-
sponding to stimuli covered by fewer receptive fields. Here we see that the
MAP approximation significantly outperforms ML decoding. In the second
case, Figure 3B, all codewords are equally likely. As expected, ML decoding
outperforms the MAP approximation in this case, since it coincides with
MAP decoding. When we consider a biologically plausible probability dis-
tribution that is biased toward codewords with larger regions �−1(c) in
the stimulus space, we find that ML decoding again outperforms the MAP
approximation (see appendix A.2 and Figure 8), even though there is a
significant correlation between larger region size and sparser codewords.
Thus, we will restrict ourselves to considering ML decoding in the sequel;
for simplicity, we will assume all codewords are equally likely.9

4 The Role of Redundancy in RF Codes

The function of a code from the mathematical coding theory perspective
is to represent information in a way that allows errors in transmission to
be corrected with high probability. In classical mathematical coding theory,
decoding reduces to finding the closest codeword to the received word,
where “closest” is measured by a metric appropriate to the channel. If the
code has large minimum distance between codewords, then many errors
can occur without affecting which codeword will be chosen by the decoder
(Huffman & Pless, 2003). If the elements of a binary code are closely spaced
within {0, 1}n, errors will be more difficult to decode because there will
often be many candidate codewords that could have reasonably resulted in
a given received word.

When the redundancy of a code is high, the ratio of the number of code-
words to the total number of vectors in {0, 1}n is low, and so it is possible
to achieve a large minimum distance between codewords. Nevertheless,
high redundancy of a code does not guarantee large minimum distance,
because even highly redundant codes may have codewords that are spaced
closely together. For this reason, high redundancy does not guarantee good
error-correcting properties. This leads us to the natural question: Does the

9In cases where the distribution of stimuli is not uniform, our analysis would pro-
ceed in exactly the same manner with one exception: instead of using the ML decoder,
which may no longer be optimal, we would use the MAP decoder or an appropriate
approximation to MAP that is tailored to the characteristics of the codeword distribution.
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A B2D RF codes with weighted
codeword distribution

2D RF codes with uniform
codeword distribution

false negative prob: q = 0.06 false negative prob: q = 0.06

false negative prob: q = 0.1 false negative prob: q = 0.1

false negative prob: q = 0.14 false negative prob: q = 0.14

Figure 3: Approximate MAP decoding outperforms ML decoding for a
weighted distribution of codewords. (A) With the false-negative probability q
fixed at q = 0.06 (top), q = 0.1 (middle), and q = 0.14 (bottom), the false-positive
probability p was varied in increments of 0.005 from 0.01 to 0.06 to produce dif-
ferent channel conditions for the BAC. On each channel, the performance of 100
2D RF codes of length 75 and mean sparsity s = 0.069 was assessed using both
the standard ML decoder and our approximation to the MAP decoder. For each
BAC condition and each code, 10,000 codewords were selected according to a
weighted probability distribution, where the probability of sending codeword
c was proportional to swH (c)(1 − s)n−wH (c), as would be expected if 1s and 0s were
sent through the channel with independent probabilities dictated by the spar-
sity. The fraction of correctly decoded words was then averaged across the 100
codes, with error bars denoting standard deviations. The MAP approximation
consistently outperformed ML decoding for all channel conditions. (B) Same as
in panel A, but this time codewords were selected according to a uniform proba-
bility distribution, with each codeword equally likely. In this case, ML decoding
is equivalent to exact MAP decoding, which is always optimal. As expected,
ML decoding outperformed approximate MAP decoding for each channel con-
dition. Note that the error bars for ML decoding in this case are extremely small.

high redundancy of RF codes result in effective error correction? The an-
swer depends to some extent on the particular decoder that is used. In the
simulations that follow, we use ML decoding to test how well RF codes
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correct errors. We assume that all codewords within a code are equally
likely, and hence ML decoding is equivalent to (optimal) MAP decoding.
It has been suggested that the brain may actually implement ML or MAP
decoding (Deneve et al., 1999; Ma et al., 2006), but even if this decoder were
not biologically plausible, it is the natural decoder to use in our simulations
as it provides an upper bound on the error-correcting performance of RF
codes.

4.1 RF Code Redundancy Does Not Yield Effective Error Correction.
To test the hypothesis that the redundancy of RF codes enables effective
error correction, we generated 1D and 2D RF codes having 75 neurons
each (see appendix B). For each RF code, we also generated two random
comparison codes: a shuffled code and a random constant-weight code with
matching parameters. These codes were tested on the BAC for a variety of
channel parameters (values of p and q). For each BAC condition and each
code, 10,000 codewords selected uniformly at random were sent across
the noisy channel and then decoded using ML decoding. If the decoded
word exactly matched the original sent word, the decoding was considered
“correct”; if not, there was a failure of error correction.

Figure 4 shows the fraction of correctly decoded transmissions for fixed
values of q and a range of p values in the case of 1D RF codes (see Figure 4A)
and 2D RF codes (see Figure 4B), together with the performance of the
comparison codes. In each case, the RF codes had significantly worse per-
formance (less than 80% correct decoding in all cases) than the comparison
codes, whose performances were near-optimal for low values of p. Repeat-
ing this analysis for different values of q yielded similar results (not shown).

As previously mentioned, in the case of the BSC, nearest neighbor decod-
ing with respect to Hamming distance coincides with ML decoding. Thus,
in the case of a symmetric channel, codes perform poorly precisely when
their minimum Hamming distance is small. Even though nearest neighbor
decoding with respect to Hamming distance does not coincide with ML
decoding on the BAC when p 	= q, decoding errors are still more likely to
occur if codewords are close together in Hamming distance. Indeed, the
poor performance of RF codes can be attributed to the very small distance
between a codeword and its nearest neighbors. Since codewords corre-
spond to regions defined by overlapping receptive fields, the Hamming
distance between a codeword and its nearest neighbor is typically 1 in an
RF code, which is the worst-case scenario.10 In contrast, codewords in the
random comparison codes are distributed much more evenly throughout
the ambient space {0, 1}n. While there is no guarantee that the minimum

10Note that this situation would be equally problematic if we considered the full
firing rate information instead of a combinatorial code. This is because small changes in
firing rates would tend to produce equally valid codewords, making error detection and
correction just as difficult.
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Figure 4: RF codes perform poorly under standard ML decoding. (A) With
the false-negative probability q = 0.2 fixed, the false-positive probability p was
varied in increments of 0.01 from 0.05 to 0.15 to produce different channel con-
ditions for the BAC. On each channel, the performance of 100 1D RF codes
of length 75, with mean sparsity s = 0.165, was compared to the performance
of 100 shuffled codes and 100 random constant-weight codes of matched pa-
rameters. For each BAC condition and each code, 10,000 codewords selected
uniformly at random were transmitted across the BAC and then decoded with
ML decoding. The trajectories show the average performance of each code type
(across the 100 sample codes) in terms of the proportion of received words that
were correctly decoded. Error bars show the magnitude of one standard devia-
tion from the average performance and are very small. While the shuffled and
random constant-weight codes had similar, near-optimal performance, the 1D
RF codes performed quite poorly in comparison. (B) Same as in panel A, but for
2D RF codes of length 75 and mean sparsity s = 0.069. Here q was fixed at 0.1,
while p varied from 0.01 to 0.06 in increments of 0.005. Again, RF codes per-
formed significantly worse than the shuffled and random codes with matched
parameters.

distance on these codes is high, the typical distance between a codeword
and its nearest neighbor is high, leading to near-optimal performance.

4.2 RF Code Redundancy Reflects the Geometry of the Stimulus
Space. Given the poor error-correcting performance of RF codes, it seems
unlikely that the primary function of RF code redundancy is to enable
effective error correction. As outlined in the previous section, the poor
performance of RF codes is the result of the very small Hamming distances
between a codeword and its nearest neighbors. While these small Hamming
distances are problematic for error correction, they may prove valuable in
reflecting the distance relationships between stimuli, as determined by a
natural metric on the stimulus space.

To further investigate this possibility, we first define a new metric on
the code that assigns distances to pairs of codewords according to the
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distances between the stimuli that they represent. If c, c′ ∈ C are codewords
and ϕ : X̌ → C is the (injective) encoding map, then we define the induced
stimulus space metric dstim : C × C → R≥0 by

dstim(c, c′) = d(ϕ−1(c), ϕ−1(c′)),

where d is the natural metric on the (discretized) stimulus space X̌. For ex-
ample, in the case of 2D RF codes, the stimulus space is the two-dimensional
environment, and the natural metric is the Euclidean metric; in the case of
1D RF codes, the stimulus space is [0, π ), and the natural metric is the
difference between angles, where 0 and π have been identified so that, for
example, d(π/6, 5π/6) = π/3.

To characterize the relationship between dstim and dH on RF codes, we
performed correlation analyses between these metrics on 2D RF codes and
corresponding random comparison codes. For each code, we computed
dstim and dH for all pairs of codewords and then computed the correlation
coefficient between their values. Figure 5A shows a scatter plot of dstim
versus dH values for a single 2D RF code; the high correlation is easily seen
by eye. In contrast, the same analysis for a corresponding shuffled code (see
Figure 5B) and a random constant-weight code (see Figure 5C) revealed no
significant correlation between dstim and dH. Repeating this analysis for the
receptive field and comparison codes used in Figure 4 resulted in very
similar results (see Figure 5D). Thus, the codewords in RF codes appear
to be distributed across {0, 1}n in a way that captures the geometry of the
underlying stimulus space rather than in a manner that guarantees high
distance between neighboring codewords.

Previous work has shown that the structure of a place field code (i.e., a 2D
RF code) can be used to extract topological and geometric features of the rep-
resented environment (Curto & Itskov, 2008). We hypothesize that the pri-
mary role of RF code redundancy may be to reflect the geometry of the un-
derlying stimulus space and that the poor error-correcting performance of
RF codes may be a necessary price to pay for this feature. This poor error cor-
rection may be mitigated, however, when we reexamine the role that stim-
ulus space geometry plays in the brain’s perception of parametric stimuli.

5 Decoding with Error Tolerance in RF Codes

5.1 Error Tolerance Based on the Geometry of Stimulus Space. The
brain often makes errors in estimating stimuli (van der Heijden, van der
Geest, deLeeuw, Krikke, & Müsseler, 1999; Prinzmetal, Shimura, & Mikolin-
ski, 2001; Huttenlocher, Hedges, Lourenco, Crawford, & Corrigan, 2007);
these errors are considered tolerable if they result in the perception of
nearby stimuli. For example, an angle of 32 degrees might be perceived as
a 30 degree angle, or a precise position (x, y) in the plane might be per-
ceived as (x + εx, y + εy). If the errors are relatively small, as measured by



1908 C. Curto et al.

0
0.

5
1

02468

d st
im

dH

2D
 R

F
 C

od
e

co
rr

el
at

io
n 

co
ef

f =
 0

.4
62

0
0.

5
1

02468

d st
im

dH

S
hu

ffl
ed

 C
od

e
co

rr
el

at
io

n 
co

ef
f =

 0
.0

91

0
0.

5
1

02468

d st
im

dH

R
an

do
m

 C
W

 C
od

e
co

rr
el

at
io

n 
co

ef
f =

 −
0.

02

2D
 R

F
S

hu
ffl

ed
R

an
d 

C
W

0

0.
2

0.
4

0.
6

0.
81

correlation

d st
im

 v
s.

 d
H

A
C

B
D

Fi
gu

re
5:

R
F

co
d

es
re

fl
ec

tt
he

ge
om

et
ry

of
th

e
st

im
ul

us
sp

ac
e.

(A
)T

he
sc

at
te

r
pl

ot
sh

ow
s

th
e

hi
gh

le
ve

lo
fc

or
re

la
ti

on
(c

or
r.

co
ef

f.
=

0.
46

2)
be

tw
ee

n
d st

im
an

d
d H

fo
r

an
ex

am
pl

e
2D

R
F

co
d

e
of

le
ng

th
10

an
d

sp
ar

si
ty

s
=

0.
18

8.
A

si
ng

le
co

d
e

of
le

ng
th

10
w

as
ch

os
en

fr
om

th
os

e
ge

ne
ra

te
d

fo
r

Fi
gu

re
7

to
m

ak
e

th
e

co
rr

el
at

io
n

m
or

e
vi

su
al

ly
ap

pa
re

nt
.E

ac
h

po
in

ti
n

th
e

sc
at

te
r

pl
ot

co
rr

es
po

nd
s

to
a

pa
ir

of
d

is
ti

nc
tc

od
ew

or
d

s.
R

an
d

om
no

is
e

of
si

ze
at

m
os

t0
.0

01
in

ea
ch

d
im

en
si

on
w

as
ad

d
ed

to
ea

ch
d

at
a

po
in

ti
n

or
d

er
to

se
pa

ra
te

po
in

ts
ha

vi
ng

ex
ac

tl
y

th
e

sa
m

e
va

lu
es

of
d H

an
d

d st
im

.(
B

)
Sa

m
e

as
pa

ne
l

A
,b

ut
fo

r
a

sh
uf

fl
ed

co
d

e
w

it
h

m
at

ch
ed

pa
ra

m
et

er
s.

(C
)

Sa
m

e
as

in
pa

ne
l

A
,

bu
t

fo
r

a
ra

nd
om

co
ns

ta
nt

-w
ei

gh
t

co
d

e
w

it
h

m
at

ch
ed

pa
ra

m
et

er
s.

(D
)

A
ve

ra
ge

co
rr

el
at

io
n

co
ef

fi
ci

en
t

be
tw

ee
n

d st
im

an
d

d H
fo

r
10

0
2D

R
F

co
d

es
of

le
ng

th
75

an
d

m
ea

n
sp

ar
si

ty
s

=
0.

06
9,

an
d

fo
r

10
0

sh
uf

fl
ed

an
d

ra
nd

om
co

ns
ta

nt
-

w
ei

gh
tc

od
e

of
m

at
ch

ed
pa

ra
m

et
er

s
(t

he
sa

m
e

co
d

es
w

er
e

us
ed

in
Fi

gu
re

4)
.W

hi
le

th
e

H
am

m
in

g
d

is
ta

nc
e

d H
co

rr
el

at
es

si
gn

ifi
ca

nt
ly

w
it

h
st

im
ul

us
sp

ac
e

d
is

ta
nc

e
d st

im
in

th
e

ca
se

of
R

F
co

d
es

,t
he

re
is

no
co

rr
el

at
io

n
in

th
e

ca
se

of
th

e
ra

nd
om

or
sh

uf
fl

ed
co

d
es

.



Neural Codes from a Mathematical Coding Theory Perspective 1909

a natural metric on the stimulus space, it is reasonable to declare the sig-
nal transmission to have been successful rather than incorrect. To do this,
we introduce the notion of error tolerance into our stimulus encoding and
decoding paradigm using the induced stimulus space metric dstim. Specifi-
cally, we can decode with an error tolerance of δ by declaring decoding to
be “correct” if the decoded word ĉ is within δ of the original sent word c:

dstim(ĉ, c) < δ.

This corresponds to the perceived stimulus being within a distance δ of the
actual stimulus.

5.2 RF Codes “Catch Up” to Comparison Codes When Decoding with
Error Tolerance. We next investigated whether the performance of RF
codes improved, as compared to the comparison codes with matching pa-
rameters, when an error tolerance was introduced. For each 1D RF code
and each 2D RF code used in Figure 4, we repeated the analysis using fixed
channel parameters and varying instead the error tolerance with respect to
the induced stimulus space metric dstim. We found that RF codes quickly
catch up to the random comparison codes when a small tolerance to error
is introduced (see Figures 6A and 6B). In some cases, the performance of
the RF codes even surpasses that of the random comparison codes.

In order to verify that the catch-up effect is not merely an artifact resulting
from the assignment of random encoding maps to the comparison codes,
we repeated the above analysis using Hamming distance dH instead of dstim,
thus completely eliminating the influence of the encoding maps. The Ham-
ming distance between codewords in a sparse code typically ranges from
0 to about twice the average weight, which corresponds to dH = 25 for the
1D RF codes and dH = 10 for the 2D RF codes considered here. The proba-
bility of correct decoding using an error tolerance measured by Hamming
distance yielded similar results, with RF codes catching up to the ran-
dom comparison codes for relatively small error tolerances (see Figures 6C
and 6D). This suggests that errors in transmission and decoding for RF
codes result in codewords that are close to the correct word not only in the
induced stimulus space metric but also in Hamming distance.

The question that remains is now: Why do RF codes catch up?

5.3 ML Similarity and ML Distance. In order to gain a better under-
standing of why the performance of RF codes catches up to that of the
random comparison codes when we allow for error tolerance, we introduce
the notions of ML similarity and ML distance.11 Roughly speaking, the ML

11Another distance measure on neural codes was recently introduced in Tkačik,
Granot-Atedgi, Segev, and Schneidman (2012).
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Figure 6: RF codes catch up in error-correcting performance when an error
tolerance is introduced. (A) For a fixed BAC condition (p = 0.1, q = 0.2), the
performance of 100 1D RF codes of length 75 was compared to the perfor-
mance of 100 shuffled codes and 100 random constant-weight codes of matched
parameters (the same codes were used in Figure 4). For each code, 10,000 code-
words selected uniformly at random were transmitted across the BAC and then
decoded with ML decoding. For each level of error tolerance, decoding was
considered to be “correct” if the estimated word was within the given stimulus
space distance, dstim, of the correct word. Error bars show the magnitude of
one standard deviation from the average performance. (B) Same as in panel A,
but for 100 2D RF codes of length 75 and corresponding shuffled and random
constant-weight codes of matched parameters (again, same codes as in Figure
4). Here the channel condition was fixed at p = 0.03 and q = 0.1. (C–D) These
plots are analogous to panels A–B, but with the error tolerance measured using
Hamming distance, dH, rather than dstim. In each case, the RF codes catch up in
error-correcting performance for a small tolerance to error, at times even outper-
forming the shuffled and random constant-weight codes. Note: The maximum
possible value for dstim is normalized to be 1 in the 1D case, while in the 2D case,
it is

√
2, corresponding to the maximum distance between two points in a 1 × 1

square box enviroment.

similarity between two codewords a and b is the probability that a and b
will be confused in the process of transmission across the BAC and then
running the channel output through an ML decoder. More precisely, let ra
and rb be the outputs of the channel when a and b are input, respectively.
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Note that ra (resp. rb) is randomly chosen from {0, 1}n, with probability
distribution determined by the channel parameters p and q and by the sent
word a (resp. b). By definition, any ML decoder will return an ML code-
word given by arg maxc∈CP(rec = r | sent = c) when r is received from the
channel, but this ML codeword need not be unique. To account for this,
let λ(r) be the set of ML codewords corresponding to the received word
r. We then define the ML similarity between codewords a and b to be the
probability that the same word will be chosen (uniformly at random) from
each of the sets λ(ra) and λ(rb):12

μML(a, b)
def=

∑
ra

∑
rb

P(rec = ra | sent = a) ·

P(rec = rb | sent = b)

∣∣λ(ra) ∩ λ(rb)
∣∣∣∣λ(ra)

∣∣ ∣∣λ(rb)
∣∣ .

In other words, μML(a, b) is the probability that if a and b are each sent
across the channel, then the same codeword will be returned in each case
by the decoder. In particular, μML(a, a) is the probability that the same word
will be returned after sending a twice across the channel and decoding. Note
that typically, μML(a, a) < 1 and μML(a, a) 	= μML(b, b) for a 	= b.

In order to compare μML to distance measures such as dstim and dH, we
can use the usual trick of taking the negative of the logarithm in order to
convert similarity to distance:

d̃ML(a, b)
def= − ln μML(a, b).

It is clear, however, that d̃ML is not a metric because d̃ML(a, a) 	= 0 in general.
We can fix this problem by first normalizing,

dML(a, b)
def= − ln

(
μML(a, b)√

μML(a, a)μML(b, b)

)
,

so that dML(a, a) = 0 for all words in {0, 1}n. We call dML the ML distance.
Unfortunately, dML still fails to be a metric on {0, 1}n, as the triangle inequal-
ity is not generally satisfied (see appendix A.3), although it may be a metric
when restricted to a particular code.

Despite not being a metric on {0, 1}n, dML is useful as an indicator of how
close the ML decoder comes to outputting the correct idealized codeword.
By definition, ML decoding errors will have large ML similarity to the

12This definition does not explicitly depend on the channel parameters, although
details of the channel are implicitly used in the computation of P(rec|sent).
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correct codeword. In other words, even if ĉML 	= c, the value of dML(ĉML, c)

will be relatively small. Unlike Hamming distance, dML naturally captures
the notion that two codewords are close if they are likely to be confused
after having been sent through the BAC channel and decoded with the ML
decoder.13 In practice, however, dML is much more difficult to compute than
Hamming distance. Fortunately, as we will see in the next section, there is
a high correlation between dML and dH, so that dH may be used as a proxy
for dML when using dML becomes computationally intractable.

5.4 Explanation of the Catch-Up Phenomenon. The ML distance dML
is defined so that ML decoding errors have small ML distance to the correct
codeword, regardless of the code. However, tolerating small errors makes
sense only if errors are quantified by distances between stimuli, given by
the induced stimulus space metric dstim. The fact that RF codes catch up in
error correction when an error tolerance with respect to dstim is introduced
suggests that on these codes, dstim and dML correlate well, whereas on the
comparison codes they do not. In other words, although the codewords
in RF codes are not well separated inside {0, 1}n, decoding errors tend to
return codewords that represent very similar stimuli, and are hence largely
tolerable.

To verify this intuition, we performed correlation analyses between dstim
and dML on 2D RF codes and corresponding random comparison codes. For
each code, we computed dstim and dML for all pairs of codewords and then
computed the correlation coefficient between these two measures. Because
finding dML among all pairs of codewords in a code with many neurons
was computationally intractable, we performed this analysis on short codes
having only 10 neurons, or length 10. Figure 7A shows a scatter plot of dstim
versus dML values for a single 2D RF code; the high correlation is easily seen
by eye. In contrast, the same analysis for a corresponding shuffled code (see
Figure 7B) and a random constant-weight code (see Figure 7C) revealed no
significant correlation between dstim and dML. Repeating this analysis for 10
matched sets of codes, each consisting of a 2D RF code, a corresponding
shuffled code, and a corresponding random constant-weight code resulted
in very similar results (see Figure 7D).

In order to test if the correlation between dstim and dML might continue to
hold for our longer codes with n = 75 neurons, we first investigated whether
Hamming distance dH could be used as a proxy for dML, as the latter can
be computationally intractable. Indeed, on all of our length 10 codes, we
found near-perfect correlation between dH and dML (see Figure 7E). We then
computed correlation coefficients using dH instead of dML for the length

13On the binary symmetric channel (BSC), Hamming distance does measure the like-
lihood of two codewords being confused after ML decoding of errors introduced by the
channel.
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Figure 7: Correlations between stimulus space distance dstim, Hamming dis-
tance dH, and ML distance dML. (A) The scatter plot shows the correlation be-
tween dstim and dML for a single 2D RF code of length 10 and sparsity s = 0.188.
(A code of length 10 was chosen because dML is computationally intractable
for longer codes.) Each point in the scatter plot corresponds to a pair of dis-
tinct codewords; random noise of size at most 0.001 in each dimension was
added to each data point in order to separate points having exactly the same
values of dstim and dML. The values for dML were computed for channel param-
eters p = 0.03 and q = 0.1. (B) Same as in panel A, but for a shuffled code with
matched parameters to the 2D RF code. (C) Same as in panel A, but for a random
constant-weight code with matched parameters. (D) Average correlation coef-
ficient between dstim and dML for 10 2D RF codes of length 10 and mean sparsity
s = 0.191 and 10 shuffled and random constant-weight codes of matched pa-
rameters. All dML values were computed for channel parameters p = 0.03 and
q = 0.1. Error bars denote standard deviations. (E) Average correlation coeffi-
cient between dH and dML for the same codes and channel condition used in
panel D. The high correlation across codes suggests that dH may be used as a
proxy for dML in cases where dML is computationally intractable. (F) Average
correlation coefficient between dstim and dH for 100 2D RF codes of length 75
and mean sparsity s = 0.069, and for 100 shuffled and random constant-weight
codes of matched parameters (same codes as in Figure 4; note that this panel
reproduces Figure 5D). Here we think of dH as a proxy for dML. Because dML was
not computed for this plot, calculations involving the larger codes were com-
putationally feasible. Given the correlation patterns in panels A–F, it is likely
that dstim and dML are significantly correlated for large RF codes, but not for the
shuffled or random constant-weight comparison codes.
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75 2D RF codes and corresponding comparison codes that were analyzed in
Figures 4, 5, and 6. As expected, there was a significant correlation between
dstim and dH for RF codes but not for the random comparison codes (see
Figure 7F). It is thus likely that dstim and dML are well correlated for the large
RF codes that displayed the catch-up phenomenon (see Figure 6) but not
for the comparison codes.

6 Discussion

We have seen that although RF codes are highly redundant, they do not
have particularly good error-correcting capability, performing far worse
than random comparison codes of matching size, length, sparsity, and re-
dundancy. This poor performance is perhaps not surprising when we con-
sider the close proximity between RF codewords inside {0, 1}n, a feature that
limits the number of errors that can be corrected. On the other hand, RF
code redundancy seems well-suited for preserving relationships between
encoded stimuli, allowing these codes to reflect the geometry of the rep-
resented stimulus space. Interestingly, RF codes quickly catch up to the
random comparison codes in error-correcting capability when a small tol-
erance to error is introduced. The reason for this catch-up is that errors in
RF codes tend to result in nearby codewords that represent similar stimuli,
a property that is not characteristic of the random comparison codes. Our
analysis suggests that in the context of neural codes, there may be a natural
trade-off between a code’s efficiency and error-correcting capability and its
ability to reflect relationships between stimuli. It would be interesting to
investigate whether RF codes are somehow optimal in this regard, though
this is beyond the scope of this letter. Likewise, it would be interesting to
test the biological plausibility of the error tolerance values that are required
for RF codes to catch up. For visual orientation discrimination in human
psychophysics experiments, the perceptual errors range from about 4 de-
grees to 12 degrees (out of 180 degrees) (Mareschal & Shapley, 2004; Li,
Thier, & Wehrhahm, 2000); this is roughly consistent with a 5% error tol-
erance, a level that resulted in complete catch-up for the 1D RF codes (see
Figure 6A).

Throughout this work, we have assumed that neurons are indepen-
dent. This assumption arose as a consequence of using the BAC as a chan-
nel model for noise, which operates on each neuron independently (see
section 3.3). While somewhat controversial (Schneidman, Bialek, & Berry,
2003), some experimental evidence supports the independence assump-
tion (Gawne & Richmond, 1993; Nirenberg, Carcieri, Jacobs, & Latham,
2001), in addition to a significant body of theoretical work suggesting that
ignoring noise correlations does not have a significant impact on the de-
coding of neural population responses (Abbott & Dayan, 1999; Averbeck &
Lee, 2004; Latham & Nirenberg, 2005). Nevertheless, it is quite possible
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that the error-correcting capabilities of RF codes may increase (or de-
crease) if this assumption is relaxed (Averbeck, Latham, & Pouget, 2006).
It would thus be interesting to explore a similar analysis for channel mod-
els that produce correlated noise, though this is beyond the scope of this
letter.

We have also assumed a perfect understanding of the encoding map;
however, it is possible that error-correcting capabilities vary significantly
according to what aspect of the stimulus is being represented, similar to
what has been found in information-theoretic analyses (Nemenman, Lewen,
Bialek, & de Ruyter van Steveninck, 2008). Furthermore, in assessing the
error-correcting properties of RF codes as compared to random comparison
codes, we used a decoder that was optimal for all codes. If instead we used
a biologically motivated decoder, such as those suggested in Deneve et al.
(1999) and Beck et al. (2008), the performance of the random comparison
codes may be significantly compromised, leading to a relative improvement
in error correction for RF codes.

Mathematical coding theory has been very successful in devising codes
that are optimal or nearly optimal for correcting noisy transmission er-
rors in a variety of engineering applications (MacWilliams & Sloane, 1983;
Wicker, 1994; Huffman & Pless, 2003). We believe this perspective will also
become increasingly fruitful in neuroscience, as it provides novel and rigor-
ous methods for analyzing neural codes in cases where the encoding map
is relatively well understood. In particular, mathematical coding theory can
help to clarify apparent paradoxes in neural coding, such as the prevalence
of redundancy when it is assumed that neural circuits should maximize in-
formation. Finally, we believe the coding theory perspective will eventually
provide the right framework for analyzing the trade-offs that are inherent
in codes that are specialized for information transfer and processing in the
brain.

Appendix A: ML and MAP Decoding

A.1 ML Decoding on the BAC. Here we derive a simple expression
for the ML decoder on the binary asymmetric channel with false-positive
probability p and false-negative probability q, as in Figure 2B. Recall that
the ML decoder is given by

ĉML = arg max
c∈C

P(rec = r | sent = c),

where r ∈ {0, 1}n is the received word, or “actual response,” of the popula-
tion of n neurons, and C is the neural code. Because the channel is assumed
to act on each neuron independently, P(rec = r | sent = c) will depend on
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only the following quantities:

t00(c, r) = # of 0s that match between c and r.

t11(c, r) = # of 1s that match between c and r.

t01(c, r) = # of 0s in c that correspond to 1s in r.

t10(c, r) = # of 1s in c that correspond to 0s in r.

With this, it is straightforward to compute

P(rec = r | sent = c) = (1 − p)t00(c,r) pt01(c,r)(1 − q)t11(c,r)qt10(c,r).

Using the obvious identities,

t01(c, r) + t11(c, r) = wH(r)

t10(c, r) + t00(c, r) = n − wH(r),

we find

P(rec = r | sent = c)

= (1 − p)t00(c,r) pwH (r)−t11(c,r)(1 − q)t11(c,r)qn−wH (r)−t00(c,r).

When we do the maximization over c ∈ C, we can ignore terms that are
independent of c, and we obtain

ĉML = arg max
c∈C

[(
1 − p

q

)t00(c,r)
(

1 − q
p

)t11(c,r)
]

= arg max
c∈C

[
t00(c, r) ln

(
1 − p

q

)
+ t11(c, r) ln

(
1 − q

p

)]
(∗)

If we further observe that

t11(c, r) = c · r,

t00(c, r) = (1 − c) · (1 − r) = n − wH(c) − wH(r) + c · r,

where 1 ∈ {0, 1}n is the all-ones word, and again ignore terms that are inde-
pendent of c, we obtain

ĉML = arg max
c∈C

[
(c · r) ln

(
(1 − p)(1 − q)

pq

)
− wH(c) ln

(
1 − p

q

)]
. (A.1)
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Since we assume p, q < 1/2, the decoder maximizes the number c · r of
matching 1s between the sent and received words, subject to a penalty term
that is proportional to the weight (i.e., the number of active neurons) of the
sent word.

Note that for p = q < 1/2, as on the BSC, equation (∗) becomes

ĉML = arg max
c∈C

[
t00(c, r) + t11(c, r)

]
= arg max

c∈C

[
n − dH(c, r)

] = arg min
c∈C

[
dH(c, r)

]
,

where

dH(c, r) = t01(c, r) + t10(c, r) = |{i ∈ [n] | ci 	= ri}|,

is the Hamming distance between two words in {0, 1}n. In other words,
ML decoding is equivalent to nearest neighbor decoding, with respect to
Hamming distance, on the BSC.

A.2 Comparison of ML and MAP Decoding Using Bayes’ Rule. Given
two events A and B such that the probability of B is nonzero, Bayes’ rule
states,

P(A|B) = P(B|A)P(A)

P(B)
.

We can use this theorem to relate the ML and MAP decoders:

ĉMAP = arg max
c∈C

P(sent = c | rec = r)

= arg max
c∈C

P(rec = r | sent = c)P(sent = c)

P(rec = r)

= arg max
c∈C

P(rec = r | sent = c)P(sent = c).

In the case that all words are sent with equal probability, P(sent = c) is
constant over all codewords c ∈ C, we have

ĉMAP = arg max
c∈C

P(rec = r | sent = c) = ĉML.

Thus, the two decoders coincide when all stimuli are equally likely. In the
case where some codewords are more likely to be transmitted than others,
however, MAP and ML decoding need not coincide.
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Suppose that the probability of a codeword being sent can be approxi-
mated by assuming individual 0s and 1s are transmitted with independent
probabilities consistent with the sparsity s of the code:

P(sent = 1)≈ s,

P(sent = 0)≈ 1 − s.

Under these assumptions, we approximate

P(sent = c) ≈ swH (c)(1 − s)n−wH (c).

Using Bayes’ rule and equation A.1, this gives an approximation for the
MAP decoder as

ĉMAP ≈ arg max
c∈C

[
P(rec = r | sent = c)swH (c)(1 − s)n−wH (c)

]
= arg max

c∈C

[
ln P(rec = r | sent = c) + wH(c) ln s

+ (n − wH(c)) ln(1 − s)
]

= arg max
c∈C

[
(c · r) ln

(
(1 − p)(1 − q)

pq

)
− wH(c) ln

(
1 − p

q

)

−wH(c) ln
(

1 − s
s

) ]
= arg max

c∈C

[
(c · r) ln

(
(1 − p)(1 − q)

pq

)
− wH(c) ln

(
(1 − p)(1 − s)

qs

)]
.

Comparing this approximation to equation A.1, we see that the difference
between MAP and ML for sparse codes (s < 1/2) is that the approximate
MAP decoder has a larger penalty term associated with the weight wH(c).
This means that the approximate MAP decoder will sometimes return
lower-weight codewords than the ML decoder. Unlike MAP, the ML de-
coder is completely indifferent to the code sparsity parameter s.

In our simulations with 2D RF codes, we have found that the above
MAP approximation outperforms ML decoding when codewords in the
distribution of transmitted words are weighted in a manner dictated by
the sparsity of the code (see Figure 3). What if the codeword distribution is
instead weighted by the sizes of the stimulus space regions corresponding to
each codeword? In this case, Figure 8 shows that ML decoding outperforms
the MAP approximation, further justifying our use of ML decoding in our
analysis of the error-correcting properties of RF codes.
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Figure 8: ML decoding outperforms approximate MAP decoding for a distribu-
tion of codewords weighted by the size of the codeword region. With the false-
negative probability q fixed at q = 0.055 (top), q = 0.1 (middle) and q = 0.14
(bottom), the false-positive probability p was varied in increments of 0.005 from
0.01 to 0.055 to produce different channel conditions for the BAC. On each
channel, the performance of 100 2D RF codes of length 75 and mean sparsity
s = 0.596 was assessed using the standard ML decoder and our approximation
to the MAP decoder. For each BAC condition and each code, 10,000 codewords
were selected according to a weighted probability distribution, where the prob-
ability of sending codeword c was proportional to the area of ϕ−1(c), which
was approximated by the fraction of points from the 300 × 300 fine grid that
fell within the region ϕ−1(c) (if no grid point lay inside a region, we counted
it as 1 grid point to ensure the probability was nonzero). Each codeword was
transmitted across the BAC and decoded using both the ML decoder and the
approximate MAP decoder. The fraction of correctly decoded words was then
averaged across the 100 codes, with error bars denoting standard deviations.
ML decoding consistently outperformed approximate MAP decoding for each
channel condition, even though the opposite was true when codewords were
weighted according to the sparsity of the code (see Figure 3A).
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A.3 Failure of the Triangle Inequality for dML. Recall that the ML
distance dML is defined by

dML(a, b)
def= − ln

(
μML(a, b)√

μML(a, a)μML(b, b)

)
,

where the ML similarity μML is the probability that a and b will be confused
in the process of transmission across the BAC and then running the channel
output through an ML decoder.

It is clear that dML is a pseudo-semimetric on {0, 1}n; that is, for all a, b ∈
{0, 1}n we have dML(a, b) ≥ 0, dML(a, a) = 0, and dML(a, b) = dML(b, a).
However, dML is not a metric or even a pseudo-metric on {0, 1}n be-
cause it fails to satisfy the triangle inequality. As an example, consider
the code C = {(1, 1, 0), (1, 0, 1), (0, 0, 1)}, and take x = (0, 0, 1), y = (0, 0, 0),
and z = (0, 1, 0). For channel conditions p = 0.05 and q = 0.07, we obtain

dML(x, y) + dML(y, z) = .005 + 3.217 = 3.222 < 4.072 = dML(x, z).

It is interesting to note, however, that both the triangle inequality
dML(a, b) + dML(b, c) ≥ dML(a, c) and the condition that d(a, b) = 0 only
if a = b hold in all examples we have tried when a, b, and c are chosen to
be codewords in some code C. In other words, it is unknown to us whether
dML is a metric when restricted to a code C ⊂ {0, 1}n, even though it is not a
metric on the entire ambient space {0, 1}n.

Appendix B: Details of the Simulations

B.1 Generation of 1D RF Codes. To generate the 1D RF codes used
in our simulations, we took the length of the stimulus space to be 1 and
identified the points 0 and 1 since the stimuli represent angles in [0, π ).
Each receptive field (tuning curve) was chosen to be an arc of the stimulus
space. We chose our receptive fields to have a constant radius of 0.08,
which corresponds to a radius of 14.4 degrees in the orientation selectivity
model. This parameter matches that in Somers, Nelson, and Sur (1995),
where tuning curves in the visual cortex were set to have half-width-half-
amplitudes of 14.9 degrees, based on experimental data from Watkins and
Berkley (1974) and Orban (1984). Each receptive field was specified by its
center point. We used 75 receptive fields to cover the stimulus space, and
so our codewords had length 75. The centers of the receptive fields were
selected uniformly at random from the stimulus space, with the following
modification: while the stimulus space remained uncovered, the centers
were placed randomly in the uncovered region. This modification allowed
us to guarantee that the stimulus space would be covered by the receptive
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fields; we used a fine grid of 300 uniformly spaced test points to find
uncovered regions in the stimulus space.

By examining all pairwise intersections of receptive fields, we found all
the regions cut out by the receptive fields, and each such region defined
a codeword (see Figure 1A). Note that each codeword corresponds to a
convex region of the stimulus space. The center of mass of a codeword is the
center point of the interval to which the codeword corresponds.

B.2 Generation of 2D RF Codes. To generate the 2D RF codes used
in our simulations, we took the stimulus space to be a 1 × 1 square box
environment. Each receptive field was the intersection of the stimulus space
with a disk whose center lay within the stimulus space. All disks were
chosen to have the same radius; this is consistent with findings that place
fields in the dorsal hippocampus are generally circular and of similar sizes
(Jung, Weiner, & McNaughton, 1994; Maurer, Vanrhoads, Sutherland, Lipa,
& McNaughton, 2005). We chose the radius of our receptive fields to be 0.15,
that is, 15% of the width of the stimulus space, to produce codes having
a reasonable sparsity of ∼0.07. As with the 1D RF codes, we generated 75
receptive fields to cover the space, with each receptive field identified by
its center point. In our simulations, the center points of the receptive fields
were dropped uniformly at random in the stimulus space, with the same
modification as for the 1D RF codes: while the space remained uncovered,
the centers of the disks were placed uniformly at random in regions of the
space that had yet to be covered. We used a fine grid of 300 × 300 uniformly
spaced test points to find uncovered regions in the stimulus space.

Again, by examining all intersections of receptive fields, we found all
regions cut out by the receptive fields, and each region defined a code-
word (see Figure 1B). Unlike with the 1D RF codes, however, the codeword
regions in the 2D RF codes were not guaranteed to be convex or even con-
nected subsets of the stimulus space, although the typical region was at
least connected. For the purpose of defining a stimulus space distance on
these codes, we defined the center of mass of a codeword to be an appropri-
ate approximation of the center of mass of the region corresponding to the
codeword, regardless of whether that center lay within the region. When
the codeword region was large enough to contain points from the 300 × 300
fine grid, we took the center of mass of the codeword to be the center of
mass of the grid points contained in the codeword region. A small number
of codewords had regions that were narrow crescents or other small shapes
that avoided all grid points; in these cases, the center of mass of the code-
word was taken to be the center of mass of the receptive field boundary
intersection points that defined the region.

For Figure 7, we generated 10 new 2D RF codes of length 10. For these
smaller codes, the radius was chosen to be 0.25 to ensure reasonable cover-
age of the space. All other parameters were as described above.
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B.3 Details of Error Correction Simulations. As a result of the chosen
receptive field radii, the mean sparsity of the 1D RF codes was s = 0.165,
while the mean sparsity of the 2D RF codes was s = 0.069. To test how
effective each of these types of codes was compared to the random codes
with matched parameters, we chose to make the error probabilities as high
as possible while still abiding by our BAC channel constraints and main-
taining a reasonable value for the expected number of errors in each trans-
mission. Thus, we set q = 0.20 for the 1D RF codes and q = 0.10 for the 2D
RF codes.14 To test the performance of these codes over varying degrees of
channel asymmetry, the value of p was chosen to range from 0.05 to 0.15 in
increments of 0.01 for the 1D RF codes, while p ranged from 0.01 to 0.06 in
increments of 0.005 for the 2D RF codes.
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