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Invariant representations of finite rotation matrices and some applications

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 7 November 1997!

Standard representations of finite rotation matrices~FRM! are defined by expressions that are wedded to two
particular coordinate frames such as, e.g., are involved in the definition of Euler angles. We present here
representations for the FRM in invariant tensor forms comprised of vectors defined in a space-fixed coordinate
frameK. Three explicit expressions for a FRM are presented: First, in terms of tensor products of the spherical
or Cartesian basis vectors of frameK, second in a differential form containing the tensor products of gradient
operators, and, third, as the superposition of so-called ‘‘minimal’’ bipolar harmonics depending on any pair of
unit vectorsa, b connected with a frameK. Based on these results for the FRM, the transformation rule for an
irreducible tensor set under space rotations may be written in terms of bipolar harmonics. Our results are
especially useful for analyzing angular distributions in atomic processes involving a precise accounting of all
effects of photon and target polarizations. Four examples are considered as illustrations of the techniques
presented. First, an invariant representation of the photon polarization tensor is found in terms of linear and
circular polarization degrees of the photon beam. Second, an invariant decomposition of tripolar harmonics of
second rank in terms of very simple, rank 2 tensors is presented. Third, a convenient parametrization is
proposed for the polarization state multipoles of a polarized atomic target. Fourth, a simple invariant formula
is derived for the angular distribution of polarized photons resulting from electric dipole photon emission by an
arbitrary polarized atom.@S1050-2947~98!03305-8#

PACS number~s!: 03.65.Ca, 03.65.Fd, 32.70.2n, 32.80.Fb

I. INTRODUCTION

The quantum theory of angular momentum is a powerful
tool for investigations in atomic, molecular, and optical
physics. Among the most important objects of this theory are
the so-called finite rotation matrices~FRM!, Rm8m

j (V),
which describe the transformation of irreducible tensor sets
under space rotations in accordance with the relation@1#

Tjm8 5 (
m852 j

j

Tjm8Rm8m
j

~V!, ~1!

whereTjm andTjm8 are the components of a tensorTj , given
in the ‘‘old’’ ~space-fixed or initial! frame K and in the
‘‘new’’ ~rotated or laboratory or final! frame K8, respec-
tively. The symbolV denotes the rotation parameters. Equa-
tion ~1! contains the FRM in an abstract form. Its explicit
representation depends on the concrete choice of the param-
eters that specify the rotation.

There are two different representations of the FRM that
are in wide use. These are theD and theU functions@1#. The
Wigner functionsDm8m

j (abg) depend on three Euler angles
a, b, g, which describe the rotation in an elegant algebraic
way. The functionsUm8m

j (n,v) depend on the direction of
the rotation axisn and on the rotation anglev. For this case
the rotation parameters areV5n,v. Thus, one of the param-
eters is a vector with angular coordinatesQ, F, which are the
same in both the frameK and in the frameK8. ~Naturally,
the angular coordinates of vectors that are not parallel to the

n axis are different for framesK and K8.! Therefore, the
explicit form of Um8m

j depends upon the algebraic parameter
v and onQ andF @1#.

Despite the fact that the finite rotation matrix is the set of
(2 j 11) irreducible tensors numbered by either indexm8 or
m ~i.e., in the frameK8 they are tensors of rankj with
projectionsm and in the frameK they are tensors of rankj
with projectionsm8!, their ~above-mentioned! explicit ex-
pressions do not have a structure that is obviously invariant,
i.e., independent of a particular coordinate reference frame.

Even in the simplest case when the rankj of a FRM is
equal to unity, the functionsDm8m

j andUm8m
j cannot be ex-

pressed as invariant combinations of some vectors. Only for
D0m

j with integer rank j is such an invariant expression
known. It is given by@1#

D0m
j ~0,b,g!5A 4p

2 j 11
Yjm~a!, ~2!

whereYjm(a) is the spherical harmonic of the unit vectora
directed along theZ axis of the space-fixed coordinate frame
K; the two Euler angles,b,p2g, are the polar angles ofa
in a frameK8. As a consequence of Eq.~2!, the WignerD
function is also called a ‘‘generalized spherical harmonic.’’
Note thatUm8m

j (n,v) has a representation as an expansion in
spherical harmonicsYlm(n) with 0< l<2 j , but its coeffi-
cients are the Clebsch-Gordan coefficientsCjm jm8

lm , which
depend uponm, m8 @1,2#. We use the term ‘‘invariant’’ for
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relations similar to Eq.~2! because the spherical harmonic on
the right-hand side~rhs! of this identity is a tensor product of
vectorsa ~cf. Sec. II!.

Together with Racah techniques, the FRM’s in the form
of the Wigner functions are most useful for calculating
atomic, molecular, and nuclear structures. But for studying
angular distributions, especially for reactions involving po-
larized particles~in which case a large number of vectors
enter the problem!, the invariant representation of the FRM’s
as a combination of tensor products of vectors involved in
the problem may often be preferable. Indeed, the angular
distributions are invariant under coordinate rotations and
their description in terms of invariant combinations of vec-
tors characterizing the problem is very useful. Another im-
portant feature of the invariant representation of the FRM’s
is that it allows the representation of any tensor in an invari-
ant form as a linear combination of FRM elements denumer-
ated by an indexm8 @see Eq.~1!# with numerical coefficients
that are the components of the same tensor in a suitable
coordinate frame.

In this paper we present invariant forms for the finite ro-
tation matrices that depend only on the vectors that are ap-
propriate for a particular physical process being investigated.
Specifically, in any physical process there exist one set of
vector quantities that describes the initial state of the system
and another set of vector quantities that describes the final
state of the system. Various combinations of such vector
quantities may be chosen to define in a natural way appro-
priate coordinate frames for the system. The description of a
given physical process thus naturally involves a finite rota-
tion matrix that describes the transformation from an initial
coordinate frame to an appropriate final coordinate frame.
Because the coordinate frames are defined by vectors that
characterize the physical system, these vectors may be used
to construct the finite rotation matrix rather than parameters
specific to a particular coordinate reference frame. Indeed,
the FRM constructed in this way may be evaluated in any
particular pair of coordinate frames.

To derive the invariant form of the FRM we will describe
the rotation in terms of angular coordinates of some vectors
without any algebraic parameters similar to Euler angles or a
rotation anglev, which are not inherent vector objects.
Namely, we fix a vector set in an ‘‘old’’ or initial frameK,
which may include the spherical or Cartesian basis vectors
or, more generally, any pair of noncollinear vectorsa, b with
fixed angleu between them~0,u,p is a free parameter!.
The angular coordinates of these vectors in a ‘‘new’’ or final
frameK8 are connected with those inK by a rotation, whose
explicit form need not be specified. Although a rotation is
described by only three independent parameters~e.g., by the
Euler angles! and for each concrete specification of vectors
in frameK the connection between the new and old coordi-
nates of these vectors can be established and three indepen-
dent parameters can be designated@see, e.g., Eq~69! below#,
such concretization of the rotation is unnecessary in most
cases, and an invariant form for the FRM is quite sufficient.
For this reason, we do not specify in our representations for
the FRM the argumentV in terms of some algebraic vari-
ables.

As we demonstrate below, in general the FRM can be
presented as a superposition of irreducible tensorsM̂jm

s (V)
of rank j numbered by labels and composed of some vectors
fixed in an ‘‘old’’ frame K,

Rm8m
j

~V!5(
s

cs~ j ,m8!M̂jm
s ~V!. ~3!

Thus, the entire dependence ofRm8m
j on the tensor indexm is

given by the tensor projections ofM̂jm
s , while the coeffi-

cients cs in Eq. ~3! are independent ofm. This is a most
important fact, demonstrating an invariance of Eq.~3! with
respect to a concrete choice of ‘‘new’’ coordinate frameK8.
Furthermore, Eq.~3! leads to an invariant parametrization~a
‘‘modified’’ transformation rule! for any irreducible tensor,

Tjm8 5(
s

ts~ j !M̂jm
s ~V!, ~4!

where the coefficientsts( j ), given by

ts~ j !5(
m8

cs~ j ,m8!Tjm8 , ~5!

are linear combinations of the componentsTjm8 in an appro-
priate ‘‘old’’ frame K. Thus, the tensorsM̂jm

s form an irre-
ducible basis set in the space of irreducible tensors of rankj
similar to the spherical unit tensors of rank 1.

In Sec. II we begin by considering the simplest case of
FRM’s with unit rank, j 51, and provide an explanation of
our method for the construction of the FRM’s in an invariant
form. Specifically, an expansion of the FRM is derived in
terms of spherical basis vectors in frameK. The sum ons in

Eq. ~3! for this case contains only one operatorM̂jm
m8 com-

posed of spherical basis vectors@see Eq.~17!#.
In Sec. III we derive a differential representation for

FRM’s as the result of the action of a tensor product of¹ r
operators on spherical harmonics depending on angles of an
auxiliary vectorr . The differential form of the FRM is very
compact and it is useful for illustrating some general prop-
erties of the finite rotation matrix. In particular, the identities
in Eqs. ~24! and ~25! demonstrate the high symmetry of
Rm8m

j with respect to the indiciesm and m8 in spite of the
fact that these indices have a different meaning in our con-
siderations: the first of them has a tensorial sense in theK8
frame and the second one in theK frame. Using the differ-
ential form of the FRM, in Sec. IV we find both a represen-
tation of Rm8m

j in terms of Cartesian basis vectors@see Eq.
~36!# and two additional differential forms for the FRM con-
taining ¹ r operators and the scalar products of either Carte-
sian @see Eq.~33!# or spherical@see Eq.~39!# basis vectors
with an auxiliary vectorr .

The expressions for FRM’s presented in Secs. II and IV
contain rather complicated combinations of basis vectors.
Therefore in Sec. V we present the results in an alternative,
compact form by representing the operatorsM̂jm

s in Eq. ~3!
as the special tensor products of two spherical harmonics
~the so-called ‘‘minimal’’ bipolar harmonicsYjm

s (a,b) with
s50, . . . ,j @3#! depending on any pair of vectorsa, b, con-
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nected with the frameK. We consider both the case in which
a, b are the Cartesian basis vectors@see Eqs.~41! and ~42!#
and also the most general case in whicha, b are any pair of
noncollinear vectors with an angleu between them@see Eqs.
~47! and~48!#. Note that in the last case the coefficientscs in
Eq. ~3! are u dependent. Form850 the superposition of
‘‘minimal’’ bipolar harmonics in Eq.~3! reduces immedi-
ately to Eq.~2!. Thus, it seems that the term ‘‘generalized
bipolar harmonics’’ for the FRM in invariant form is more
appropriate than is the term ‘‘generalized spherical harmon-
ics’’ for the WignerD functions.

In Sec. VI we illustrate the application of the invariant
forms of the FRM’s to a number of physical problems. As a
particularly simple application, based on the differential
form of the FRM, we first derive an invariant form@see Eq.
~52!# for the photon polarization tensor of second rank in
terms of the photon wave vectork and the unit vectorê
directed along the major axis of the photon’s polarization
ellipse. Also very important for applications is a modified
transformation rule@see Eq.~53!# for irreducible tensor sets,
which follows from Eq.~1! after substitution of the expan-
sion in Eq. ~3! for Rm8m

j in terms ofYjm
s . Equation ~53!

confirms a general statement of Ref.@3# that the ‘‘minimal’’
harmonicsYjm

s (a,b) at fixed j and variables form a conve-
nient complete basis set for irreducible tensors having rank
j .

Other applications we discuss are the following: In Sec.
VI A we demonstrate a reduction technique for tripolar har-
monics depending on three vectorsni , i 51,2,3. Such objects
appear in kinematic analysis of reactions with 3 or more
particles@e.g., (e,2e) or (g,ne) processes#. As an example,
we present in Eq.~57! an expression for tripolar harmonics
of second rank in terms of tensors of rank 2 composed of 2
or 3 vectorsni . In Sec. VI B we derive a convenient, invari-
ant parametrization for polarization state multipoles of a po-
larized target in terms of the Cartesian basis vectorsa, b, c of
a coordinate frameK connected with a concrete process of
preparing the polarized target. These results are used in Sec.
VI C for the analysis of electric dipole photon emission by
an arbitrary polarized atom with detection of photon polar-
ization. We present the angular distribution of the polarized
photons for this fundamental optical process in the simplest
invariant form @see Eq.~68!#, containing only the scalar
products of basis vectorsa, b, c, the wave vectork, the
photon polarization vectorse, e* , and 8 initial parameters
describing the target polarization. These four examples pre-
sented in Sec. VI demonstrate the efficiency of using invari-
ant FRM’s to analyze complex physical problems.

II. INVARIANT REPRESENTATION OF THE FRM
IN TERMS OF SPHERICAL BASIS VECTORS

Consider first as an example the simplest case of a FRM
Rmm8

j (V) with j 51, which describes the transformation of
vector operators under rotations. It is well known that an
arbitrary vectorx may be expanded in a spherical basis as
follows:

x5 (
m50,61

~21!mx2mem , ~6!

wherexm5(x–em) are the spherical components ofx and as
the spherical unit vectors we can use three arbitrary vectors
em satisfying the orthogonality condition (em•en)
5(21)mdm,2n , wherem,n50,61, and wheredm,2n is the
Kronecker delta. Equation~6! has an invariant form since it
is valid in an arbitrary coordinate frame. Supposingem are
the spherical basis vectors of the frameK and multiplying
Eq. ~6! by the spherical basis vectors,en8 , of the frameK8,
we have

xn85 (
m,n50,61

~21!mx2m~em!n , ~7!

wherexn8 andxm are the components ofx in the framesK8
and K, respectively, and (em)n are the components of the
basis vectorsem of K with respect to theK8 frame. Compari-
son of Eq.~7! with Eq. ~1! yields

Rmn
1 ~V!5~21!m~e2m!n5~em* !n .

Here the indexm enumerates the basis vectorse, andn is a
tensor component index. This identity may be alternatively
written as

R21n
1 ~V!2R1n

1 ~V!5&~ex!n ,

R21n
1 ~V!1R1n

1 ~V!5 i&~ey!n , ~8!

R0n
1 ~V!5~ez!n ,

whereex,y,z are Cartesian unit vectors of the frameK. Thus,
the above expression forRmn

1 (V) has an invariant vector
structure that is completely similar to the well-known Carte-
sian matrix,aik , of transformation betweenK and K8 in
terms of direction cosines.

To derive an invariant expression for FRM with an arbi-
trary rank j we note that any tensor composed of vectors
fixed in the frameK and equal toRm8m

j (V) in some coordi-

nate frameK̄ will coincide with Rm8m
j (V) in any other

frame. In particular, if some tensorR̄m8m
j (0) is equal to

Rm8m
j (0) at K̄5K, then the identity

R̄m8m
j

~V!5Rm8m
j

~V!

is valid also for an arbitrary orientation of the laboratory
coordinate frame. This statement is based on rotation invari-
ance arguments. Let a tensorR̄m8m

j (V) coincide with

Rm8m
j (0) at K̄5K, then

(
m8

Tjm8Rm8m
j

~0!5(
m8

Tjm8R̄m8m
j

~0!. ~9!

Acting on both sides of this equation by the finite rotation
operatorR̂(V) and taking into account thatR̂(V) does not
act on theTjm8 since they are tensor components given in the
space-fixed frameK, we obtain

(
m8

Tjm8R̂~V!Rm8m
j

~0!5(
m8

Tjm8R̂~V!R̄m8m
j

~0!,

~10!
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and, hence,R̄m8m
j (V)5Rm8m

j (V). Thus, the problem is to
find an invariant definition for the tensor equal toRm8m

j (0) at

K̄5K.
Firstly we mention that in accordance with Eq.~1! the

FRM for the case of zero rotation~i.e., whenK85K! has the
evident form

Rm8m
j

~0!5dm8,m . ~11!

In order to define a tensor composed of basis vectors in a
frame K and satisfying Eq.~11! we introduce the special
notation ~cf. Chap. 3 of Ref.@1#! for a tensor product ofj
identical vectorsa

$a% jm5$¯ˆ¯$a^ a%2^¯a‰j 21^ a% jm . ~12!

The standard definitions of angular momentum theory@1# are
used throughout the text. It is known@3# that the tensor$a% jm
is the same for an arbitrary coupling scheme on the right-
hand side of Eq.~12!. Note that the spherical harmonic
Yjm(r /r ) can be represented also as the tensor product ofj
real vectorsr /r @1#:

Yjm~r /r !5A~2 j 11!!!

4p j !

1

r j $r% jm . ~13!

In the coordinate frame with theZ axis directed along vector
r this expression reduces to

Yjm~0,0!5dm,0A2 j 11

4p
. ~14!

Now we note that in the frameK the tensor product in Eq.
~12! composed of spherical basis vectors has the form

$e61%kq5~21!kdk,7q , ~15!

wheree6157(1/&)(b6 ic) are the spherical basis vectors;
a,b,c are the Cartesian basis vectors directed along the axes
Z,X,Y of the frameK, respectively. The identity~15! can be
derived by straightforward calculations taking into account
that Caabb

a1ba1b51 and

~e0!m5dm,0, ~en!m52dm,2n , n561, m50,61
~16!

for spherical components of vectorse61 ande0[a.
By direct calculations we can verify that the tensor

Rkm
j (V) defined by the equation

R6km
j ~V!5Ajkˆ$e71%k^ $e0% j 2k‰jm , k>0 ~17!

coincides with the FRM after an appropriate choice of a nor-
malization factorAjk . Indeed, it can be clearly seen from
Eqs.~12! and~15! that in theK frameR6km

j (V50) has the
form

R6km
j ~0!5~21!kCkk j2k0

jk A ~ j 2k!!

~2 j 22k21!!!
Ajkdm,6k .

~18!

Hence,R6km
j (V) satisfies the condition~11! and therefore

coincides with the FRM in accordance with the above argu-
ments. Substituting the explicit form for the Clebsh-Gordan
coefficientCkk j2k0

jk in Eq. ~18!, we find forAjk the following
expression:

Ajk5~21!kA 2k2 j~2 j !!

~ j 1k!! ~ j 2k!!
. ~19!

Equation~17! is the simplest form of an invariant repre-
sentation for the FRM, because the coefficientsAjk do not
depend on the tensor projection indexm, unlike the case of
the U(n,v)-function representation of the FRM@2#. Note
that the indexk in Eq. ~17! is not a tensor index with respect
to the laboratory frameK8. In this framek just enumerates
the basis tensorsR6km

j , in a way similar to that of the index
n in the case of the spherical basis vectorsen for theK frame.

III. INVARIANT DIFFERENTIAL FORM OF FRM

Below we present an invariant form of the FRM that re-
sults from the action of a special differential operator on the
standard spherical harmonic. Our treatment is based on the
use of invariant rank-decreasing operators for spherical har-
monics @3#. For these operators the following identity is
valid:

$Ôk
l 2~r ,¹! ^ Yl~r /r !%qm5dq,l 2kYl 2k,m~r /r !, k< l .

~20!

For the explicit form ofÔkm
l 2(r ,¹) see Eq.~A6! in Ref. @3#.

As we describe below, the use of this identity atl 5k[ j
(q50) leads to an important formal relation:

Tjm8 5~21! jA4p~2 j 11!Ôjm
j 2~r ,¹!@Tj8•Yj~r /r !#, ~21!

whereTj8 is an arbitrary tensor of integer rankj and r is an
arbitrary vector, and we consider this equation in a rotated
frameK8. While it appears thatTjm8 on the left-hand side of
Eq. ~21! depends onr through the spherical harmonic
Yjk(r /r ), this dependence is removed by the gradient opera-
tors, which constituteÔjm

l 2(r ,¹) with j 5 l as follows@3#:

Ôjm
j 2~r ,¹!5

~21! j

A~2 j 11! j ! ~2 j 11!!!
$¹% jmr j . ~22!

The identity in Eq.~21! may be verified by direct calcu-
lation as follows:
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Ôjm
j 2~r ,¹!@Tj8•Yj~r /r !#5 (

k52 j

j

~21!kÔjm
j 2~r ,¹!Tj 2k8 Yjk~r /r !

5 (
k,s,ms

~21!kTj 2k8 Cjm jk
sms $Ôj

j 2~r ,¹! ^ Yj~r /r !%sms
5~21! j

1

A4p~2 j 11!
Tjm8 .

Here the first equality follows immediately from the defini-
tion of the scalar product for two tensors,Tj8 and Yj , the
second one from the orthogonality properties of Clebsh-
Gordan coefficients, and the third one from Eq.~20!.

Since a scalar product of tensors does not depend on the
orientation of a coordinate frame, we can consider the scalar
product on the right-hand side of Eq.~21! as defined in the
space-fixed frameK ~instead of the laboratory frameK8!,
and, hence, the replacementTj8→Tj should be made on the
right-hand side of Eq.~21!. Of course, the spherical har-
monic Yj (r /r ) must also be replaced by its definition in the
frameK. We thus arrive at the following identity:

Tjm8 5 (
k52 j

j

Tjk~21! j 1kA4p~2 j 11!Ôjm
j 2~r ,¹!Yj 2k~r /r !.

~23!

Comparing this result with Eq.~1! and using Eq.~22!, we
derive the ‘‘differential’’ representation ofRkm

j (V):

Rkm
j ~V!5A 4p

j ! ~2 j 11!!!
$¹% jmr jYjk* ~r /r !. ~24!

As may be seen from this identity, the FRMRkm
j (V) is a

tensor in the frameK8 with respect to the indexm, and a
complex-conjugated tensor in the frameK with respect to the
indexk. Moreover, taking into account the auxiliary relation
@4#,

$¹% jmr jYjk* ~r /r !5$¹% jk* r jYjm~r /r !,

we obtain another expression, similar to Eq.~24!:

Rkm
j ~V!5A 4p

j ! ~2 j 11!!!
$¹% jk* r jYjm~r /r !. ~25!

Here the spherical harmonic is defined in the laboratory
frame K8, and the tensor product of gradient operators is
defined in the space-fixed frameK. From Eqs.~24! and~25!
it follows that, although indicesk and m have a different
meaning, there is an explicit symmetry between them.

These equations are convenient also for explicit demon-
stration of fundamental properties of the FRM’s, such as
unitarity, group properties, etc. As an example, we derive
here an expression forRm8m

j (V), whereV5V8•V9 is the
product of the rotationsK→K8→K9 described by the pa-
rametersV8, V9. Replacement of the spherical function
Yjm8

* (r /r ) in Eq. ~24!, which is defined in the frameK, by
the expression(m9Rm8m9

j (V8)Yjm9
* (r /r ), whereYjm9 is de-

fined in the frameK8, leads to the relation:

Rm8m
j

~V!5~21! jA4p~2 j 11!

3(
m9

Rm8m9
j

~V8!Ôjm
j 2~r ,¹!Yjm9

* ~r /r !.

Taking into account Eq.~24!, we verify explicitly the well-
known group identity

Rm8m
j

~V!5(
m9

Rm8m9
j

~V8!Rm9m
j

~V9!.

IV. REPRESENTATION OF THE FRM IN TERMS
OF CARTESIAN BASIS VECTORS

Below we demonstrate that the result of the action of
gradient operators on the spherical harmonicYjk* (r /r ) in Eq.
~24! can be calculated in terms of tensor constructions de-
pending on the unit vectorsa, b directed along theZ,X axes
of the K frame, respectively. Thus we shall find the explicit
form of the FRM in terms of the Cartesian basis vectors of
the space-fixed frameK. Our considerations below depend
upon two known facts concerning the spherical harmonics.

~i! It is well known that the spherical harmonic
Yj 2k(r /r )5(21)kYjk* (r /r ) can be written in the standard
form @1#

Yj 2k~r /r !5A2 j 11

4p

~ j 2k!!

~ j 1k!!
@sin u exp~2 if!#k

3Pj
~k!~cosu!, k.0, ~26!

where u is an angle between the vectorsr and a, cosu
5(r–a)/r , and f is an angle between theX axis and the
projection of the vectorr on theX-Y plane of the systemK,

cosf5
~r–b!

r sin u
, sin f5

~r–c!

r sin u
.

The polynomialPj
(k)(x)5dkPj (x)/dxk is the kth derivative

of the Legendre polynomialPj (x).
~ii ! The following useful identity,

coskf5
k

2 (
s50

[k/2]

~21!s
~k2s21!!

s! ~k22s!!
~2 cosf!k22s,

~27!

follows immediately from the fact that coskf5Tk(cosf) is
the Tchebyshev polynomial of the first kind. An identity
similar to Eq.~27! for sinkf can be derived by differentia-
tion of Eq. ~27! with respect tof.

Taking Eqs.~26! and ~27! into account, one can rewrite
r jYjk(r /r ) in terms of scalar products as
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r jYj 2k~r /r !5A2 j 11

4p

~ j 2k!!

~ j 1k!!
r j 2kPj

~k!~a–r /r ! (
s50

[k/2]

~21!s
~k2s21!!

s! ~k22s!!
@2~b–r !#k22s21@r 22~a–r !2#s

3@k~b–r !2 i ~k22s!~c–r !#, k.0. ~28!

Note that the gradient operators in Eq.~24! do not act on the
terms in Eq.~28! that which contain scalar products ofr with
itself owing to the following relation:

$¹% lm~r–r !k50, k, l . ~29!

Thus, one should keep in Eq.~28! only the terms from the
expansion ofr j 2kPj

(k)(a–r /r ) into a power series in (a–r )
that do not contain any powers of (r–r ). This includes in
particular the term@(r–r )2(a–r )2#s. Thus the following sub-
stitutions should be made in Eq.~28!:

@r 22~a–r !2#s→~21!s~a–r !2s, ~30!

and

r j 2kPj
~k!~a–r /r !→

~2 j 21!!!

~ j 2k!!
~a–r ! j 2k. ~31!

As explained below, it is more convenient to consider two
symmetrized combinations ofRkm

j (V) @cf. Eq. ~8!#:

Rkm
j 1~V!5R2km

j ~V!1~21!kRkm
j ~V!

~32!

Rkm
j 2~V!52 i @R2km

j ~V!2~21!kRkm
j ~V!#, k.0.

Substitution of Eqs.~28!, ~30!, and~31! into Eq. ~24! yields
for Rkm

j 1(V),

Rkm
j 1~V!5A ~2 j 21!!!

j ! ~ j 2k!! ~ j 1k!! (
s50

[k/2]
k~k2s21!!

s! ~k22s!!
$¹% jm~r–a! j 2k12s@2~r–b!#k22s. ~33!

The right-hand side of this equation may be calculated explicitly, using the identity

$¹% jm~r–a! j 2k12s~r–b!k22s5 j ! ˆ$a% j 2k12s^ $b%k22s‰jm , ~34!

which follows immediately from the Leibniz rule for differentiation of products and from the simple relations

¹~r–a!n5na~r–a!n21, n.0,
~35!

$¹ ^ r%2m50.

Thus,Rkm
j 1(V) can be presented in the following final form:

Rkm
j 15A j ! ~2 j 21!!!

~ j 2k!! ~ j 1k!! (
s50

[k/2]

2k22s
k~k2s21!!

s! ~k22s!!
ˆ$a% j 2k12s^ $b%k22s‰jm . ~36!

An analogous identity forRkm
j 2(V) can be derived similarly:

Rkm
j 25A j ! ~2 j 21!!!

~ j 2k!! ~ j 1k!! (
s50

[ ~k21!/2]

2k22s
~k2s21!!

s! ~k22s21!!
$c^ ˆ$a% j 2k12s^ $b%k22s21‰j 21% jm . ~37!

For completeness, we obtain Eq.~17! of Sec. II using the differentiation method. Firstly, note that the term sinu exp~2 if)
on the rhs of Eq.~26! can be rewritten as

sin u~cosu2 i sin u!5&
~e21•r !

r
, ~38!

wheree21 is the spherical unit vector in frameK. Secondly, replacingPj
(k)(cosu) in Eq. ~26! in accordance with Eq.~31!, we

obtain one more differential representation of the FRM in terms of spherical basis vectors

Rkm
j ~V!5~21!kA 2k~2 j 21!!!

j ! ~ j 1k!! ~ j 2k!!
$¹% jm~e0•r ! j 2k~e2•r !k, k.0. ~39!
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This equation demonstrates clearly the independence of the
final results on an auxiliary vectorr owing to the fact thatr
appears to thej th power. Calculating the action of the gra-
dient operators in this equation, using Eqs.~34! and~35!, we
arrive immediately at Eq.~17! of Sec. II.

V. EXPANSION OF A FRM INTO A BASIS
OF BIPOLAR HARMONICS

Some preliminary remarks concerning the bipolar har-
monics~BH! are in order. These objects are defined by the
following equation@1#:

Yjm
ll 8~n,n8!5$Y l~n! ^ Y l 8~n8!% jm .

As was shown in@3#, for the case whenl 1 l 8. j , the BH
may be expanded into a superposition of ‘‘minimal’’ BH’s
Yjm

k (n,n8), which are defined by

Yjm
k ~n,n8!5$Y j 2k~n! ^ Yk~n8!% jm , ~40!

wherek50, . . . ,j . The harmonicsYjm
k have some important

properties. Namely, the Clebsh-Gordan coefficient entering
the tensor product in Eq.~40! can be written in explicit form
as a product of factorials without any sums. Further, as was
demonstrated in@3#, the minimal BH’s form a ‘‘linearly in-
dependent’’ set in the space of tensors with fixed rankj , i.e.,
there are no linear relations of the kind

(
k

Cjk~cosu!Yjm
k ~n,n8!50,

where theCjk(cosu) are scalar coefficients depending on the
scalar product (n–n8)5cosu. This means that the minimal
BH’s Yjm

k (n,n8) are the simplest irreducible tensors of fixed
rank j , which can be constructed of two vectorsn,n8. The
number of linearly independent minimal BH’s of rankj is
evidently equal to (j 11). It is important to note that the
minimal BH’s are polar tensors for eachk, since under space
inversion~i.e., whenn,n8→2n,2n8! they acquire the addi-
tional phase factor (21) j , which is independent ofk.

Now an expansion of the FRM using a basis of minimal
BH’s can be obtained by substitution of Eq.~13! for the
spherical harmonics into Eqs.~36! and ~37!:

Rkm
j 1~V!5 (

s50

[k/2]

Aks
~0!Yjm

k22s~a,b!, ~41!

Rkm
j 2~V!5 (

s50

[ ~k21!/2]

Aks
~1!$c^Yj 21

k22s21~a,b!% jm , ~42!

where the coefficientsAks
(l) have the form

Aks
~l!54p

@k~12l!1l#~k2s21!!

23ss!
A 23k2l j ! ~2 j 21!!! ~ j 2k12s!!

~ j 2k!! ~ j 1k!! ~2k24s22l11!! ~2 j 22k14s11!!!
, k.0. ~43!

Equations~41! and~42! are expansions of the FRM in a basis
of minimal bipolar harmonics depending on the orthogonal
vectorsa,b,c. It is important to note that the number 2j 11
of different BH’s entering the expansion of the FRM is the
same as the total number of functionsRm8m

j (V) with differ-
ent indicesm8 at fixedm. Since an arbitrary tensorTjm8 in a
laboratory frame is a superposition of elements of FRM’s
@see Eq.~1!#, it is clear thatTjm8 can be expressed also as a
combination of minimal BH’s@see Eq.~53! below#. Note
that the functionsRkm

j 1(V), Rkm
j 2(V), defined by Eqs.~41!

and ~42! are polar tensors. Also, there is an essential differ-
ence between the two combinationsRkm

j 1(V) and Rkm
j 2(V).

Namely,Rkm
j 1(V) is invariant with respect to inversion of the

Y axis of the space-fixed frameK while Rkm
j 2(V) changes

sign.
Generally, it is possible to derive an expansion of the

FRM’s in BH’s depending on any pair of vectors fixed in the
frame K. This result follows from the simple relation for a
tensor product composed of two arbitrary vectors

$c1a11c2a2% jm5 (
n50

j S j
nD c1

j 2nc2
n
ˆ$a1% j 2n^ $a2%n‰jm ,

~44!

where (j
n) is the binomial coefficient anda1 , a2 are two

arbitrary vectors. Equation~44! can be verified using Eq.
~12! and the fact that a tensor product is a linear function of
each tensor entering the product. Taking into account Eq.
~13!, Eq. ~44! can be rewritten as

uc1a11c2a2u jYjm~v!

5 (
n50

j A 4p~2 j 11!!

~2n11!! ~2 j 22n11!!
c1

j 2nc2
nYjm

n ~a1 ,a2!,

~45!

where v is the unit vector directed along the vectorc1a1
1c2a2 . Thus, we have derived, by a most simple method,
the so-called addition theorem for solid harmonics@1,5#,
which are the productsr jYjm(r /r ).

Below we present one of the most convenient invariant
representations of the FRM’s as a superposition of BH’s de-
pending on a pair of nonorthogonal unit vectorsn,n8. Let the
vectorn be directed along theZ axis of the space-fixed frame
K, and the vectorn8 lie in the same plane as the vectorb. In
other words,
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a5n, b5
n82n cosu

sin u
, c5

@n3n8#

sin u
, ~46!

whereu is the angle between vectorsn and n8. Of course,
the angleu must be nonzero, otherwise the basis Eq.~46!
fails.

Substituting Eq.~44! into Eqs.~41! and ~42!, noting that
in our casec151/sinu and c252cotu, and performing a
summation over one free index, we arrive at the following
identities:

Rkm
j 1~V!5(

s50

k

Bks
~0!~u!Yjm

s ~n,n8! ~47!

and

Rkm
j 2~V!5 (

s50

k21

Bks
~1!~u!$@n3n8# ^Yj 21

s ~n,n8!% jm , ~48!

where the coefficientsBks
(l)(u) are given by

Bks
~l!~u!5

4p

~sin u!k
Ck2s2l

1/22k ~cosu!
2@k~12l!1l#~k1s1l21!!

~2k21!!!
A 2s~ j 2s2l!! j ! ~2 j 21!!!

~2s11!! ~2 j 22s22l11!!! ~ j 1k!! ~ j 2k!!
.

~49!

It is important to note that the Gegenbauer polynomials
Ck2s2l

1/22k (u) on the rhs of Eq.~49! do not depend on the rank
j of the FRM’s. We note also that half the coefficientsB at
u5p/2 coincide with the coefficientsA @cf. Eq. ~43!#:

Bkk22s2l
~l! ~p/2!5Aks

~l! ,

and the others are zero:

Bkk22s2l11
~l! ~p/2!50.

Thus, the representations in Eqs.~41! and~42! are seen to be
special cases of the more general expansions in Eqs.~47! and
~48!.

We note that Eqs.~47! and ~48! show the function
Rkm

j 1(V) to be a polar tensor and the functionRkm
j 2(V) to be

an axial tensor@because the tensor product in Eq.~48! con-
tains an axial vector@n3n8##. This latter result contrasts
with Eq. ~42! for Rkm

j 2(V). However, there is no contradic-
tion with the tensor transformation rule in Eq.~1!. Namely,
the tensor components of one and the same tensorTj on the
rhs of Eq.~1! may be either scalars or pseudoscalars depend-
ing on whether the unit vectorc of the space-fixed frameK is
either a polar or an axial vector.

We note finally that if we define the ‘‘generalized’’
spherical harmonicỸjm(e) of complex unit vectore by the
tensor product in Eq.~13! with r /r→e, then Eq.~17! can be
rewritten @using Eqs.~19! and ~40!# as

R6km
j ~V!5c~k, j !$Ỹk~e71! ^ Yj 2k~e0!% jm

5c~k, j !Ỹjm
j 2k~e71 ,e0!,

where

c~k, j !5~21!k4pA ~2 j !!k!2k2 j

~ j 1k!! ~2k11!!! ~2 j 22k11!!!
.

When k50 this equation reduces immediately to Eq.~2!.
Thus, the FRM’s may be considered as the ‘‘generalized’’
minimal BH’s of the spherical basis vectors of the old frame
K.

VI. SOME APPLICATIONS

The different invariant representations of the FRM’s we
have presented@cf. Eqs. ~17!, ~24!, ~25!, ~33!, ~36!, ~37!,
~39!, ~47!, and~48!# each have their uses in particular appli-
cations. Thus, although Eqs.~47! and ~48! are very general,
in some situations the use of the differential representations
in Eqs. ~24! and ~25! of the FRM may prove simpler. For
example, if an explicit expression for a scalar product of a
tensorTjm and a spherical harmonic is known in terms of
scalar products of vectors, then Eqs.~23! and~24! allow one
to obtain an explicit form ofTjm in terms of tensor products
of vectors. Before describing the general procedure for using
invariant FRM’s in concrete applications, we give an ex-
ample of the use of the simpler Eqs.~23! and ~24!.

Consider the photon polarization tensorTpm
5$e^ e* %pm , wheree is the unit~complex! photon polariza-
tion vector~see, e.g.,@7#!. Invariant explicit forms ofTpm are
known only forp50,1 and are given by

T052
1

)

, T15
1

&

j k̂,

wherej is the degree circular polarization of the photon,

j5 i k̂•@e3e* #,

and k̂ is the unit vector along the direction of the photon
beam. The following explicit expressions forT2m are used
widely in applications:

T2052
1

A6
, T26150, T2625

1

&

~j36j1!,
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where j1,3 are the standard Stokes parameters@8#. These
identities are valid, of course, only in a coordinate frame
where theZ axis is directed along the vectork̂.

To derive an invariant expression forT2m we note that, in
accordance with Eqs.~13!, ~22!, and~23!, tensorT2m may be
written in the following form:

T2m5 1
2 $¹%2m~$r ^ r%2•$e^ e* %2!5 1

2 $¹%2mue–r u2.
~50!

Here the termue–r u2 may be calculated in explicit form using
the auxiliary relation@3#

2 Re~e–r !~e* •r 8!52l ~r–ê!~ ê–r 8!

1~ l 21!~@r3 k̂#•@ k̂3r 8# !, ~51!

whereê is the unit vector along the major axis of the photon
polarization ellipse, andl is the degree of linear polarization,
l 5e–e5e* •e* . Using this identity and calculating the action
of the gradient operators in Eq.~50! we arrive at an invariant
expression forT2m :

T2m5 l $ê^ ê%2m1
l 21

2
$k̂ ^ k̂%2m , ~52!

which is valid in any coordinate frame. Equation~52! is valid
also for a partially polarized photon beam with the degree of
partial polarizationP512 l 22j2. So the results presented
are equivalent to the photon density matrix approach, but
they have an explicit invariant form and therefore can be
more convenient for analyzing photon polarization effects in
the angular distributions.

The regular method for application of the invariant repre-
sentations for the FRM’s to concrete problems is as follows:
Insert Eqs.~47! and~48! into Eq.~1! to obtain a ‘‘modified’’
transformation rule for the irreducible tensorial sets:

Tjm8 5(
s50

j

Tj ,s
~0!Yjm

s ~n,n8!1(
s50

j 21

Tj ,s
~1!

3$@n3n8# ^Yj 21
s ~n,n8!% jm , ~53!

where the scalar coefficientsTj ,s
(l) , l50,1 are defined by

Tj ,s
~0!5(

k5s

j

Bk,s
~0!~u!@Tj 2k1~21!kTjk#/2,

~54!

Tj ,s
~1!5 i (

k5s11

j

Bk,s
~1!~u!@Tj 2k2~21!kTjk#/2,

where B00
(0)(u)54p/(A2 j 11), the otherBm,n

(l) coefficients
are defined by the general Eq.~49!, and theTjk are the com-
ponents of the tensorTj in an appropriate coordinate frame
K most suitable for a concrete problem. All applications of
invariant representations of FRM’s are based on use of Eq.
~53!, as illustrated in some examples below.

A. Simplification of tripolar and multipolar harmonics
with small external ranks

We use here Eqs.~53! and ~54! to calculate tripolar har-
monics, which appear, e.g., in the analysis of angular distri-
butions for (e,2e) processes with emission or absorption of a
photon, for Compton scattering by bound electrons, etc. The
tripolar harmonic is the tensor product of three spherical har-
monics@1#.

Yjm
l 1 ,~ l 2l 3!l

~n1 ,n2 ,n3!5ˆYl 1
~n1! ^ $Yl 2

~n2! ^ Yl 3
~n3!% l‰jm .

~55!

In the coordinate frame with theZ axis alongn1 and theY
axis along@n13n2# we have

Yjm
l 1 ,~ l 2l 3!l

~00,u20,u3f3!

5A2l 111

4p
Cl 10lm

jm (
m2m3

Cl 2m2l 3m3

lm Yl 2m2
~u20!

3Yl 3m3
~u3f3!, ~56!

whereu2,3 are the angles between the vectorn1 and the vec-
tors n2,3, respectively, andf3 is the angle between two
planes defined by vectorsn1 ,n2 andn1 ,n3 .

The use of Eqs.~53! and ~54! leads to the representation
of the tripolar harmonic in Eq.~55! in an arbitrary coordinate
frame in terms of the simpler objects in Eq.~56! and tensors
of rank j composed from a minimal number of vectorsn1 ,
n2 , n3 . For simplicity, we present below the results for the
most important case in applications, tripolar harmonics of
rank 2:

Y2m
l 1 ,~ l 2l 3!l

~n1 ,n2 ,n3!5a1$n1^ n1%2m1a2$n2^ n2%2m

1a3$n1^ n2%2m1b1$@n13n2#

^ n1%2m1b2$@n13n2# ^ n2%2m ~57!

where the coefficientsai , bi are given by

a15A3

2
Y201

cosu1

sin u1
@Y211~21!lpY21* #

1
cos2 u111

2 sin2 u1

@Y221~21!lpY22* #,

a25
1

sin2 u1
@Y221~21!lpY22* #,

a352
1

sin u1
@Y211~21!lpY21* #

2
2 cosu1

sin2 u1
@Y221~21!lpY22* #, ~58!
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b15 i S 1

sin u1
@Y212~21!lpY21* #

1
cosu1

sin2 u1

@Y222~21!lpY22* # D ,

b252 i
1

sin2 u1
@Y222~21!lpY22* #.

For conciseness we have introduced in Eq.~58! the abbre-
viation Y2m5Y2m

l 1 ,(l 2l 3) l(00,u20,u3f3). The index lp5 l 1

1 l 21 l 3 denotes the parity of the tripolar harmonic, i.e., for
evenlp the harmonic is a polar tensor and for oddlp it is an
axial tensor~pseudotensor!. As follows from Eq. ~58!, for
evenlp the coefficientsai are scalars and thebi are pseu-
doscalars, and for oddlp the scalar characters are reversed.
The coefficientsa,b satisfy an important symmetry relation:

a1 ,b1
a2 ,b2 for n2
n3 .

This relation implies the following changes in the ranks and
arguments of the spherical harmonics in Eq.~58!:
l 2 ,u2
 l 3 ,u3 , 0→f2 , and f3→0, wheref2 is the angle
between the planesn1 ,n3 andn1 ,n2 .

Finally, we note that the results in Eqs.~57! and~58! can
be generalized easily for the case of an arbitraryN-polar
harmonic of rank 2 depending onN vectors ni . For this
purpose the parameterlp should be changed tolp5(nl n ,
where thel n are the ranks of the spherical harmonics which
enter the multipolar harmonic, and instead ofY2k one should
substitute the components of the multipolar harmonic in an
appropriate fixed coordinate frame. For the caseN.3 any
three vectors from the setni with i 51, . . . ,N can be used as
the vectorsn1,2,3 in Eq. ~57!; the coefficientsai andbj in Eq.
~57! will then depend on the relative angles of all vectors in
the problem. Thus the tensor structure given in Eq.~57! is
independent of the numberN.

B. Invariant form of polarization momenta

Equations~41! and~42! for the FRM and the transforma-
tion rule in Eq.~53! may be useful even for those cases in
which an invariant expression for some tensor is unknown.
As an example we consider here the irreducible components,
Prm , of the density matrix for some mixed state of a quan-
tum system@6,7#, whose matrix elements are defined by the
equation

^JMuruJM8&5(
rm

~21!J2MCJM8J2M
rm Prm , ~59!

wherer is a density matrix operator. We suppose, for sim-
plicity, that the states with the momentaJ8ÞJ do not con-
tribute in the statistical mixture. For this case we have

Prm* 5~21!mPr 2m ,

and the following important relation is valid:

Prm52rA~2r 11!!! ~2J2r !!

r ! ~2J1r 11!!
^$J%rm&, ~60!

where^$J%rm& denotes an averaged value of the tensor prod-
uct of angular momentum operatorsJ @7#. The convenience
of the tensorsPrm consists in the fact that one is able in
many cases to take into account an explicit symmetry of the
problem ~e.g., for spherically symmetric states onlyP00 is
nonzero, etc.!. The tensorsPrm , also called ‘‘polarization
momenta’’ @8#, are connected with the standard polarization
state multipolesr rm , namely,Prm5r rm* .

Since the polarization multipoles are tensors, the transfor-
mation rule in Eq.~53! is applicable. Below we present ex-
plicit expressions for polarization multipoles with ranks
r 50,1,2. The use of Eqs.~41! and ~42! in Eq. ~53! for Prm
yields

P05
1

A2J11
, ~61!

P15P10a1P11b1P118 c, ~62!

P25P20$a^ a%21P22$b^ b%21P21$a^ b%21P218 $a^ c%2

1P228 $b^ c%2 , ~63!

wherea,b,c are the Cartesian unit vectors along theZ, X, Y
axes of the frameK, which may be connected, evidently,
with symmetry properties of an excitation process used for
the preparation of the target polarization. The parameters
Prm are also combinations of polarization tensor components
P̄rm in the frameK. For brevity, we omit the component
index m in the tensor notationPrm . The (2r 11) different
angular combinations in Eqs.~62! and~63! are equal in num-
ber to the number of independent parametersPrm . These
parameters have the form

P105 P̄10, P1152& Re P̄11, P118 52& Im P̄11,

P205A3

2
P̄201Re P̄22, P21522 Re P̄21,

P2252 Re P̄22,

P218 522 Im P̄21, P228 52 Im P̄22. ~64!

In accordance with Eq.~60!, Eq. ~64! may be rewritten as

P105c1^Ja&, P115c1^Jb&, P118 5c1^Jc&,

P205c2~^Ja
2&2^Jc

2&!, P225c2~^Jb
2&2^Jc

2&!, ~65!

P215c2^JaJb&, P218 5c2^JaJc&, P228 5c2^JbJc&,

where the constantsc1,2 are

c15A 3

J~J11!~2J11!
,

c25A 30

J~J11!~2J21!~2J11!~2J13!
.
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It is seen from these identities that the parametersP10, P11,
P118 are proportional to the projections of the ‘‘mean angular
momentum’’^J& on the Cartesian basis vectors of the above-
discussed coordinate frameK. There furthermore exists an
explicit connection between the parametersPrm and the sym-
metry properties of a polarized state. For example, if a po-
larized state has an axial symmetry, then, directing the vector
a ~or b! along the symmetry axis, we obtain the result that
only tensors containing coefficientsPr0 ~orPrr ! contribute to
Prm . For the case of right-left symmetric polarized states
~i.e., with respect to the exchangec
2c!, all the tensors
with coefficientsP8 vanish.

C. Emission of photons by polarized atoms

As an application of Eqs.~61!–~63! to solving concrete
problems we consider the emission of photons by polarized
atoms. Using the electric-dipole approximation in length
gauge, an angular distributiondwk̂e/dV of the photons emit-
ted by a polarized atom in the directionk̂ can be written as
@8#

dwk̂e

dV
5

v3

2p\c3 Tf i ,

where

Tf i5 (
Mi Mi8M f

^EfJfM f u~e–d!uEiJiM i&

3^EfJfM f u~e–d!uEiJiM i8&* ^JiM i ur i uJiM i8&. ~66!

Here e and d are the photon polarization vector and dipole
momentum operator, respectively, andr i is the density ma-
trix operator. The use of standard angular momentum algebra
leads to the following expression forTf i :

Tf i5~21!Ji1Jf u^EfJf idiEiJi&u2

3 (
p50,1,2

H 1 1 p

Ji Ji Jf
J ~Pp•$e^ e* %p!, ~67!

where the tensorsPpm are defined by Eq.~59!. The scalar
products in the rhs of this equation may be easily calculated
according to Eqs.~61!–~64!. Finally, we obtain

dwk̂e

dV
5

v3

6p\c3 ~21!Ji1Jf u^EfJf idiEiJi&u2F ~21!Ji1Jf
1

A2Ji11
2

3

&

H 1 1 1

Ji Ji Jf
J j~ k̂–P1!

1H 1 1 2

Ji Ji Jf
J @P20~3ue–au221!1P22~3ue–bu221!13P21 Re~e–a!~e* –b!13P218 Re~e–a!~e* –c!

13P228 Re~e–b!~e* •c!#G . ~68!

This expression has a high symmetry and an invariant struc-
ture because it contains only the scalar products of vectors.
The 8 parametersP describe the polarization properties of an
initial atomic state with an arbitrary total angular momentum
J. The identity~51! is sufficient for detailed analysis of pho-
ton polarization effects in terms of linear and circular polar-
ization degrees. Note that the vector of ‘‘atomic orientation’’
P1 in Eq. ~68! describes circular dichroism effects in the
angular distribution, i.e., the difference between the intensi-
ties of emitted radiation with opposite helicities detected in

the same directionk̂.
All particular experimental situations connected with

atomic polarization also can be easily analyzed using Eqs.
~68! and ~65!. For example, if an atomic ensemble has been
excited due to the absorption of polarized photons, then it is
convenient to choose the directions of the vectorsa and b
along respectively the main axis of the polarization ellipse
for the incident photons and along the direction of the inci-
dent photon beam. For linearly polarized incident photons,
the terms in Eq.~68! containing the vectorsb, c must be
omitted, unlike the case of pure circularly polarized photons,

when the terms witha, c vanish. We do not analyze here
other general features of the angular distributiondwk̂e/dV
since they are evident from Eq.~68! and have been discussed
previously@7,9#.

VII. CONCLUDING REMARKS

The invariant representations for the FRM@Eqs.~47! and
~48!# together with the new transformation rule for the irre-
ducible tensorial sets@Eq. ~53!# are the key results of the
present work. Our other results and the applications we have
presented have been summarized in Sec. I. Here we discuss
the problem of the choice of the rotation parameters corre-
sponding to our invariant expressions for the FRM. Unlike
the case of the usualD or U functions, for which the rotation
is described by three real parameters~e.g., the Euler angles
or the polar angles of vectorn and the rotation anglev!, we
describe the rotation by the directions of two unit vectors
n,n8. The bipolar harmonics in Eqs.~47! and~48! are depen-
dent on the spherical angles of the vectorsn,n8 given in the
laboratory frameK8. In the space-fixed frameK these vec-
tors have the formn5(0,0), n85(u,0), whereu is the angle
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betweenn,n8. @We use the notationa5(ua ,fa) for the an-
gular coordinates of a unit vectora, whereua is the angle
betweena and theZ axis, and wherefa is the angle between
the projection ofa on the planeX-Y and theX axis of the
coordinate frame.# The polar angles of vectorsn,n8 in the
frameK8 can be connected with the standard Euler rotation
anglesa,b,g as follows:

un5b,

fn5p2g,
~69!

cosun85cosu cosb1sin u sin b cosa,

cot~fn81g!52cot a cosb1
cot u sin b

sin a
.

As we see from these equalities, only three parameters out of
five ~four spherical angles1one ‘‘free parameter’’u! are in-
dependent.

The use of invariant representations of the FRM can be
efficient not only in problems involving multipole expan-
sions, where they enable one to extract the polarization and
spin dependence of the cross sections in an invariant vector
form, but also in cases when standard techniques of angular
momentum and tensor algebra~e.g., the Wigner-Eckart theo-
rem! are not applicable. For example, such a situation ap-
pears in the recent Ref.@10#, in which the orientation effects
in an electron-impact ionization of polarized atoms has been
investigated using the so-called 3C wave function, which
has an asymptotic form that coincides with that of the exact

three-body Coulomb wave function. In this work tensors
SKQ describing the dynamics of the process have been cal-
culated numerically in a special coordinate frame. The re-
sults in this paper allow one to writeSKQ immediately in the
following form:

SKQ5 (
N50

K

CKNYKQ
N ~n1 ,n2!, ~70!

which is valid even for the case of a nondiagonal density
matrix for an initial atomic state. In Eq.~70! the CKN are
scalar coefficients, dependent on both the dynamics of the
process and on the angles between the vectors of the prob-
lem. The vectorsn1,2 can be chosen as the unit noncollinear
vectors along the directions of electron momenta.

An analogous situation appears also in Ref.@11#, where
the angular distributions in triple-electron photoionization
have been investigated using a 6C wave function, which is a
generalization of the 3C wave function used for double
photoionization. In this case the results of Sec. V allow one
to write the cross section in an invariant form, similar to Eq.
~68!.
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