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Dispersion coefficients for highly excited molecular states of K2

Mircea Marinescu and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 29 May 1997!

We report results of theoretical calculations for the dispersion coefficients associated with the long-range
interaction of two39K atoms in the states39K(4s)-39K(5d,6d,7s). These results have been found by Wang
et al. @Phys. Rev. Lett.78, 4173~1997!# to be in a good agreement with their measurements.
@S1050-2947~97!10010-5#

PACS number~s!: 34.20.Cf, 31.15.Md

I. INTRODUCTION

Progress in ultracold spectroscopy has made possible ex-
perimental investigation of weakly bound highly excited mo-
lecular states with an unprecedent level of accuracy. In par-
ticular, the first observation of optical-optical double-
resonance photoassociative spectroscopy of ultracold39K
atoms near the highly excited 39K(4s)
139K(4d,5d,6d,6s,7s) asymptotes in a high-density
magneto-optical trap has recently been reported@1#. Based
on the measurements of the higher excited vibrational levels,
it was possible to estimate the values of the dominant disper-
sion coefficients for the long-range interaction of two K at-
oms with one of them in a highly excited state@1#. Theoret-
ical calculations of the dispersion coefficients for the
39K(4s)- 39K(6s,4d) dissociation limits of K2 have been re-
ported previously@2#. There is good agreement with new
experimental data for these states@1#. However, no theoreti-
cal predictions exist for the higher excited states measured
recently@1#. In this Brief Report we present theoretical cal-
culations of the dispersion coefficients for the
39K(4s)- 39K(7s,5d,6d) dissociation limits and compare
with the experimental measurements@1#. Throughout this pa-
per we use atomic units (\5me5e51).

II. MATHEMATICAL BACKGROUND

Derivations of the formal expressions for the dispersion
coefficients associated with theS-S and S-D dissociation
limits were presented in Ref.@2#, based on a model potential
description of the active valence electron of the alkali-metal
atoms@3#. Here we therefore only present the final results
needed for our analysis. Briefly, in the long-range limit, the
molecular potential interaction may be written as a series of
inverse powers of the internuclear distanceR. The coeffi-
cients of this series are the dispersion coefficients. They may
be computed using perturbation theory, where the perturba-
tion is given by the Coulomb interaction between the atomic
charge distributions. For theS-S asymptote, where in the
dissociation limit one of the atoms is in the ground state
$ng,0,0% and the other in an excitedS state $ne,0,0%, the
long-range potential interaction is given by the following
expression:
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where the coefficientsCn
b are the dispersion coefficients,

which are obtained from second-order perturbative correc-
tions to the molecular energies. In Eq.~2.1! we haveb5ps,
where p561 for even (g) and odd (u) molecular states,
and s561 for singlet and triplet states.1 The dispersion
coefficientsC6
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whereSj
0 for j 51, . . . ,10 aresums of different products of

atomic radial matrix elements divided by appropriate energy
denominators.Sj

0 are given by Eqs.~46!, ~47!, ~50!–~52! and
~55!–~59! of Ref. @2#.2 Similarly, for the S-D asymptote,
where in the dissociation limit one atom is in the ground
state and the other is in an excitedD state$ne,2,me%, the
long-range interaction potential is given by

Vmeb~R!52
C5

meb
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C6
meb
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2•••, ~2.5!

where theC5 coefficients are obtained in the first order of
perturbation and theC6 coefficients are obtained in the sec-
ond order of perturbation. They are given by the following
expressions:

C5
meb

5
~21!me11b

5 S 4

21meD ~ne2ur 2ung0!2, ~2.6!

1In general, for dissociation limits where one atom is in the
ground state and the other is in an excited state$ne ,l e ,me%, we
haveb5(21)l eps.

2Note that there is a misprint in Eq.~56! of Ref. @2#: En30 in the
denominator should beEne0.
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where the algebraic coefficientsAj
me for j 51,2,3 are given in

Table II of Ref. @2#, the sumsSj
2 for j 51,2,3 are given by

Eqs.~78!–~80! of Ref. @2#, and the (k
n) are the binomial co-

efficients. The main task in computing the dispersion coeffi-
cients consists in evaluating each of the double sums
S1

0 , . . . ,S10
0 andS1

2 ,S2
2 ,S3

2 . They are sums over the principal
quantum numbers of both of the atoms. For example, the
sumS1

0 is given by
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In general, an efficient method of computation is to separate
these sums into independent contributions of each atom by
using the following integral representation@4# for each of the
denominators in the expressions for theS sums:
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This integral representation is valid only ifa.0 andb.0.
By inverting the sums over the principal quantum numbers
and the integral over frequency, and formally computing the
sums, we obtain an integral over a product of atomic radial
matrix elements containing a radial Green’s function for
complex energy. The main advantage of this procedure is
that the two-center molecular problem is reduced to the one-
center atomic problem.

An example will serve to illustrate the theoretical proce-
dure just described. Consider again theS1

0 sum given by Eq.
~2.8!. For the specific order of the energy levels of K, i.e.,
4s, 4p, 5s, 3d, 5p, 4d, 6s, 4f , 6p, 5d, 7s, 5f , 5g, 7p, 6d,
etc., it is not always possible to arrange the denominators in
the expression of theS sums such thata.0 andb.0, as
required in order to use Eq.~2.9!. The cases where the con-
dition a.0 and b.0 cannot be satisfied must be treated
separately. Thus for the energies inS1

0, if we chose
a5En12E4S and b5Em12E7S , then for $m1%
[4P, 5P, and 6P we haveb,0. In those cases whereb is
smaller than 0, we replace 1/(a1b) by
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where the last two terms in Eq.~2.10! cancel each other.3

This procedure enables us to obtain a complete sum over the
atomic states in the integral. The first two terms resulting
from Eq.~2.10! are treated separately. Thus, the final expres-
sion for S1

0 is given by
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wheregP is the radial Green’s function for angular momen-
tum l 51. The last three terms in Eq.~2.11! stem from the
first two terms in Eq.~2.10! for the three cases whereb,0.
Alternatively, if we choosea5Em12E4S andb5En12E7S ,
then we obtain
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1~7SurgP~E4S1E6P2E7S!r u7S!#. ~2.12!

Equations~2.11! and ~2.12! are two alternative expressions
for the same sumS1

0. Thus they provide a good numerical
test of our codes, which give results using these two equa-

3This cancellation follows for b,0 from the fact that
(a2b)215(a1ubu)21 and the fact that Re(b2 iv)21

52Re(ubu2 iv)21.

TABLE I. Dispersion coefficients in a.u. for the
39K(4s)-39K(7s) asymptote.

b C631025 C831029 C10310212

11 3.9195 1.0217 2.8799
3.760.2a

21 3.9226 1.0219 2.8800

aMeasurement of Wanget al. @1#.

TABLE II. Dispersion coefficients in a.u. for the
39K(4s)-39K(5d) asymptote.

b C53102 C631025

m50 11 286.150 4.0148
21 86.150 4.0164

m561 11 57.433 3.5620
3.360.3a

21 257.433 3.5609
m562 11 21.4358 2.1986

21 1.4358 2.1992

aMeasurement of Wanget al. @1#.
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tions which agree to seven digits of accuracy. In a similar
way, each of the sums may be reduced to an integral repre-
sentation. One then must evaluate only atomic matrix ele-
ments containing a radial Green’s function. This step may be
done easily by using the Dalgarno-Lewis method@5# even in
cases involving complex energies@2,3#.

III. NUMERICAL RESULTS AND DISCUSSION

The numerical results for theC6, C8, andC10 coefficients
corresponding to the39K(4s)- 39K(7s) asymptote are given
in Table I, and those for the39K(4s)- 39K(5d,6d) asymp-
totes are given in Tables II and III.4 The theoretical compu-
tations have an uncertainty of 4% due mainly to the 2%
experimental uncertainty of the static dipole polarizability of
K @6#, whose value our model potential has been constructed
to reproduce, following the procedure of Ref.@3#. A discus-
sion of the influence of the uncertainty of the measured static

dipole polarizability on the values of the calculated disper-
sion coefficients was given in Ref.@7# for the case of long-
range interactions among three alkali-metal atoms. A similar
discussion also holds for the dispersion coefficients of K
dimers presented here. We notice that for the
39K(4s)- 39K(5d,6d) asymptote, theC5 coefficients have
very small values in comparison with theC6 coefficients.
Thus the dominant contributions to the39K(4s)- 39K(5d,6d)
asymptotes for K2 are given by the 1/R6 term in Eq.~2.5! for
R,107 a.u. Beyond 107 a.u. theC5 coefficients may begin
to dominate. However, at such large distances the Casimir
effect may become important and hence one expects a
smooth transformation of the 1/R5 term in Eq.~2.5! to one
varying as the 1/R6 power.

The experimental values@1# of the dispersion coefficients
are obtained by analyzing the spectroscopic data of high vi-
brational levels. For the39K(4s)- 39K(7s) asymptote the
measured vibrational spectrum has3Sg

1 symmetry, while for
the 39K(4s)- 39K(5d,6d) asymptotes the vibrational spec-
trum has 1u symmetry. The experimental values for the dis-
persion coefficientsC6 have been determined by using the
single leading term potential model~cf. Ref. @8#!. As shown
in the tables, we find good agreement between theory and
experiment for the leading terms of the39K(4s)- 39K(7s)
and 39K(4s)- 39K(5d) asymptotes. The disagreement be-
tween theory and experiment for the case of
39K(4s)- 39K(6d) may be the result of neglect of fine-
structure contributions as well as the exchange interaction
and Casimir effect in the long-range form of the potential
curve used to extract the dispersion coefficients from the
experimental data.
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TABLE III. Dispersion coefficients in a.u. for the
39K(4s)-39K(6d) asymptote.

b C53102 C631025

m50 11 214.282 9.1057
21 14.282 9.1068

m561 11 9.5212 8.0870
10.160.7a

21 29.5212 8.0862
m562 11 22.3803 5.0275

21 2.3803 5.0279

aMeasurement of Wanget al. @1#.
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