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Elastic wave propagation and scattering in heterogeneous,
anisotropic media: Textured polycrystalline materials

Joseph A. Turner
Department of Engineering Mechanics, W317.4 Nebraska Hall, University of Nebraska-Lincoln,
Lincoln, Nebraska 68588-0526

(Received 23 September 1998; accepted for publication 3 May)1999

The propagation of elastic waves through heterogeneous, anisotropic media is considered.
Appropriate ensemble averaging of the elastic wave equation leads to the Dyson equation which
governs the mean response of the field. The Dyson equation is given here in terms of anisotropic
elastic Green’s dyadics for the medium with and without heterogeneities. The solution of the Dyson
equation for the mean response is given for heterogeneities that are weak. The formalism is further
specified for the case of equiaxed cubic polycrystalline metals with a single aligned axis. The
Green’s dyadics in this case are those for a transversely isotropic medium. Simple expressions for
the attenuations of the shear horizontal, quasicompressional, and quasishear waves are given in
terms of integrations on the unit circle. The derived expressions are limited to frequencies below the
geometric optics limit, but give the attenuations in a direct manner. Comparisons with previous
results are also discussed. It is anticipated that a similar approach is necessary for the study of wave
propagation in complex anisotropic materials such as fiber-reinforced composites. In addition, the
results are applicable to diffuse ultrasonic inspection of textured polycrystalline medid99@
Acoustical Society of AmericBS0001-496€29)04008-4

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35]CdC]

INTRODUCTION mined the phase velocity and scattering attenuation. Their

The studv of wave propagation and scattering of elasti results were applicable for all frequencies from the Rayleigh
y bropag 9 ?i[nit to the geometric optics limit due to their use of the

waves in heterogeneous, anisotropic media is related to non

destructive testing, materials characterization and acoustiléeller approximation alone without additional approxima-

emission of many important materials. Examples includet'ontc" They have also examined correlations defined by both

polycrystalline media with texture, fiber-reinforced Compos_eqwaxed grains and grains with elongatidhThey further
ites, and extruded metal-matrix composites. Elastic wavel
which propagate through such media lose energy due to scdif€S€nce of texture. ,

tering from the heterogeneous structure of the material. This 1€ general scattering problem as discussed by these
scattering may be characterized by the attenuation of the m@Uthors and others involves a scattering integral with a
dium. If the medium is statistically isotropic, the attenuation Gr€€n’s function as its kernel. If the medium is statistically

is independent of propagation direction. In an anisotropidSCtropic, this Green’s function clearly takes the form of the
medium the scattering attenuation is a function of propagaS'€en’s function for the isotropic medium. In the case of
tion direction. The analysis of this scattering attenuation isStatistically anisotropic media this choice is less clear. Stanke
therefore, more complicated than that of the isotropic cased Kino argue that the isotropic Green’s function may be
The study of statistically isotropic media and the correspondus€d in the analysis for polycrystalline materials with
ing scattering attenuation has received considerable atteffxture: This argument was the basis of the work by Ahmed
tion. The problem of wave propagation in textured polycrys-2nd Thompsof.They used the isotropic Green’s function as
talline materials has, however, received lesser attentioriiven by Lifshitz and Parkhamov$kio describe the scatter-
Stanke and Kinb briefly discuss the applicability of the ing in textured media. In addition, they simplified the analy-
Keller approximatiof to the case of polycrystalline media Sis by using the polarization directions for the isotropic
with texture, although they provide no specific results.waves. Examination of the Keller approximation indicates
Hirsekorn was one of the first to carefully examine the scatthat the choice of Green’s function is not so clear. In the
tering in textured polycrystals as a function of frequefcy. original discussiorf,a small variable: was defined as a mea-
The use of a single-sized, spherical grain resulted in unphyskure of the departure of the medium from homogeneity. The
cal oscillations at higher frequencies. She then extended hé&reen’s function within the scattering integral corresponded
theory, using the same perturbation approach, to determirt® that for the medium for which the heterogeneity was zero.
the directional dependence of the phase velocity and atteniror textured polycrystalline materials, the homogeneous me-
ation of the three wave typésThe problem was considered dium is anisotropic. Thus, an anisotropic Green’s function
more recently by Ahmed and Thompsdithey also exam- may be more appropriate for this and other similar problems.
ined the case of polycrystalline grains with an aligned axisComparisons between these different solution metiieds,
and developed algebraic equations governing the wave nunisotropic Green’s function with and without anisotropic po-
ber. The roots of these equations, found numerically, detedarizations and anisotropic Green’s functian terms of the

oted the relations between the diffuse backscatter and the
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strength of the anisotropy will not be addressed here. ~ pulse at locationx’ in the ath direction. The moduli are
The use of an anisotropic Green’s function for modelingspatially variable and density is assumed uniform through-

the scattering in statistically anisotropic media is the subjecbut. The units in Eq(1) have been chosen such that the

of this article. Here, the problem is formulated in terrr})s of density is unity. The moduli are assumed to be spatially het-

the Dyson equat|9n as dlsc.ussed by Fﬁsahd We_avei‘. _ erogeneous and of the f0”ﬁ3ijk|(X)=C?jk|+5Cijk|(X)-

The Dyson equation is easily solved in the spatial Fourierrhys, the moduli have the form of average mOdmﬂm

transform domain within the limits of the first-order smooth- =(Cjj(x)), plus a fluctuation about this measiC;; (x).

ing approximationFOSA), or Keller approximation. A fur-  The ~fluctuations are assumed to have zero mean,

ther approximation is also made which restricts the results t@gcijkl (x))=0. The mean moduli are not necessarily

frequencies below the high-frequency geometric optics limitisotropic—the material may have global anisotropy. The co-

The problem is further specified for the case of cubic poly-variance of the moduli is represented by an eighth-rank ten-
crystalline grains with one aligned axis and with the otherggr

two axes randomly oriented. In this case, the anisotropy re- ikl
duces to that of transverse isotropy. The result is the attenu-  A(X=Y)apys={(0Cijk1(X) 6Copy5(Y))- (2)
ation as a function of direction and frequency for the shear ¢ covariance, is given as a function of the differ-

hori;ontal, quasicompressional, and quasishear waves. Ehce between two vectors—y. This assumption implies
particular, the angular dependence of the attenuations in th@a¢ the medium is statistically homogeneous. However, the
Rayleigh limit is obtained explicitly. Outside the Rayleigh 4qgitional assumption of statistical isotrofijat A is a func-

Iimi_t, simple expressions _for the attenua_tions of the sheafjg of |x—y]|) is not made here. The power spectral density
honzqntal, quasm_ompres_smnal, and qu§5|s_hear waves are do “the moduli fluctuationsA, is given by the Fourier trans-
rived in terms of integrations on the unit circle. The resultsform of the covariance
are quantitatively similar to those of Ahmed and Thompson,
but are given here in a more direct manner. Differences in . K it 43
the angular dependence are also seen due to the use of the A(p)aﬁyﬁ_J AN apyse P d7T. 3
anisotropic Green'’s function here.

The present formulation also allows the extension to the ~
full multiple scattering problem to be made in a straightfor-tions f(t) andf(w) by
ward manner. Such an extension in terms of radiative trans- _
fer and diffusion has been discussed previously for the sta- f(w)=J f(t)e'“t dt, (4)

tistically isotropic case using similar methol#s2 Although

Defining a temporal Fourier transform pair for the func-

the present application is for textured metals, the formalism 1 (- .

is sufficiently general to be applied to other heterogeneous f(t)= ZJ f(w)e ' do, 5
media with statistical anisotropy such as fiber-reinforced

composites and extruded metal-matrix composites. allows Eq.(1) to be transformed as

In the next section, the Dyson equation is discussed i P 9
terms of the appropriate Green’s dyadics. The formalism i% w251k+cf}k| —— =+ ——0Cjjii(X) 7 Gya(X, X", @)
developed for a general anisotropic material without refer- oXi X 0, 2l
ence to a particular symmetry class. The solution of the mean = 5jaé\3(X—X’)- (6)
response is further reduced in the succeeding section for the )
case of a transversely isotropic medium. The elastic modulus 1€ random nature of the medium suggests that the
tensor is specified for this case and expressions for the a2'€€n’s functionG, is of little value as it will also be a

tenuation of each wave type are given. Finally, the covarifandom function. The interesting quantities are instead those

ance tensor of the elastic moduli fluctuations is further specifélated to the statistics of the response. These statistics in-
fied for that of cubic polycrystals with texture and solutions €lude the mean responsgG), and the covariance of the

for the case of stainless steel with alignfD1] axes are [€SPONS&GG™), with the * denoting a complex conjugate.
given. This article is devoted to examination of the mean response

with corresponding phase velocities and attenuations.
Wave propagation and scattering problems of this sort
|. PRELIMINARY ELASTODYNAMICS do not lend themselves to solution by perturbation methods.
) ) ) As Frisch points out, these solutions do not conv@rge.
The equation of motion for the elastodynamic responsgeaq Frisch used diagrammatic methods for solution of the
of an infinite, linear-elastic material to deformation is given .., responstThe mean responséG), is governed by the
in terms of the Green’s dyadic by Dyson equation which is given By

#? 9 d
_5jkﬁ+ (9—)(iCijkl(X)&—xI Ga(X,X';1) <Gia(X,X')>:Gioa(X,X')+J f G?ﬂ(x,y)Mﬁj(y,z)
= 5,03 (Xx—x") 8(t). (1) X(Gj.(z,x")) d’yd®z. 7)
The second-rank Green’s dyadiG,,(x,x’;t), defines In Eq. (7), the quantityG® is the bare Green’s dyadic. It

the response at locationin the kth direction to a unit im-  defines the response of the medium without
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heterogeneities—the solution of E@) with 8Cijki (x)=0. identical to that given by Weaver for a statistically isotropic
The second-rank tensoM is the mass or self-energy medium. However, the use of an anisotropic Green’s dyadic
operators? The Dyson equation, Eq7), is easily solved in for representingG®, which is discussed below, is the main
Fourier transform space under the assumption of statisticdlew result here. The abbreviated presentation given in this
homogeneity. The spatial Fourier transform pair @% is section serves as a reminder of the general procedure for the
given by description of the mean response. The Dyson equation, Eg.
(10), and the expression for the self-energy, E®), will be
1 J J GO (x.x) used below for the derivation of the attenuations. Readers
(21)3 ' interested in further details of the scattering theory are re-
ferred to the articles of Karal and KellérErisch? Stanke
X e~ 1Pxgldx" g3y g3y’ (8)  and Kino® and Weavet®

G2 (p) & (p—q)=

1
(2m)®

« @iPxg=iax’ d3pdiq. (9) The solution of t_he Dyson equation, I_EQ].O), for the
5 mean response requires the Green’s dyadic for the bare me-
The Fourier transforms which defiq€&(p)) and M (p) dium. The bare Green’s dyadig?, is defined as the solution
are given by expressions similar to that defin®®(p). The  of the equation of motion, Eq6), without heterogeneities
assumption of statistical homogeneity ensures that they aféC;;,(x)=0]. The emphasis here is on anisotropic media
functions of a single wave vector in Fourier space. Thewith heterogeneities. Thus, th@° required is that for an
Dyson equation can then be spatially Fourier transformedchnisotropic medium. The lowest possible anisotropic symme-

G (x,x")=

f f G2 (p) 6% (p—0) Il. GREEN'S DYADIC FOR TRANSVERSELY
ISOTROPIC MEDIA

and solved fok G(p)). The result is try class to be considered is that of a medium with a single
O vl _ symmetry axis. Although this is the simplest case of global
(G(p)=[G(p)""—M(p)]"", (10" anisotropy, relevant transversely isotropic or uniaxial mate-

where M is the spatial transform of the self-energy. The rials'inclgde. fiber-reinforced composites and .polycrystal'line
Dyson equation is exact and describes the mean response g dia with fiber textures. These types of media have a single
the medium. The main difficulty in the solution of E0) is ~ Symmetry axis defined here by the unit vectarThis direc-

the representation ofl . Approximations ofM are often nec- tion is termed the “fiber” direction although the medium
essary to obtain closed-form solutions of E&0). The self- may not be composed of any fibers. The fourth-rank elastic
energy,M, can be written as an expansion in powers ofmoduli tensor,C, in a transversely isotropic medium is a
moduli fluctuations. Approximation dfl can then be made function ofn and is written

to first order using the first term in such an expansion. Frisch
discusses the equivalence of this technique, which he called Cij
the first-order smoothing approximatidfOSA),° and the

Keller approximatiorf. The FOSA expression favl is given

= N1 8 8+ ey (S Sji+ 8 8j) + A( SNy

+ 5k|ﬁiﬁj)+ B(élkﬁ]ﬁ|+ 5i|ﬁjﬁk+ 5jkﬁiﬁ|

by"® + 8 M) + DA (13)
M |9 5C The above elastic constants are definedAasyv—\,, B
Bi(y’Z)N E aﬁyé(y) =T M andD=7\J_+2,U,J_+7\”+2,LL”—2(V+2/.LH). The
5 5 5 elastic moduli\j+2u, N +2u, , p,, p, andv can be
defined alternatively a<C C C C and C
X— GO (y,2) — 86C. i1 (2) — ) . 11 ) 115 ©33) 44, 661 13»
s w(¥:2) 7z ijki(2) (92|> 11 respectively”

Such an approximation is assumed valid as long as the flu%—On S;gs(%t)m;cegfi:]h'jirfggnnggﬂ'onrfo the equation of mo-

tuations,sC, are not too large. The spatial Fourier transform,
as defined by Eq(8), of the self-energyM, is then formu-  £,)2| — p?[(1, +B(p-n)2)I +pp(\, + )
lated. Manipulation of this integration allows it to be reduced

to'? +nn(B+D(p-n)?)+(A+B)(p-n)

. A L M- 0 n) —
I\7IB,-(p)=f d*sG)(9p.pissSA(P-9Lg 5. (12 X(pn+np)]}-G*(p,n) =1, (14)
wherep is the wave vector with magnitudp, and direction

Thus, the transform of the self-energy can be written as;
a convolution between the bare Green’s dyadic and the Fou- The above equation can be written in terms of the wave
rier transform of the covariance of the moduli fluctuations. matrix, N, by'4
This expression, Eq12), and the Dyson equation, EL0),
are the primary results of this section which are used in the NjiGia(P, @) = i - (15
remainder of the article. The components\bf as discussed The eigenvectors dfl define the polarization directions
in Sec. Ill, are used to calculate the phase velocity and atfor the propagating wave$. These eigenvectors can be
tenuation of the various propagation modes. Equati@is  found directly from the wave matrisy. Explicit expressions
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of the directions of these eigenvectors are required for the —Esin20
results which follow. For this reason, an alternative method ~ tan2y=5——=--=5 (24
of determining the eigenvectors is given here.

The shear horizontal wave in a transversely isotropic  The directions ofl, andu; are defined in terms af for
medium is known to be polarized perpendicular to the plandater convenience. The above equation #orEq. (24), must

defined byp andn. This vector,u,, is given by be used with care when numerical methods are employed.
The value ofy which satisfies Eq(24) may correspond to

.~ pxXn pxn either the quasi-P or quasi-SV wave. It should also be kept in
B | pX ﬁ| T sin®’ (16 mind that the vectors, andus are functions of the direction

_ S o of propagationp, relative to the fiber directiom. This de-
where® defines the angle between thendn. The identity pendencey=(0), which is evident in Eq(24), will re-

dyadic can then be expandedlasu, U+ (1—U,U;). Use of  main implicit throughout.

the identity® The bare Green’s dyadic may now be written
(p-n)(pn+np) Go(p)=ggH(p)ﬁlﬁﬁggp(p)ﬂzﬁﬁggsv(p)ﬁsﬂs- (25
=U0,U5(1—(p-nN?) = 1(1—(p-n)3) +nn+pp, (17) The dispersion relations for the bare response of the SH,

gP, and qSV waves are given by

924(p) =[w?— p¥(p, +BcogO)] 1=[w?—p2c ]},

allows the last term in Eq14) to be expanded. The result is

{alal[ggH(p)] "1+ (1-UgUy) 02

—p?2[(1-0,0,)Q+ PPp+EARTY-GO(p,m) =1,  (18) 9 P) =[0?—p%(Q+ Pcog y+ Ecos(O +¢))]
where the shear horizontal dispersion relation is =[w2—pzc§p]71, (26)
[98K(P)] = w®—p?(u, +B(p-n)?). (19 Jasv(P) =[w?—p*(Q+ Psirfyr+ Esir’(O + )] *
The quantitiexQ, P, andE in Eq. (18) are defined by :[wZ_pZC(ZISV]—l'
Q=pu, + B(f)- n)2—(A+B)(1— ([). n)?), where the angle is defined by Eq(24) andQ, P, andE are
defined in Eq(20). The above expressions also describe the
P=\ +u, +A+B=v+yy, (20 phase velocityc;, as a function of propagation direction for
L each wave type3. The imaginary parts of these expressions
E=A+2B+D(p-n)2. will be used below and are given by

_The qgasi PAand SV wayes grg polqriged in directions Img%(p)z —wsgr(w)&(wz—pch,). 27)
defined byu, andus; both of which lie in thep-n plane. They _ _
form an orthonormal basis witﬁl such thatﬂ3=l]1><l]2. The mean response of the heterogeneous medium is now

The vectoru, is directed at an anglg from the propagation given by solution of the Dyson equation.

directionp. Use of the directions, andu, allows G° to be
diagonalized. Thus— U,U; = U,U,+ UsUz. The vectorp and
~ . . ~ ~ I1l. MEAN RESPONSE
n are then written in terms af, andus as

The mean responséG(p)), is given by solution of the

P=U2COS)+ Ugsiny, (2D Dpyson equation, Eq(10), above. The solution ofG(p)) is
A A expressed in terms @°(p) andM (p). Like G°, the mean
N=U,C08 4+ 0) +Ussin(y+0). (22 response and self-energy may be expanded in terms of the
Substitution into Eq(18) gives orthonormal basis defined hy, U,, andus. Thus,
{0303 g8H(P) 1™+ Uplig ” — p(Q+Peosys (G(P))=GsH(P) a3 + Gopl P)alia + Qs P) s,

q N2 2 ; ; _ L o o (28)
+ECOS(0 + )]+ Ui = pH(Q-+ Psiry+ Esir® M (p) = Mg(P)UyUs + Mge(P) UxUs + Mys\(P) UsUs,

where it is again emphasized that the directians u,, and
+ Psinycosy]}- GO(p) =1. (23 LAJ3 are dependent upon the propagation direcﬁon

The dispersion relations for the mean response are then
given by the solution of the Dyson equation, Ef0), as

X (O + )]~ (UpUz+ Ugliy)[ ESIN( O + 1) cog © + )

The vectorsl, andUs, which define the polarizations of
the quasi-P and quasi-SV waves, respectively, are eigenve

. . 0 . _ _
tors qf!\l aAncAi d|a}99nal|za3 . Thus, theT term in Eq€23) gﬁ(p)Z[g%(p) 1—m5(p)] 1
containingu,us+ uUsu, must be zero. This fact establishes a s o .
criterion for the angley given by =l =pcy—mg(p)] -, (29
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for each wave typep. This expression for the dispersion from Eq.(30). The attenuation of each wave type is given by
relation of the mean response defines the phase velocity and
attenuation of each wave type. Solution of

ag(p)=————Im 31
s B(Cﬁp (3D

The final step in this derivation now lies in the expres-
for the wave vectomp, is required givenM defined in Eq.  sion for the imaginary part of the self-energy. The definition
(12). The inverse Fourier transform ¢&(p)) will be domi-  of the self-energy was given by E¢L2). The form of the
nated by the poles of the dispersion relations. The phasself-energy given by Eq(28) is substituted into Eq(12).
velocity is given by the real part gf and the attenuation by Appropriate inner products allow each component of the
the imaginary part. Such solutions of E@O) are usually self-energy to be determined independently. The wave num-
done numerically using root finding technigieslowever,  bers which appear in E¢12) are approximated to the same
explicit expressions for the attenuation can be determinedegree of the Born approximation discussed above. The in-
using an approximation valid below the high-frequency geo+tegration over the magnitude of the wave vector is easily
metric optics limit. In this case, the wave vecfowithin the  done due to the delta-function form @&°(s). The delta
self-energy is approximated as being equal to the bare wavieinctions are the result of consideration of the imaginary
vector. Such an approximatioms(p) ~mgl (w/cg) p1, parts of the dispersion relations given by Eg7). The at-
sometimes called a Born approximatibt?. This approxma— tenuations for the three wave types, each defined by3ygj,

tion allows the imaginary part gb to be calculated directly are finally given by

w?—pZcs;—mg(p)=0, (30)

) 1 - A w4 B © A o . 4..u1p3/1 A w4 5 w A w . ""ulpWZ
asyp)=——— —f d?s—— A( —p - s) +—f d?s—— A( —p _ s)
cdyp) | 4 c2y(9 \Csu(P)  CsH(9) oGP 4 Coel9) | Csu(P) CqelS) Uy pSy
' ~ (D4 ~ w ~ w ~ ujﬁg}S
7 o AA( —p—— ) , (32
CasvS) \Csu(P) CosS) /.. g 550,
1 T . ot o . o . e gpSy . ot o . w . bty
aqep)= —f %s ATX( —p As) +—fdzs A7\< P AS)
T Gp | 4T o) os® | g AT G og®) cl® |
ot e @\
+Zf . A( —p—2 s) , (33
CasUS) \CqelP) CasS) | g
A . S N - R R
agsvP)= 5= —j 25— A( —p _ s) +—J d?s—— A( —p - s)
CosulP) | 40 39 \CgsuP) Csu(S) | pan A cES) csuP) CadlS) )
ar ~ (.04 ~ w ~ w ~ 63'3;{}3
+Zf d’s 5~ A P =S (34)
Cqsv(s) CqSV(p) CqSV(S) e UaPSY

“UzPsvg

The integrals in the above equations are over the uni upsv_ ¥ A
9 9 Ty by R (@) 2= R (), 500D aPSSN Y,
sphere defined by. The directionp defines the propagation The above expressions for the attenuation are more com-

direction, s is the scattered direction, and the polarizationpjicated than those for a statistically isotropic medium con-
directions,u andv. In the above expressions the dependenceidered by WeaveP They reduce to the forms given there in
of the vectoral on p and ofv onsis implicit. The argument the case of statistical isotropy. The dependence of wave
of the autocorrelation is the difference between the incomingpeed and polarization direction on propagation direction
and outgoing propagation directions. The inner products ogreatly complicates the integrations. In the next section, the
the autocorrelation of the moduli fluctuations are given incovariance is specified for equiaxed cubic polycrystals with
terms of four unit vectors. This inner product is given explic-texture.
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IV. EQUIAXED POLYCRYSTALLINE MEDIA WITH <Cijkl(x)>ECiojkl
TEXTURE

=N 6jj Skt py (6 dj + 6t Ojk)

The above formalism is now specified for the particular A R

problem of equiaxed cubic polycrystalline media with one +A(G; N+ anin;)
aligned axis. This particular grain structure arises during
welding or solidification. In this case the transverse isotropy
isrt]he result of align(;nenlt of one gdrair;)axis Ln all grains. The + Dﬁiﬁjﬁkﬁl _ (39)
other axes are randomly oriented about that axis. Two as- . . . .
sumptions are made about the fluctuations of the elastic. The elastic modulus tensor for a single cubic crystal is
moduli. The tensorial and spatial components of covariancd'Ve" by
are first assumed independent. This assumption implies

+ B( 5ikﬁjﬁ|+ 6i|ﬁjﬁk+ 5jkﬁiﬁ|+ 5j|ﬁiﬁk)

3
Cijki (X) = €126} O T Caa ik 651 + 61 i) + 77;1 a'ajazal,

Ap)il =20 W(p), (35 (39)
where n=c;,—Cq,—2Cy4 is the single-crystal anisotropy.
~ Nl . R
whereW (p) is the Fourier transform of the spatial correla- | '€ élementsy’ define the rotation matrix in terms of the -
tion function. The grains are also assumed to be equiaxeGUler angles. Each grain is assumed to have a different ori-
such thatw(r)=e~"'". The correlation lengthl_, is of the entation such that the last term in Eg9) is dependent upon

order of the grain radius. The Fourier transform is then giverk: 1he ensemble average for this medium is defined by ro-

by tation about the aligned axis of the grains. This average is
given by
3 1 27
~ L fy= —f f(¢)do, 40
)= | - (=5 f(e)de (40)
7 (1+L%g%)?

where the dummy variablé is defined in the plane perpen-
dicular to the direction of the aligned axis.

The forms of the attenuation~given flbove contaip the Carrying out the average for E689) and equating like
difference of two vectors, W(q)=W([w/ci(O)]p terms with Eq.(38) gives

—[wlcy(©')]9) as the argument foA (p). The form of

correlation function is dependent upon magnitude of this \ —c. 4 P
. . . . 1 127 g My aaT g
vector. Trigonometry reduces the magnitude of this differ-
ence to N 7y (41)
4’ 4
) ® . o 7 The average modulus tensor is then
TG ® P e
C1(0)" c,(0) i i
(Cijui)= C12F 7/ 0ij0+| Caat 1 (SikSj1 + 3i1 Oj)
A 255 @
- N ~P-S). /PN oA N, o= o oa
ci(®) c3(0') ci(O)cy(O) = 2 (O + Saniny) = 7 (S i+ 50Ny
The form of the eighth-rank tenscg. 5, is now dis- . U N
cussed with regard to cubic crystallites. + SN+ G5 ning) + —Zmnin;ngn; (42)
A. Statistics of textured cubic polycrystalline media The eighth-rank covariancaggyﬁ, is also a function of

with aligned [001] axis the single vecton. It can therefore be constructed of Kro-

The average medium is characterized by the averaggecker deltas and pairs ofs. The symmetry of the cubic
elastic modulus tensoiC;jy ). For a statistically trans- crystal also implies that this tensor must be invariant to per-
versely isotropic medium, the average modulus is a fourthmutation of Latin or Greek indices and exchange of all Latin
rank tensor which is a function of the unit vectorThe most ~ for all Greek indices. Thus, the covariance of moduli fluc-
general form for this tensor is tuations may be written in terms of 14 independent tensors as

Eizilélyﬁz (CijkiCapys) —(Ciji{Capye)

n=1

3 3 3 3
— .2 nNnonan nonnagn 2 nnqnan nanoanagn
=y << 21 ala’ajal )( 21 aaaﬁayaﬁ) > -7 < >, ajalaja >< El aaaﬁaya5>
n= n= =
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The above terms not explicitly given are written in terms Specific inner products required for the calculation of
of G andL. This notation implies the form of the terms given the attenuations are now determined. The attenuations will
by Greek or Latin indices. All possible permutations of thevary angularly only within the plane defined by the propaga-
particular form are implied and the number of terms of eachtion direction and the fiber direction. Therefore, without loss
form is also given. For example, the factoy contains terms  of generality, a reference plane is defined asghe plane.
such asd,zd;n,nsn Ny and 8,,8kNgnsn;n; plus all other  The following vectors are then defined with respect to a gen-
permutations of Greek and Latin indices for a total of 36eral xyz coordinate system as
terms.

The 764 terms in Eq43) completely define the covari-
ance in a coordinate-free manner. The averages given in . . N
terms of the Euler angles can be carried out and compared P=YSin® +zcos, (45)
with the results of the covariance given by the general form.
The coefficients are found to be

N>

5

s=xsin®’cosp’ +ysin®'sing’ +zcod .

The polarization vectors are then defined with respect to

97?2 these angles ang [Eq. (24)] as
d8:b6:_d6:2_88, ) A
u; =X,
37 . .
by=—ds=—hy=ho=745, U, = ysiny+ zcosy, (46)
(44)
5 O3= —ycosy+ Zsiny,
n
d2:c2:b0:_d0:_b2:_c4:@’ and
5,72 V,=Xsing' —ycosp’,
h4:_.
288

V,=Xsiny’ cosp’ +ysiny’sing’ +zcosy’, (47)
The forms of the attenuations given in Eq82)—(34)
above require various inner products on the covariance ten- \“,3: —§<003y’co&j>’—§/c03y’sin¢’ +Esiny’,
sor. These inner products have the general forf of %2>

qp“' where the angley andy’ used above are defined b
where the vectorp ands represent the incoming and outgo- gley Y y

|ng and propagation directions, respectively, and the vectors
g andr are vectors defining the polarization directions of the
particular wave. These vectors are perpendicular to the plarihese anglesy and y’, define the orientation angle of the
defined bys or p andn (for SH waves or they lie in this gP wave with respect to the direction in thep-n ands-n
plane (for gP and gSV. This general inner product can be planes, respectively.

written in terms of various combinations of inner products of Using these definitions of the relevant unit vectors, the
the vectors involved. The most general form is given explic-required inner products simplify considerably. The inner
itly elsewhere® products are forrgy,

y=0+4(0), y'=0'+y(0’). (48)
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B s 7 sirt@ ' cogy’ sirtysint®; XJ” Wosv-sH(P,S)sir®
PV3 32 . CgH(,)
and, foragsy, ) B
q 2 qu\/,qp(p,s)sin:‘@’sinzy’
o S5
0P80, o
= _,Gzp% sm20 cogysirto, HO")
Wysv_qsv(P,S)SintO’ cosy’
o 2 4 Wasv qsv(ls) ) , Y |40 50
Eﬁzgzi S|n2® sir?y’ codysirf®, (51) S0

These expressions are now nondimensionalized and sim-
O3PSI r12 . plified. Reference wave speeds are needed for the nondimen-
g8 i i . o . .
r 0P85 S ©'cos’y’cos'ysire, sionalization. Rather than using the Voigt average wave
speeds, wave speeds characteristic of the anisotropic medium

where y and y’ are defined in Eq(48). The expressions are used. Average wave speeds are defined as

given by Eqgs.(49)—(51) are also directly related to the dif-
fuse propagation including backscatt&r!3

. . . 1 (= _
N Using the above inner products, the attenuations reduce Cﬁ:if C4(©)sind® de, (55)
wisiP® nPm f2m (7 Wey 5P, S)SITO’ for each wave typeg. The three nondimensional frequen-
as®)= c%H((@) 128/, fo CES>H(/) cies are then_ defined _a@zwL/cB. Finally, dimensionless
quantities which describe th_e slowness surface for each wave
WSH qp(p S)sint®’ sirty’ type are defined by;(©)=cz/cg(0).
o) The expressions for the spatial correlation functions
qF’( must now be discussed. Using the form of the spatial Fourier
WSH qsv(IO 3sif@’cody’ transform~of theAcAorreIanon fun(':tlon, given by E®6), the
de’, (52)  functionsWg_,(p,s) are determined. In terms of the above
Cosv(©") dimensionless quantities, we find
~ . L3
W;_ . (p,S)= —= (56)
p=o/P AL+ X55(0) +X2r%(01) = 2XX,1 5(O)r (O ')p-5)?
|
for the incoming wave type8 and outgoing wave type. integration overg’ in Egs.(52)—(54) can be done in closed

The inner productp-s=cofcod’ +sin@sin®’sing’. The  form. The resulting dimensionless attenuations are then

548  J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999 Joseph A. Turner: Scattering in textured polycrystals 548



2

Y 3 .
as( @)L =xgy——=—Tr3(0)sirf®
SH SH64pzcéH SH
cen|’ csn|’
SH SH
X | Isp-sHtIsp- qP( +|SH—qSV(—_) )
Cqp Cqsv
(57)
7
g O)L = Xp—r Wik ro(©)sinfOsirty
[ |’
P P
X |qPSH<_—q +|qpqp+|qpqsv(_i> ]
CsH Cqsv
(58)
2
— X 13, (0)sirPOcod
ags O)L=Xqsy——=Ts@)simrOcosy
64p CqSV
Casv’ Cosv!
SV SV
x| 1 qSV—SH( _q—) + Iqsv_qp( _q—)
CsH Cqp
+1gsv-qsv|s (59

with the density,p, now included.
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FIG. 1. Slowness surfaces for stainless steel with texture.

| g—qsv= foﬂré’sv(’)cosz(@% H(0'))sirt®’ do’,

for all incoming wave types3. Thus, the angular depen-
dence of the attenuations in the Rayleigh limit is seen explic-
itly. The attenuations are dependent upon the cube of the
slowness multiplied by a factor related to the polarization
type. The attenuationgy varies aerH(O)smzﬁ) agp varies

as r3(0)si(O@+y(0))sif®, and agsy varies as
qS\,(0)0052(@+ (©))sir’o.

The above terms within the square brackets represent

integrals which are given by the general forms

_fwrgH((a’)xB SHSIMO’
| g—sH=

)3/2 de’,

(X SH YB SH

_fwrgp((a')xﬁqpsin2(®'+¢(®'))sin3®' ,
lg—qp= d

(Xz’fqP_ Y,%’qu’)sl2

(60)
| g—qsv
Frgsv((a' X qs\,co§(®’+z/;(®’))sin3®’d®,
0 (X,B qsv— YB qSV)3/2 ,
with
Xg—y=1+X5r5(0) +x2r5(0")
—2X X, I g(O)r (O)cogdcoP’,
(61)

— = 2XpX, I 5(@)r (©')sinOsin®’,

for the different wave types3 andvy.

In the Rayleigh limit, these integrals simplify consider-
ably. They become independent of incident direction and fre-

guency and are given by
| g—sh= foﬂrgH(®’)sin3®’ de’,
|B_qurrgp(®')sin2(®'+¢('))sin3®' e’
0
(62)
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B. Results for stainless steel

Numerical results are now presented for the specific case
of stainless steel with alignd®01] axes. The material prop-
erties used are

€;;=2.16x 10" Pa, c;,=1.45x10" Pa,
C1=1.29x10" Pa, p=7860 kg/ni.

The slowness surfaces calculated using the dispersion
relations for the bare medium, Ed26), are shown in Fig. 1.
These results agree well with those of previous authors.

(63

0.3

- SPH
o3 T g SV
§o.25—
g
g 02
5
Ems
E
E o

) 1 20 80 40 5% e 70 8 %
Propagation direction,® (degrees)
FIG. 2. Dimensionless attenuation in the Rayleigh limit as a function of

direction for the SH, gP, and qSV waves. The dimensionless attenugtion
has been normalized by the fourth power of the dimensionless frequency for

the respective wave typespl/x%,,, aqu/ng, and “qSVL/XgSV-
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FIG. 3. Angular dependence of the normalized SH attenuatign/ksy, FIG. 4. Angular dependence of the normalized gP attenuatigs’k e, for
for various frequenciesgy . various frequenciexgy .

Attenuation results, using Eq$57)—(59) are given in  are similar to the SH attenuation. The cross-fiber attenuation
terms of the single dimensionless frequencys,  increases more rapidly than other directions as the frequency
=wl/cgy. The calculations are primarily limited tag, increases. Similar results were seen by Hirsekoand

<10 corresponding to the onset of the geometric optics limiAhmed and Thompsoh.
observed by Ahmed and ThompsbiiTheir dimensionless The normalized gSV attenuatiorysy/Kqsy, is shown
frequency,y=kd, is based on the grain diameter. Here, thisin Fig. 5 at the same frequencies as Figs. 3 and 4. The at-
quantity contains the grain radiusThe required integrals tenuation in the fiber and cross-fiber directions is zero as
were calculated numerically using a Newton—Cotes quadra€xpected from the form of the modulus fluctuations. The
ture function quad8 available in the software package direction of maximunugsy, as observed in Fig. 5, is seen to
Matlabl? be a function of frequency. This result is shown more explic-
In the Rayleigh limit, the integrals in Eq&0) reduce to  itly in Fig. 6 in which the direction of maximunasy is
those given by Eqg62). For the case considered here, with Plotted versuscsy. This direction is 47.1° in the Rayleigh
parameters given by Eq63), these integrals aré; sy limit as was seen in I_:|g. 2. 'I_'he direction of maximurgsy
=1.623, | 5_p=1.068, andlz_qs,=0.6271. In the Ray- then. increases with increasing frequency. The peak in this
leigh regime the attenuation depends on the fourth power oihaximum occurs at a frequency of abow,=1.8 at an
frequency. Thus, the angular dependence of the three atten@tgle of 51.8°. The direction of maximumagsy then de-
ations is described by the quanti#y./x*. This parameter for creases for larger values afy. The result presented here
each wave type is shown in Fig. 2. Ti&H and gP waves differs from that presented by Ahmed and Thomp3dineir
have their maxima perpendicular to the fiber direction. Allmaximum aqsy occurs at 45° in the Rayleigh regime. At
wave types have zero attenuation in the fiber direction—thdligher frequencies they noted an increase in the angle of
material properties do not vary in that direction. The gSvMaximumagsy, although the shift from 45° is not as dra-
wave is seen to have zero attenuation in the fiber direction
and perpendicular to the fiber direction. This result is the 012 - . - ' . . - '
same as previous woftc Here, however, the same symme-
try is not seen. The qSV attenuation actually peaks at 47.1° 44
rather than 45°. The qSV attenuation greater than the peak it
slightly higher than that for propagation directions below the oo
peak as well. Thus, the inclusion of the wave polarizations ¥
through the anisotropic Green’s dyadic results in slight dif- =
ferences from the case without. § oog
Results outside the Rayleigh regime are calculated using
the complete integrals, Eg€0). The directional dependence B 004
of the attenuation as a function of frequency is presented
first. Figure 3 shows the normalized SH attenuation,
asyl/ksy, as a function of propagation direction for five dif-
ferent frequencies. These results may be contrasted with the e
results in the Rayleigh limit. As the frequency increases we % o 20 30 40 %0 e
see that the attenuation in the cross-fiber direction increases Fropagation direction,®(degrees)
more than in other directions. The results for the normalizegg. 5. Angular dependence of the normalized qSV attenuatigg,/k
qP attenuationgqp/kyp, are shown in Fig. 4. These results for various frequencies(sy.

qSVs
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FIG. 6. Direction of maximum gSV attenuation as a function of frequency,
Xsy- This angle is about 47.1° in the low-frequency limit, peaks at about
51.8° atxg=1.8 and then decreases for higher frequencies.

FIG. 7. Normalized SH attenuationgy/ksy, as a function of dimension-
less frequencyxgy, for propagation directions of 45°, 69.5°, and 90°.

V. DISCUSSION
matic as that seen here. This difference is also attributed to . . . .

. : o T The propagation and scattering of elastic waves in het-
the inclusion of polarization direction in the present results. : ) . . .
i . erogeneous, anisotropic media has been examined. Appropri-
The appearance of the additional peak in the SV attenu- : : :
. o - te ensemble averaging of the elastic wave equation resulted
ation at about 69° is observed. The presence of such a pe% the Dvson equation. governing the mean field. The orob-
at the same angle was also observed by Ahmed and Thomp- y q ' 9 9 ) P

. em was further specified for the case of transverse isotropy.
son. They suggested that this phenomenon was related to , . ) . .
; : . e Green'’s dyadic for a transversely isotropic medium was
stochastic-geometric transition. However, the presence o . : :
used to derive expressions for the attenuation of the shear

this peak in the present results shows that this is not th?| . ; ; .
L . orizontal, quasicompressional, and quasishear waves. The
case—the above derivation is limited to frequencies exclud-

) . Co covariance of moduli fluctuations were determined in
ing the high-frequency geometric limit. The above forms of . . . . .
. . . coordinate-free form for cubic polycrystalline materials with
the attenuation allow this phenomenon to be examined morg,. ' .
X ) : aligned[001] axes. The final forms of the attenuations for the
closely. The integral$gy_qsy andlysy-sy in the equations

for attenuation, Eq460), have peaks at about 69°. This peak j[hree wave types were given by simple expressions involving

) . . . integrations over the unit circle. The integrands are depen-
is the result of the form of the spatial correlation function : ‘
dent upon inner products on the convariance of modulus
between the SH and qSV modes. The term : . )
2 2 _ap . ... . fluctuations and factors of phase velocity. The simple form
Xsh-gsvX8h-qsv— Yen-qsv) > determines the specific di-

rection of this peak and is a function of the angular phase?f the re_sults makes th_em particularl_y u_seful for nondestruc-
locities and propagation direction. Closer examination ", tgstmg and mat_ena.ls charagterlzatmn research and for
ve d propag . inclusion of attenuation in numerical models of elastic wave
shows that this peak occurs at the angle corresponding to the i h th by SPiE219The results pre-
intersection of the SH and qSV slowness surfaces of po.3Propagation such as those by ' P
The appearance of a similar peak is seen in the angular plot
of SH attenuation, Fig. 3, atgy=10. 0
Finally, results are presented for the normalized attenu-
ations as a function of frequency for several propagation di-
rections. In Figs. 7 and 8 the normalized SH and gP attenu- 1% e
ations are plotted versus dimensionless frequergy, for &
propagation directions of 45°, 69.5°, and 90°. The SH attenu- %, e
ation in the cross-fiber direction is seen to increase more‘;, ,
rapidly than other directions for increasing frequency. The - o
gP attenuation has a local maximum which is a function of g
propagation direction. Similar results were given by Ahmed # By
and Thompson.The normalized qSV attenuation is plotted 10‘
versus frequencysy, for propagation directions of 45° and
69.5° in Fig. 9. The attenuation at 69.5° increases more rap-
idly than that at 45°. However, at higher frequencies the ratio
between the two appears to be constant. Thus, the peak a "1 T 0 1@
69.5° observed in the angular plots, Fig. 5, is not expected to Dimensionless frequency, gy
become larger than that of 45°, within the frequency limitsgig. . Normalized qp attenuation,p/kyp, as a function of dimensionless

used here. frequency xsy, for propagation directions of 45°, 69.5°, and 90°.
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