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PHYSICAL REVIEW A VOLUME 57, NUMBER 5 MAY 1998
Invariant representations of finite rotation matrices and some applications

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 7 November 1997

Standard representations of finite rotation matri¢d®M) are defined by expressions that are wedded to two
particular coordinate frames such as, e.g., are involved in the definition of Euler angles. We present here
representations for the FRM in invariant tensor forms comprised of vectors defined in a space-fixed coordinate
frameK. Three explicit expressions for a FRM are presented: First, in terms of tensor products of the spherical
or Cartesian basis vectors of frade second in a differential form containing the tensor products of gradient
operators, and, third, as the superposition of so-called “minimal” bipolar harmonics depending on any pair of
unit vectorsa, b connected with a framk. Based on these results for the FRM, the transformation rule for an
irreducible tensor set under space rotations may be written in terms of bipolar harmonics. Our results are
especially useful for analyzing angular distributions in atomic processes involving a precise accounting of all
effects of photon and target polarizations. Four examples are considered as illustrations of the techniques
presented. First, an invariant representation of the photon polarization tensor is found in terms of linear and
circular polarization degrees of the photon beam. Second, an invariant decomposition of tripolar harmonics of
second rank in terms of very simple, rank 2 tensors is presented. Third, a convenient parametrization is
proposed for the polarization state multipoles of a polarized atomic target. Fourth, a simple invariant formula
is derived for the angular distribution of polarized photons resulting from electric dipole photon emission by an
arbitrary polarized aton{S1050-29478)03305-9

PACS numbg(s): 03.65.Ca, 03.65.Fd, 32.70n, 32.80.Fb

I. INTRODUCTION n axis are different for frame& andK’.) Therefore, the
explicit form of UJm,m depends upon the algebraic parameter
The quantum theory of angular momentum is a powerfuly, and on® and® [1].
tool for investigations in atomic, molecular, and optical Despite the fact that the finite rotation matrix is the set of
physics. Among the most important objects of this theory arg2j + 1) irreducible tensors numbered by either indte’ or

the so-called finite rotation matrice6RM), R, (Q), m (i.e., in the frameK’ they are tensors of rank with
which describe the transformation of irreducible tensor setgrojectionsm and in the frameK they are tensors of rank
under space rotations in accordance with the reldtign with projectionsm’), their (above-mentionedexplicit ex-

pressions do not have a structure that is obviously invariant,
j i.e., independent of a particular coordinate reference frame.
= D ij’R:n'm(Q)' (1) Even in 'Fhe 5|mplest.case_ when the rgnkf a FRM is
m'=—j equal to unity, the function®) , andU!, cannot be ex-
pressed as invariant combinations of some vectors. Only for
whereT;,, andT/,, are the components of a tensgy, given ~ Dom With integer rankj is such an invariant expression
in the “old” (space-fixed or initial frame K and in the known. Itis given by{1]
“new” (rotated or laboratory or finplframe K’, respec-
tively. The symbolQ) denotes the rotation parameters. Equa-
tion (1) contains the FRM in an abstract form. Its explicit DI (0.8.) = | A Y. (a) @)
representation depends on the concrete choice of the param- omiH Y 2j+1 ™
eters that specify the rotation.
There are two different representations of the FRM that
are in wide use. These are theand theU functions[1]. The ~ whereY,(a) is the spherical harmonic of the unit vectr
Wigner functionsDJm,m(aﬁy) depend on three Euler angles directed along th& axis of the space-fixed coordinate frame
a, B, v which describe the rotation in an elegant algebraic; the two Euler angles3, == y, are the polar angles af
way. The functiondJ! , (n,») depend on the direction of N & frameK’. As a consequence of E(®), the WignerD )
the rotation axis1 and on the rotation angle. For this case function is jalso called a generahzed.spherlcal harmo.nlc..
the rotation parameters afe=n,w. Thus, one of the param- NOt€ t_hatUm'm(”"{’) has a representation as an expansion in
eters is a vector with angular coordinat@s®, which are the ~ spherical harmonic¥,,(n) with 0<I=<2j, but its coeffi-
same in both the frami and in the frameK’. (Naturally, cients are the Clebsch-Gordan coefficieﬁl’ﬁéim,, which
the angular coordinates of vectors that are not parallel to thdepend upom, m’ [1,2]. We use the term “invariant” for
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relations similar to Eq(2) because the spherical harmonicon  As we demonstrate below, in general the FRM can be

the right-hand sidérhs) of this identity is a tensor product of presented as a superposition of irreducible teng’dﬁﬁ](ﬂ)

vectorsa (cf. Sec. I). of rankj numbered by labed and composed of some vectors
Together with Racah techniques, the FRM’s in the formfixed in an “old” frame K,

of the Wigner functions are most useful for calculating
atomic, molecular, and nuclear structures. But for studying
angular distributions, especially for reactions involving po-
larized particles(in which case a large number of vectors '
enter the problem the invariant representation of the FRM’s Thus, the entire dependenceRjL,m on the tensor inder is

as a combination of tensor products of vectors involved irbiven by the tensor projections d\‘A/lfm, while the coeffi-
the problem may often be preferable. Indeed, the angulafientsc, in Eq. (3) are independent of. This is a most
distributions are invariant under coordinate rotations a”qmportant fact, demonstrating an invariance of Eg). with
their description in terms of invariant combinations of vec-respect to a concrete choice of “new” coordinate fraiie
tors characterizing the problem is very useful. Another im-Fyrthermore, Eq(3) leads to an invariant parametrizatiéa
portant feature of the invariant representation of the FRM’'s‘modified” transformation rulé for any irreducible tensor,
is that it allows the representation of any tensor in an invari-
ant form as a linear combination of FRM elements denumer-
ated by an indexn’ [see Eq(1)] with numerical coefficients
that are the components of the same tensor in a suitable
coordinate frame. where the coefficientt(j), given by
In this paper we present invariant forms for the finite ro-
tation matrices that depend only on the vectors that are ap-
propriate for a particular physical process being investigated.
Specifically, in any physical process there exist one set of
vector quantities that describes the initial state of the systerare linear combinations of the componefifs, in an appro-
and another set of vector quantities that describes the fingriate “old” frame K. Thus, the tensor.sAA/l-sm form an irre-
state of the system. Various combinations of such vectogucible basis set in the space of irreducible tensors of jank
quantities may be chosen to define in a natural way approsimilar to the spherical unit tensors of rank 1.
priate coordinate frames for the system. The description of a In Sec. Il we begin by considering the simplest case of
given physical process thus naturally involves a finite rotaRM’s with unit rank,j=1, and provide an explanation of
tion matrix that describes the transformation from an initialour method for the construction of the FRM’s in an invariant
coordinate frame to an appropriate final coordinate frameform. Specifically, an expansion of the FRM is derived in
Because the coordinate frames are defined by vectors tht@rms of spherical basis vectors in frate The sum ors in
characterize the physical system, these vectors may be used. (3) for this case contains only one operayﬁf?;; com-
to construct the finite rotation matrix rather than parametergosed of spherical basis vectgeee Eq(17)].

Rjrnfm(ﬂ)=25 cs(j,m") M5 (Q). &)

Tin= 2 (D Mn(), (4

ts(1)=2 es(j.m) Tjm:, 5

specific to a particular coordinate reference frame. Indeed, In Sec. Ill we derive a differential representation for
the FRM constructed in this way may be evaluated in anyFRM'’s as the result of the action of a tensor producVef
particular pair of coordinate frames. operators on spherical harmonics depending on angles of an

To derive the invariant form of the FRM we will describe auxiliary vectorr. The differential form of the FRM is very
the rotation in terms of angular coordinates of some vectorsompact and it is useful for illustrating some general prop-
without any algebraic parameters similar to Euler angles or &rties of the finite rotation matrix. In particular, the identities
rotation anglew, which are not inherent vector objects. in Egs. (24) and (25 demonstrate the high symmetry of
Namely, we fix a vector set in an “old” or initial frami, Rl With respect to the indicies1 andm’ in spite of the
which may include the spherical or Cartesian basis vectorfact that these indices have a different meaning in our con-
or, more generally, any pair of noncollinear vectar® with siderations: the first of them has a tensorial sense irkthe
fixed angled between them0< #< is a free parametgr frame and the second one in tKeframe. Using the differ-
The angular coordinates of these vectors in a “new” or finalential form of the FRM, in Sec. IV we find both a represen-
frameK' are connected with those i by a rotation, whose tation of R}, in terms of Cartesian basis vectdsee Eq.
explicit form need not be specified. Although a rotation is(36)] and two additional differential forms for the FRM con-
described by only three independent paramefeig, by the  taining V, operators and the scalar products of either Carte-
Euler anglesand for each concrete specification of vectorssian[see Eq.(33)] or sphericalsee Eq.(39)] basis vectors
in frameK the connection between the new and old coordi-With an auxiliary vector . _
nates of these vectors can be established and three indepen-1he expressions for FRM's presented in Secs. Il and IV
dent parameters can be designdeze, e.g., E¢69) below], contain rat.her complicated combinations qf basis vectors.
such concretization of the rotation is unnecessary in most "erefore in Sec. V- we present the results in an alternative,
cases, and an invariant form for the FRM is quite sufficientcompact form by representing the operatdrt;,, in Eq. (3)

For this reason, we do not specify in our representations fogs the special tensor products of two spherical harmonics
the FRM the argumenf) in terms of some algebraic vari- (the so-called “minimal” bipolar harmonicsfm(a,b) with
ables. s=0,..., [3]) depending on any pair of vectoss b, con-
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nected with the fram&. We consider both the case in which wherex,=(x-e,) are the spherical componentsofind as

a, b are the Cartesian basis vectpsge Egs(41) and(42)] the spherical unit vectors we can use three arbitrary vectors

and also the most general case in whictp are any pair of e, satisfying the orthogonality condition ef-e,)

noncollinear vectors with an angiebetween thenjsee Egs.  =(—-1)*5, _,, whereu,»=0,+1, and wheres, _, is the

(47) and(48)]. Note that in the last case the coefficieagsn Kronecker delta. Equatio(6) has an invariant form since it

Eq. (3) are ¢ dependent. Fom’=0 the superposition of is valid in an arbitrary coordinate frame. Supposigare

“minimal” bipolar harmonics in Eq.(3) reduces immedi- the spherical basis vectors of the fratdeand multiplying

ately to Eq.(2). Thus, it seems that the term “generalized Eq. (6) by the spherical basis vectoms,, of the frameK’,

bipolar harmonics” for the FRM in invariant form is more we have

appropriate than is the term “generalized spherical harmon-

ics” for the WignerD functions. . 2
In Sec. VI we illustrate the application of the invariant XV_WZO

forms of the FRM'’s to a number of physical problems. As a

particularly simple application, based on the differentialwherex; andx, are the components of in the framesK’

form of the FRM, we first derive an invariant forpsee Eq.  and K, respectively, and¢,), are the components of the

(52)] for the photon polarization tensor of second rank inbasis vectorg,, of K with respect to th&" frame. Compari-

terms of the photon wave vectdr and the unit vectore ~ son of Eq.(7) with Eq. (1) yields

directed along the major axis of the photon’s polarization 1 N

ellipse. Also very important for applications is a modified R, (Q)=(=1)*(e_,),=(€,),.

transformation rul¢see Eq(53)] for irreducible tensor sets,

which follows from Eq.(1) after substitution of the expan-

sion in Eq.(3) for Rﬁn,m in terms ofyjsm. Equation (53)

confirms a general statement of REJ] that the “minimal”

harmonic$2fm(a, b) at fixedj and variables form a conve- Rl,l,,(Q)— R}V(Q)z\ﬁ(ex)v,

nient complete basis set for irreducible tensors having rank

J

. (—D)#x_ (), )

+
=+

Here the indexu enumerates the basis vectesand v is a
tensor component index. This identity may be alternatively
written as

: RL,,(Q)+R;,(Q)=iv2(e),, 8)
Other applications we discuss are the following: In Sec.

VI A we demonstrate a reduction technique for tripolar har- RéV(Q)= (e),,

monics depending on three vectoks i =1,2,3. Such objects

appear in kinematic analysis of reactions with 3 or moreWhereey , , are Cartesian unit vectors of the fraide Thus,

particles[e.g., €,2e) or (y,ne) processeks As an example, the above expression fd?llw(Q) has an invariant vector

we present in Eq(57) an expression for tripolar harmonics structure that is completely similar to the well-known Carte-

of second rank in terms of tensors of rank 2 composed of 3ian matrix, a;, of transformation betweeK and K’ in

or 3 vectors; . In Sec. VI B we derive a convenient, invari- terms of direction cosines.

ant parametrization for polarization state multipoles of a po- To derive an invariant expression for FRM with an arbi-

larized target in terms of the Cartesian basis veapbs cof ~ trary rankj we note that any tensor composed of vectors

a coordinate framé& connected with a concrete process of fixed in the frameK and equal taR’, (Q) in some coordi-

preparing the polarized target. These results are used in S§¢ate frameK will coincide with R (Q) in any other
m’m

VI C for the analysis of electric dipole photon emission byf | ficular. if tensa®.. (0) i |t
an arbitrary polarized atom with detection of photon polar- rame. In particuiar, 1t some tens m'm(0) is equal to

ization. We present the angular distribution of the polarizedR}, ,(0) atK=K, then the identity

photons for this fundamental optical process in the simplest . _

invariant form [see Eq.(68)], containing only the scalar R, .(Q)=R, (Q)

products of basis vectors, b, c, the wave vectok, the

photon polarization vectors, €, and 8 initial parameters is valid also for an arbitrary orientation of the laboratory
describing the target polarization. These four examples precoordinate frame. This statemenlis based on rotation invari-
sented in Sec. VI demonstrate the efficiency of using invariance arguments. Let a tens@’m,m(ﬂ) coincide with

ant FRM'’s to analyze complex physical problems. Rin’m(o) atk=K, then

Il. INVARIANT REPRESENTATION OF THE FRM R _ ol
IN TERMS OF SPHERICAL BASIS VECTORS % Tim'Rinrm(0) % Tim Ry (0)- ©

o Consider first as an example the simplest case of a FRM¢ting on both sides of this equation by the finite rotation

mny () with j=1, which describes the transformation of operator2(Q) and taking into account tha2(Q) does not

vector operators under rotations. It.|s well knpwn that aNact on theT;,, since they are tensor components given in the
arbitrary vectorx may be expanded in a spherical basis a%pace-fixed framé&_ we obtain

follows:

> TimRIQRL, (0= T RIOR, (0),
X= > (—l)“x,#eﬂ, (6) m’ m’
m=0,*

(10
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and, henceﬁm,m(ﬂ)=Rﬂn,m(Q). Thus, the problem is to j Kk (j—k)!

: vari - ' Rikm(0)= (=1 Cikj—ko \ 55— AikOm, 2k -

find an invariant definition for the tensor equaIRQ,m(O) at (2j—2k—1)"

K=K. (18)
Firstly we mention that in accordance with Eq. the

FRM for the case of zero rotatidie., whenK’=K) has the  pence R, (Q) satisfies the conditiot11) and therefore

evident form coincides with the FRM in accordance with the above argu-
ments. Substituting the explicit form for the Clebsh-Gordan

RJm,m(0)= S m- (11 coefficie.nth('f(j_kO in Eq. (18), we find forA;, the following
expression:
In order to define a tensor composed of basis vectors in a
frame K and satisfying Eq(11) we introduce the special :
notation (cf. Chap. 3 of Ref[1]) for a tensor product of A= (— 1)K [ 279(2))! (19
identical vectorsa = (1) (+krg-kr )
{@jm={"{ {a®a},® a}_ 1®a}n. (12 Equation(17) is the simplest form of an invariant repre-

sentation for the FRM, because the coefficieffs do not
The standard definitions of angular momentum théahyare  depend on the tensor projection index unlike the case of
used throughout the text. It is kno8] that the tensofa};,  the U(n,w)-function representation of the FRI2]. Note
is the same for an arbitrary coupling scheme on the rightthat the indes in Eq. (17) is not a tensor index with respect
hand side of Eq.(12). Note that the spherical harmonic to the laboratory framé&’. In this framek just enumerates

Yim(r/r) can be represented also as the tensor produft of the basis tensor®l, ,,, in a way similar to that of the index
real vectors'/r [1]: vin the case of the spherical basis vectgyfor theK frame.
2]+ 1
ij(r/r): Tj!r—r{r}jm_ (13 I1l. INVARIANT DIFFERENTIAL FORM OF FRM

Below we present an invariant form of the FRM that re-
In the coordinate frame with tH& axis directed along vector Sults from the action of a special differential operator on the
r this expression reduces to standard spherical harmonic. Our treatment is based on the
use of invariant rank-decreasing operators for spherical har-
monics [3]. For these operators the following identity is

[2]+1 ni

Now we note that in the framié the tensor product in Eq. {0l (1, V)@Y (11 bqm= Sqi—kYi—km(T/T),  K<L.
(12) composed of spherical basis vectors has the form (20
— k N
{e-1hkg=(=1) 0 zq> (19 For the explicit form ofOL;(r,V) see Eq(A6) in Ref.[3].

_ _ _ As we describe below, the use of this identity latk=]|
wheree..; =+ (1/2)(b=ic) are the spherical basis vectors; (q=0) leads to an important formal relation:
a,b,c are the Cartesian basis vectors directed along the axes
Z,X,Y of the frameK, respectively. The identity15) can be .
:ihe;\gagﬂl)na}ibst_rilg;;;orward calculations taking into account Tj’m:(_l)l‘/4ﬂ-(2j +1)Oj;(r,V)[TJ-’~Y,-(r/r)], (22)
aabb

whereTJ-’ is an arbitrary tensor of integer rafjkandr is an
arbitrary vector, and we consider this equation in a rotated
frameK'. While it appears thaTj’m on the left-hand side of
Eq. (21) depends onr through the spherical harmonic
Yj(r/r), this dependence is removed by the gradient opera-

tors, which constituté)},;(r,V) with j=1 as follows|[3]:

(a)),uzg,u,O! (ev),u.:_(sy,,—yi V:ila ,u=0,i1
(16)

for spherical components of vectogs, andey=a.
By direct calculations we can verify that the tensor
Rl(Q) defined by the equation

Rl () =Apd{e: the@{e}j—idim, k=0 (17) o (—1)
Ol (r,V)= : =
J J2i+ D]+ !

{Vimrl. (22
coincides with the FRM after an appropriate choice of a nor-
malization factorA;, . Indeed, it can be clearly seen from
Egs.(12) and(15) that in theK frameR., (2 =0) has the The identity in Eq.(21) may be verified by direct calcu-
form lation as follows:
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J
o};u,wﬁ;.Y,-<r/r>]=k:2_j (= 1)*OLn(r, V) T{_Yji(r/r)

. 1
= —1*T, Ol (r,V)®Y(r/nN}sm=(— 1)) ——==T/.
kgms( )T Cimsid BN kam = (= D) e T
|
Here the first equality follows immediately from the defini- R, (Q)=(—-1)\am(2j+1)

tion of the scalar product for two tensoﬂé; andY;, the
second one from the orthogonality properties of Clebsh-
Gordan coefficients, and the third one from E20).

Since a scalar product of tensors does not depend on the
orientation of a coordinate frame, we can consider the scalafaking into account Eq(24), we verify explicitly the well-
product on the right-hand side of E@®1) as defined in the known group identity
space-fixed framé (instead of the laboratory frami’),
and, hence, the replacemént—T; should be made on the j - j "
right-hand side of Eq(21).TTOf ch)urse, the spherical har- Ry ()= 2 Ry (0 Ry (2).
monic Y;(r/r) must also be replaced by its definition in the

(rlr).

jm"

XY R, QO (r V)Y
ml!

frameK. We thus arrive at the following identity: IV. REPRESENTATION OF THE FRM IN TERMS
OF CARTESIAN BASIS VECTORS
Tfm:kz_ Ti(=DITAm(2) + 1Ol (r, V)Y _(r/r). Below we demonstrate that the result of the action of
=i

(23) gradient operators on the spherical harmorfidr/r) in Eq.
(24) can be calculated in terms of tensor constructions de-
Comparing this result with Eqi1) and using Eq(22), we  Pending on the unit vectom b directed along th&, X axes
derive the “differential” representation (R{(m(Q): of the K frame, respectively. Thus we shall find the explicit
form of the FRM in terms of the Cartesian basis vectors of
_ 4o the space-fixed fram&. Our considerations below depend
Rim(Q) = Vi {V}]mr Yi(r/r). (24 upon two known facts concerning the spherical harmonics.
jitej+nn (i) It is well known that the spherical harmonic

k
As may be seen from this identity, the FRR](Q) is a Yiir/r)=(=1)Yji(r/r) can be written in the standard

tensor in the fram&’ with respect to the index, and a form [1]
complex-conjugated tensor in the fraikewvith respect to the 2j+1(j—K)!
indexk. Moreover, taking into account the auxiliary relation Yi_(rlr)= 4r (jFK) [sin @ exp(—i¢)]*

[4],
xPM(cosg), k>0, (26)
{V}er'Y (rir)= {V}]erY]m (r/r),
where 6 is an angle between the vectorsand a, cosé
we obtain another expression, similar to E24): =(r-a)/r, and ¢ is an angle between th¥ axis and the
projection of the vector on theX-Y plane of the systerK,

. / 47 .
R{(m(Q)Z j!(zj—+l)”{V}jkr‘ij(r/r). (25 c0S b= (r-b) sin = (r-c

rsing’ rsing’

Here the spherical harmonic is defined in the laboratory
frame K, and the tensor product of gradient operators is! e polynomialP{(x) =d“P;(x)/dx is thekth derivative
defined in the space-fixed franke From Eqgs(24) and(25)  ©f the Legendre polynom|aCP (%).

it follows that, although indice& and m have a different (i) The following useful |dent|ty,

meaning, there is an explicit symmetry between them. [k/2]

These equations are convenient also for explicit demon- coskp== 2 (—1)8 (k_ — 1! — > (2cosh)k 2,
stration of fundamental properties of the FRM's, such as st(k—2s)!
unitarity, group properties, etc. As an example, we derive (27)

here an expression fd?’m,m(Q), whereQ=0"-Q" is the

product of the rotation —K'—K" described by the pa- . Tchebyshev polynomial of the first kind. An identity

rametersQ’ 1". Replacement of the spherical function ;qyijar o Eq.(27) for sinke can be derived by differentia-
(r/r) in Eq. (24) which is defined in the fram&, by  ion of Eq. (27) with respect tog.

the expressmrEmHRm (' )YJm,,(r/r) whereYy, is de- ~ Taking Egs.(26) and (27) into account, one can rewrite
fined in the frameK’, leads to the relation: Y (r/r) in terms of scalar products as

follows immediately from the fact that cégb=T,(cos¢) is
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[k/2]

. 2j+1 (j—k)! k—s—1)!
rY_(rfr)= 1477 8+k§! rJ*kP}'O(a.r/r);O (—1)5—(3!(:_25;! [2(b-r)]* 257 r2—(a-r)?]®
X[k(b-r)—i(k—2s)(c-r)], k>O0. (28)

Note that the gradient operators in E84) do not act on the o) (2j—1)! e
terms in Eq(28) that which contain scalar productsoith rI=kpa-r/r)— (j——k)l(a'r)k : (32)
itself owing to the following relation: '

{Vim(r-n¥=0, k<I. (29 As explained below, it is more convenient to consider two

_ symmetrized combinations &(Q) [cf. Eq. (8)]:
Thus, one should keep in E(8) only the terms from the

expansion ofr}"¥P®(a.r/r) into a power series ina-r - - -
P j(aln) o @ P g RES(0) =R () +(~ 1Riy(0)

that do not contain any powers of -¢). This includes in (32
particular the terni(r -r) — (a-r)?]5. Thus the following sub- ‘ _ .
stitutions should be made in E@®8): RlL(Q)=—i[R(Q)—(—D*Rl(Q)], k>0.
[r?=(a:n)?I*—=(=1)%an)?, (30 - . .
Substitution of Eqs(28), (30), and(31) into Eq. (24) yields
and for RL,(Q),

- ¥ g(k-s— . y
m‘m 2 S(k=29) {V}Jmu -a) K2 2(r-b)]* 2 (33

The right-hand side of this equation may be calculated explicitly, using the identity
{V}m(r-a) =% 25(r-b)* = 25= j1{{al; _ys 2s®{D}k—2e}jm (34)
which follows immediately from the Leibniz rule for differentiation of products and from the simple relations

V(r-a)"=na(r-a)" %, n>0,

(35
{V®I‘}2m=0.
Thus,RLr*n(Q) can be presented in the following final form:
— [k/2]
_ preej—-nn k(k—s—1)!
+_ k-2
Rim= W 2 Ss,(k—ZS),{{a}J K+ 2s® 1D}k 2sfjm - (36)
An analogous identity foRL:n(Q) can be derived similarly:
: : [(k=1)/2]
- jl2j-1! e (k=5—1)!
Rim= m SZ:O 2 k= zs— 1 (e l@ i 2s® {bh-2s- k- ahjm- (37)

For completeness, we obtain E@7) of Sec. Il using the differentiation method. Firstly, note that the ternvsirp(—i ¢)
on the rhs of Eq(26) can be rewritten as

. . (e-1-1)
sin 6(cos #—i sin ) =v2 — (38

wheree_ is the spherical unit vector in framé. Secondly, replacin@}k)(cose) in Eq. (26) in accordance with Eq31), we
obtain one more differential representation of the FRM in terms of spherical basis vectors

j [ @i - )
Rkm(Q)=(—-1) W{V}jm(eo'r)] (e_-n% k>0. (39
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This equation demonstrates clearly the independence of the o
final results on an auxiliary vectarowing to the fact that Ek: Cjk(cos 0) Yj,(n,n") =0,

appears to thgth power. Calculating the action of the gra-
dient operators in this equation, using E(®) and(35), we

arrive immediately at Eq17) of Sec. Il. where theC;(cos6) are scalar coefficients depending on the
scalar productrf-n’)=cos6. This means that the minimal
V. EXPANSION OF A FRM INTO A BASIS BH’s y]-'ﬁn(n,n’) are the simplest irreducible tensors of fixed
OF BIPOLAR HARMONICS rank j, which can be constructed of two vectorsr’. The

- . . f i ly i t minimal BH’s of rafki
Some preliminary remarks concerning the bipolar har-number of linearly independent minima S ot ranis

) . : . evidently equal to (+1). It is important to note that the
momc's(BH) are in o.rder. These objects are defined by theminimal BH’s are polar tensors for eakh since under space
following equation[1]:

inversion(i.e., whenn,n’ — —n,—n’") they acquire the addi-
I’ " NS tional phase factor<{ 1)!, which is independent dt.

Yim(Mn) =YYy () i Now an expansion of the FRM using a basis of minimal
As was shown if[3], for the case wheh+1’>], the BH BH's can be obtgine_d by substitution of E@L3) for the
may be expanded into a superposition of “minimal” BH's SPherical harmonics into Eqe36) and(37):
Yin(n,n'), which are defined by

[k/2]
k ! ! H
y]-m(n,n ):{YJ,k(n)(X)Yk(n )}va (40) Rf(:W(Q):SZO A{(%)yﬁn*ZS(a,b), (41)
wherek=0,... . The harmonics)ijkm have some important
properties. Namely, the Clebsh-Gordan coefficient entering [(k=1)/2]

the tensor product in Eq40) can be written in explicit form . e
as a product of factorials without any sums. Further, as was Rim(Q) = _Z'o A(kls)‘{c‘gyikfl25 l("’Lb)}jm’ (42
demonstrated if3], the minimal BH’s form a “linearly in-

dependent” set in the space of tensors with fixed rpnike.,

there are no linear relations of the kind where the coefficientd{Y) have the form

[K(1=N)+N](k—s—1)! \/ 25N 1(2j — 1)1 (j—k+2s)!
T 255s! (j—K)(j+K) ! (2k—4s— 2N+ 1)1 (2] — 2k+4s+ 1)1’

AN =4 k>0. (43

Equationg41) and(42) are expansions of the FRM in a basis where g‘) is the binomial coefficient an@d,, a, are two

of minimal bipolar harmonics depending on the orthogonalarbitrary vectors. Equatio44) can be verified using Eg.
vectorsa,b,c. It is important to note that the numbej21 (12) and the fact that a tensor product is a linear function of
of different BH's entering the expansion of the FRM is the each tensor entering the product. Taking into account Eq.
same as the total number of functioRY, () with differ-  (13), Eq. (44) can be rewritten as

ent indicesm’ at fixedm. Since an arbitrary tensdr, in a

laboratory frame is a superposition of elements of FRM’s _

[see Eq.(1)], it is clear thatT},, can be expressed also as alcia+Coa| Yjm(v)

combination of minimal BH's[see Eq.(53) below]. Note _
that the functionsRL"(Q), RL(Q), defined by Eqs(41) J \/ 4m(2j+1)!
and(42) are polar tensors. Also, there is an essential differ- :n:O (2n+1)1(2j—2n+1)
ence between the two combinatioRg,(2) and Rl ().

Namely,R} () is invariant with respect to inversion of the (45)
Y axis of the space-fixed frami¢ while R}(Q) changes

sign. where v is the unit vector directed along the vectora;

Generally, it is possible to derive an expansion of the . .
i ! : : . ; +cC,a,. Thus, we have derived, by a most simple method,
FRM'’s in BH'’s depending on any pair of vectors fixed in thethe so-called addition theorem for solid harmon|dss],

frame K. This result follows from the simple relation for a which are the productsinm(r/r).

tensor product composed of two arbitrary vectors Below we present one of the most convenient invariant
representations of the FRM'’s as a superposition of BH'’s de-
i . pending on a pair of nonorthogonal unit vectare’. Let the
] ) j—n.n vectorn be directed along th2 axis of the space-fixed frame
C1ay+Codo}im= ¢ "cif{ar} _n®{astntim» o
{esa1tcotolim= 2, (n 1 Coliant - n®{2}nkim K, and the vecton’ lie in the same plane as the vectorin
(44)  other words,

i ¢ "eVim(ar,a),
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B oo n'—ncos¢  [nxn] 46 K
where 6 is the angle between vectorsandn’. Of course,
the angle® must be nonzero, otherwise the basis Etf)
fails. -
Substituting Eq(44) into Egs.(41) and(42), noting that RI-(Q)= 2 Do) {[nxn' 1@y .(n,n")}im, (48)
in our casec,=1/sing and c,=—cot§, and performing a s=0 ! .
summation over one free index, we arrive at the following
identities: where the coefficientB(k);)(e) are given by

and

4 2[K(1—N)+ N ](K+S+A—1)! 2 (—s—N1j1(2j— D)l
(N) — 1/2 k
Bl (0)= g R Gk (c0s0) 2k— D)1 \/(23+1)!(2j—25—2)\+1)!!(j+k)!(j—k)!'
(49

It is important to note that the Gegenbauer polynomialsWhen k=0 this equation reduces immediately to EQ).
1’2 K ,(8) on the rhs of Eq(49) do not depend on the rank Thus, the FRM’'s may be considered as the “generalized”
i of the FRM'’s. We note also that half the coefficieBtsat  minimal BH’s of the spherical basis vectors of the old frame

0= /2 coincide with the coefficientd [cf. Eq. (43)]: K.
BlkL os—r(7/2) =AY, VI. SOME APPLICATIONS
The different invariant representations of the FRM’s we
and the others are zero: have presenteficf. Egs. (17), (24), (25), (33), (36), (37),
(39), (47), and(48)] each have their uses in particular appli-
B() pers1(m/2)=0. cations. Thus, although Eqgl7) and (48) are very general,

in some situations the use of the differential representations
in Egs. (24) and (25) of the FRM may prove simpler. For
Thus, the representations in E¢41) and(42) are seen to be example, if an explicit expression for a scalar product of a
special cases of the more general expansions in@@sand  tensorT;,, and a spherical harmonic is known in terms of
(48). scalar products of vectors, then E¢&3) and(24) allow one
We note that Egs(47) and (48) show the function to obtain an explicit form off;,, in terms of tensor products
Rim(Q2) to be a polar tensor and the functi®),(2) to be  of vectors. Before describing the general procedure for using
an axial tensofbecause the tensor product in E48) con-  invariant FRM’s in concrete applications, we give an ex-
tains an axial vectofnxn’]]. This latter result contrasts ample of the use of the simpler Eq&3) and (24).
with Eqg. (42) for R},(Q2). However, there is no contradic- Consider the photon polarization tensorT,y,
tion with the tensor transformation rule in E@). Namely, —={e®€*},,, whereeis the unit(compley photon polariza-
the tensor components of one and the same tehson the  tion vector(see, e.g[7]). Invariant explicit forms off ,,, are
rhs of Eq.(1) may be either scalars or pseudoscalars dependnown only forp=0,1 and are given by
ing on whether the unit vectarof the space-fixed frami¢ is

either a polar or an axial vector. 1 1
We note finally that if we define the “generalized” To=——, Tl=_§|2,
spherical harmoni(‘?jm(e) of complex unit vector by the V3
tensor product in Eq.13) with r/r —e, then Eq.(17) can be
rewritten[using Eqs(19) and(40)] as where¢ is the degree circular polarization of the photon,
R iem( @) =c(k,){Yi(e:) @ Y| (€)}jm =ik [exer],
_ ik N
=c(K))Vim (€51,8), and k is the unit vector along the direction of the photon
beam. The following explicit expressions fdp,,, are used
where widely in applications:
(2))'kI2k-] 1 1

Too=—

C(k’j)z(_l)k“\/(j+k)!(2k+1)!!(2j—2k+1)n' Voo Ter0 Temmplbana),
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where &; ; are the standard Stokes paramet@8f These A. Simplification of tripolar and multipolar harmonics
identities are valid, of course, only in a coordinate frame with small external ranks
where theZ axis is directed along the vecter We use here Eqg53) and (54) to calculate tripolar har-

To derive an invariant expression 65, we note that, in - monics, which appear, e.g., in the analysis of angular distri-
accordance with Eq¢13), (22), and(23), tensorT,,, may be  butions for ,2e) processes with emission or absorption of a

written in the following form: photon, for Compton scattering by bound electrons, etc. The
tripolar harmonic is the tensor product of three spherical har-
Tom=2{Viam({ror},-{eoe*}) =7 {Viomler|> 50 monics[1].
50
11,5l
Y,-rln( 29Ny ,n,,ny) ={Y1,(n)@{Y|(N2) ® Y, (N3) }1}jm -
Here the ternje-r|? may be calculated in explicit form using (55

the auxiliary relatior{ 3]
A In the coordinate frame with th8 axis alongn; and theY
2 Reer)(e*-r')=2I(r-e)(er’') axis along[n; X n,] we have

+(I=1)([rxk]-[kxr']), (52
¥4 1291(00,0,0,055)

wheree is the unit vector along the major axis of the photon
olarization ellipse, antlis the degree of linear polarization _2|1+1 jm Im
p p L .. . 9 p L = 4 CI:LOIm 2 C|2m2I3m3YI2m2( 6,0)
| =e-e=¢€*-€". Using this identity and calculating the action ™ mpmg
of the gradient operators in EG0) we arrive at an invariant
g P %0 XY) g (B3653), (56)

expression foil 5, :

where 6, ; are the angles between the veatgrand the vec-
tors n, 3, respectively, andp; is the angle between two
planes defined by vectors ,n, andn,,n;.
which is valid in any coordinate frame. Equatits®) is valid The use of Egs(53) and (54) leads to the representation
also for a partially polarized photon beam with the degree off the tripolar harmonic in E¢S5) in an arbitrary coordinate
partial polarizationpzl—lz—gz. So the results presented frame in terms of the simpler ijects in E§6) and tensors
are equivalent to the photon density matrix approach, bu®f rankj composed from a minimal number of vectars,
they have an explicit invariant form and therefore can be2: Ns- For simplicity, we present below the results for the
more convenient for analyzing photon polarization effects ifM0St important case in applications, tripolar harmonics of
the angular distributions. rank 2:
The regular method for application of the invariant repre-
sentations for the FRM'’s to concrete problems is as foIIows;Yu,ung)I

o . [
Tom=1{€® €}om+ ——{k&k}2m, (52)

(N1,Nz,Ng) =a3{N;®Ny}om+ ax{N,® Nyt o,

Insert Eqs(47) and(48) into Eq.(1) to obtain a “modified” 2m
transformation rule for the irreducible tensorial sets: +ag{n;®Nytom+ be{[NgXN,]
i j-1 ®@Ny}omtbo{[n XN ]®Ns0om  (57)
Tin=3, Ti2h(nn")+ 3, T4
where the coefficients;, b; are given by
X{[nxn"1@Y> ("N )}jm, (53
o N ) 3 Cos 64 N
where the scalar coefficient§’y, A=0,1 are defined by a;= > Yoot W[Yzﬁ(—l) PY3q]
1
i
cos 0;+1
TQ=3 BRUAOT i (— D Tl/2, + [ (—1)%Y3],
Tokss 2 sirf 6,
(54)
j 1
(L) (1) L —(=1DKT.
Tis Ikzérl Bis(OLTj = (= DI Td’2, a2=m[Y22+(—1)"PY’2‘2],

where BY)(6) =4m/(\2j+1), the otherBY)), coefficients

are defined by the general E49), and theT;, are the com- az=— —
ponents of the tensoF; in an appropriate coordinate frame sin 6,
K most suitable for a concrete problem. All applications of
invariant representations of FRM’s are based on use of Eq. _ =
(53), as illustrated in some examples below. Sirf 6,

[Yar (= 1)Y3)]

2 cos b,

[Yoot (—1)*Y3,], (59)
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where({J},,) denotes an averaged value of the tensor prod-

bi=i| =——[Yau—(—1)"Y3] uct of angular momentum operatalg7]. The convenience

sin 6y of the tensorsP,,, consists in the fact that one is able in
many cases to take into account an explicit symmetry of the
cosé : ; :
[Y22 (—1)%Y%,] |, problem (e.g., for spherically symmetric states orfty is
Sir? 6, nonzero, etg. The tensorsP,,,, also called “polarization

momenta”’[8], are connected with the standard polarization
. N state multipole®,,, namely,P,,=pr, -
by=—i Siré 01[Y22_ (=1)%Y2. Since the polarization multipoles are tensors, the transfor-
mation rule in Eq.(53) is applicable. Below we present ex-
For conciseness we have introduced in Ezg) the abbre- plicit expressions for polarization multipoles with ranks
viation Y,,=Y:(29'(00,60,0,0543). The index \,=1;  r=0,12. The use of Eq$41) and(42) in Eq. (53 for P,
+1,+15 denotes the parity of the tripolar harmonic, i.e., for Yields
even\, the harmonic is a polar tensor and for adglit is an
axial tensor(pseudotensor As follows from Eq.(58), for 1

even\, the coefficientsa; are scalars and thig; are pseu- Po= J23+1 (61)
doscalars, and for odl, the scalar characters are reversed.
The coefficientsa,b satisfy an important symmetry relation: Py=Pyat Prb+ Pl 62)

al,blx:\az,bz for N,—=nNg.
P,=P,{a®a},+ P,{bob},+ P, {awb},+ P;{axwc},
This relation implies the following changes in the ranks and

arguments of the spherical harmonics in E(9): +Pab®c}y, (63)
[,,0,=13,03, 0—¢,, and $3—0, where ¢, is the angle
between the planas,,n; andny,n,. wherea,b,c are the Cartesian unit vectors along #heX, Y

Finally, we note that the results in Eq§7) and(58) can  axes of the frameK, which may be connected, evidently,
be generalized easily for the case of an arbitrBiypolar ~ With symmetry properties of an excitation process used for
harmonic of rank 2 depending oN vectorsn;. For this the preparation of the target polarization. The parameters
purpose the parametar, should be changed o, ==l ,, Bm are also combinations of polarization tensor components
where thel, are the ranks of the spherical harmonics whichP,,, in the frameK. For brevity, we omit the component
enter the multipolar harmonic, and insteadYgf, one should index m in the tensor notatiof,,,. The (2 +1) different
substitute the components of the multipolar harmonic in arangular combinations in Eq&62) and(63) are equal in num-
appropriate fixed coordinate frame. For the cAse3 any ber to the number of independent parametgyrs. These
three vectors from the set withi=1,... N can be used as parameters have the form
the vectors, , 3in Eq. (57); the coefficients; andb; in Eq. . . .

(57) will then depend on the relative angles of all vectors in = P,;=P,;, P;;=—v2 RePy;, Pp=—v2Im Py,

the problem. Thus the tensor structure given in &) is
independent of the numbé\. 3 _ o o
Pz(): \/% P20+ Re P22, Pz]_: -2 Re le,
B. Invariant form of polarization momenta

Equations(41) and(42) for the FRM and the transforma- P..=2 ReP.
. . . 22 22
tion rule in Eq.(53) may be useful even for those cases in
which an invariant expression for some tensor is unknown.
As an example we consider here the irreducible components,
P.m . of the density matrix for some mixed state of a quan-
tum systeni6,7], whose matrix elements are defined by the

Ph=—21m Py, Ph=21m Py,. (64)

In accordance with Eq60), Eq.(64) may be rewritten as

equation Pro=C1{Ja),  Pri=C1(Jp), P1=C1(Io),
(IMplIM")= 2 (=17 MCJM’J mPrm. (59 7320:02(<J§>—<J§>), 7)22202(<~]§>_<‘]g>)1 (65)
wherep is a density matrix operator. We suppose, for sim- Po1=Cx(Jadp),  P51=C2(Jddc),  Pay=Co(Ipde),

plicity, that the states with the momeni4d+J do not con-
tribute in the statistical mixture. For this case we have where the constants, , are

:(_1)mpr—mi 3
o “=N30+n2i+1)

and the following important relation is valid:

(2r+21)11(23—-r)! _\/ 30
r(2J+r+1)! {{3}rm) (60) 2= N3G+ 1)(20-1)(23+1)(23+3)°

Prm
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It is seen from these identities that the parame®ges Pi1, where

P, are proportional to the projections of the “mean angular

momentum”{J) on the Cartesian basis vectors of the above-

discussed coordinate framte. There furthermore exists an

explicit connection between the parametgrg and the sym- Ti= 2 (EldiM¢l(e-d)[EIM;)

metry properties of a polarized state. For example, if a po-

larized state has an axial symmetry, then, directing the vector  X(E{J;M¢|(e-d)|E;J;M/)*(JiM{|p'|IiM/). (66)

a (or b) along the symmetry axis, we obtain the result that

only tensors containing coefficieri&, (or P,,) contribute to

P.m. For the case of right-left symmetric polarized statesHeree andd are the photon polarization vector and dipole

(i.e., with respect to the exchange=—c), all the tensors momentum operator, respectively, apidis the density ma-

with coefficientsP’ vanish. trix operator. The use of standard angular momentum algebra
leads to the following expression far; :

MM/ Mg

C. Emission of photons by polarized atoms

As an application of Eqs(61)—(63) to solving concrete Th=(—1)%"I(E (| d|E; 3|2
problems we consider the emission of photons by polarized

atoms. Using the electric-dipole approximation in length p .

gauge, an angular distributiatwi./d() of the photons emit- Xp:O,l,Z JoJ (Pp-{exe™}p), (67)
ted by a polarized atom in the directiéncan be written as

(8]

5 where the tensor®,,, are defined by Eq(59). The scalar
dWﬁe: w T products in the rhs of this equation may be easily calculated
dQ  2xhcd according to Egs(61)—(64). Finally, we obtain

dWie w® 343 1 311 1 1)
= _(—1)JitJs IN2 (=) — — .

1 1 2
+[J J o J ][P20(3|e-a|2—1)+7>22(3|e.b|2_1)+37;21 Re(e-a)(e* -b) +3P); Re(e-a)(e* -c)
i i f

+37P,, Re(e-b)(e*-0)]|. (68)

This expression has a high symmetry and an invariant struavhen the terms witha, ¢ vanish. We do not analyze here
ture because it contains only the scalar products of vectorether general features of the angular distributtbmg./d<}
The 8 parameter® describe the polarization properties of an since they are evident from E(8) and have been discussed
initial atomic state with an arbitrary total angular momentumpreviously[7,9].

J. The identity(51) is sufficient for detailed analysis of pho-

ton polarization effects in terms of linear and circular polar- VIl. CONCLUDING REMARKS

ization degrees. Note that the vector of “atomic orientation”
P, in Eq. (68) describes circular dichroism effects in the
angular distribution, i.e., the difference between the intensi

ties of emitted radiation with opposite helicities detected in o
A present work. Our other results and the applications we have

the same directiok. o _ presented have been summarized in Sec. |. Here we discuss

All particular experimental situations connected with the problem of the choice of the rotation parameters corre-
atomic polarization also can be easily analyzed using Edssponding to our invariant expressions for the FRM. Unlike
(68) and (65). For example, if an atomic ensemble has beenhe case of the usul or U functions, for which the rotation
excited due to the absorption of polarized photons, then it igs described by three real parametéesy., the Euler angles
convenient to choose the directions of the vec@m@ndb  or the polar angles of vecter and the rotation angle), we
along respectively the main axis of the polarization ellipsedescribe the rotation by the directions of two unit vectors
for the incident photons and along the direction of the inci-n,n’. The bipolar harmonics in Eq&47) and(48) are depen-
dent photon beam. For linearly polarized incident photonsdent on the spherical angles of the vectoys’ given in the
the terms in Eq.{68) containing the vector®, ¢ must be laboratory frameK’. In the space-fixed framk these vec-
omitted, unlike the case of pure circularly polarized photonstors have the fornm=(0,0), n’ =(6,0), wheref is the angle

The invariant representations for the FREQgs.(47) and
(48)] together with the new transformation rule for the irre-
ducible tensorial setfEq. (53)] are the key results of the
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betweenn,n’. [We use the notatioa=(#6,,¢,) for the an- three-body Coulomb wave function. In this work tensors
gular coordinates of a unit vecta;, where 6, is the angle kg describing the dynamics of the process have been cal-
betweera and theZ axis, and whereb, is the angle between culated numerically in a special coordinate frame. The re-
the projection ofa on the planex-Y and theX axis of the  sults in this paper allow one to write, o immediately in the
coordinate framé.The polar angles of vectons,n’ in the  following form:
frameK’ can be connected with the standard Euler rotation

anglesa,B,y as follows:

K
EKQ:NE_:O Ckndko(N1:N2), (70
0= B,
which is valid even for the case of a nondiagonal density
Pp=T—, (69) matrix for an initial atomic state. In Eq70) the Cxy are
scalar coefficients, dependent on both the dynamics of the
process and on the angles between the vectors of the prob-
. lem. The vectors, , can be chosen as the unit noncollinear
coté sin B vectors along the directions of electron momenta.
sina An analogous situation appears also in Réfl], where

the angular distributions in triple-electron photoionization

As we see from these equalities, only three parameters out ¢fye peen investigated using & 6vave function, which is a
five (four spherical anglesone “free parameter's) are in-  yaneralization of the @ wave function used for double

dependent. _ hotoionization. In this case the results of Sec. V allow one
The use of invariant representations of the FRM can bg, rite the cross section in an invariant form, similar to Eq.

efficient not only in problems involving multipole expan- (69).
sions, where they enable one to extract the polarization and6
spin dependence of the cross sections in an invariant vector
form, but also in cases when standard techniques of angular
momentum and tensor algekeg., the Wigner-Eckart theo- N.L.M. gratefully acknowledges the hospitality of the
rem) are not applicable. For example, such a situation apUniversity of Nebraska—Lincoln where a part of this work
pears in the recent Ref10], in which the orientation effects was carried out during his visit to the Department of Physics
in an electron-impact ionization of polarized atoms has beeand Astronomy. This research was supported in part by the
investigated using the so-calledC3wave function, which Russian Fund for Basic Research and by NSF under Grant
has an asymptotic form that coincides with that of the exacNo. PHY-9722110.

€0s 6, =co0s # cos B+sin 6 sin B cos«,

cot( ¢, +y)=—cot @ cos B+
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