1990

Masses of the Double-Mode RR Lyrae Stars

Norman R. Simon
University of Nebraska - Lincoln, nsimon@unl.edu

Arthur N. Cox
Los Alamos National Laboratory, anc@lanl.gov

Follow this and additional works at: http://digitalcommons.unl.edu/physicssimon

http://digitalcommons.unl.edu/physicssimon/60

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Norman R. Simon Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
17.02
Masses of the Double-Mode RR Lyrae Stars
N.R. Simon (Univ. Neb.) and A.N. Cox (LANL)

We re-examine the double-mode RR Lyrae (RRd) mass determination using both new and previously existing linear pulsation models. The independently written Los Alamos (Cox, et al. 1983, Ap. J. 266, 94) and Aikawa (Aikawa and Simon 1983, Ap. J. 273, 346) pulsation codes both yield "canonical" values for the RRd masses, i.e., 0.55 M_\odot for Oo I clusters, and 0.65 M_\odot for Oo II clusters. These results are essentially independent of reasonable changes in helium abundance, the treatment of convection and the formulation of standard opacities. We show that recent contrary results by Petersen (1990, preprint) are almost certainly due to the use of an adiabatic approximation and inappropriate metallicity. Given this, it is further argued that earlier discrepant results due to Koivus (1985; Acta Astr. 35, 37) ought not to be given a high weight. Finally, we concur with Petersen's (1990) assertion that the Oo I RRd masses could be increased provided that Population II metal opacities turn out to be very high.