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Elastic wave propagation and scattering in solids
with uniaxially aligned cracks

Liyong Yang and Joseph A. Turner
Department of Engineering Mechanics, University of Nebraska-Lincoln, W317.4 Nebraska Hall, Lincoln,
Nebraska 68588-0526

~Received 11 November 2002; revised 18 May 2003; accepted 19 May 2003!

In this article, elastic wave propagation and scattering in a solid medium permeated by uniaxially
aligned penny-shaped microcracks are studied. The crack alignment refers to the case in which the
unit normals of all cracks are randomly oriented within a plane of isotropy. The analysis is restricted
to the limit of the noninteraction approximation among individual cracks. Explicit expressions for
attenuations and wave speeds of the shear horizontal, quasilongitudinal, and quasishear vertical
waves are obtained using stochastic wave theory in a generalized dyadic approach. The ensemble
average elastic wave response is governed by the Dyson equation, which is solved in terms of the
anisotropic elastic Green’s dyadic. The analysis of expressions is limited to frequencies below the
geometric optics limit. The resulting attenuations are investigated in terms of the directional,
frequency, and damage dependence. In particular, the attenuations are simplified considerably within
the low frequency Rayleigh regime. Finally, numerical results are presented and discussed in terms
of the relevant dependent parameters. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1592158#

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg@DEC#

I. INTRODUCTION

The investigation of wave propagation and scattering of
elastic waves in damaged solids is of considerable interest to
nondestructive evaluation and materials characterization,
particularly for ultrasonic techniques. Analytical and experi-
mental examinations of attenuation and wave speeds of ul-
trasonic waves in cracked solids provide a direct approach
for the detection of material damage. Material responses,
which are typically evaluated ultrasonically by the decrease
in wave velocity or increase in wave attenuation, vary with
microcracking changes. Both of these phenomena are caused
by the stiffness degradation of the material by the cracks.
Studies of elastic wave attenuation in cracked solid media
have been studied for at least 30 years, since the work of
Mal,1,2 Piau,3 Chatterjeeet al.,4 Hudson,5 Martin,6 Krenk,7

and Martin and Wickham.8 In addition, wave propagation in
cracked solids has been reviewed by Zhang and Achenbach,9

Zhang and Gross,10,11Smyshlyaev and Willis,12 and Eriksson
and Datta.13 Previous research has primarily been focused on
specific wave types and wave directions for either a single
crack or distributed cracks, but a more comprehensive, gen-
eral study has never been undertaken. In our previous
article,14 explicit general expressions of wave attenuations
and wave speeds in a medium with damage from randomly
distributed penny-shaped microcracks were derived. Under
the assumption of statistical isotropy used in that work, the
attenuation is independent of propagation direction. How-
ever, in the case of structural materials such as concrete,
polycrystalline metals, fiber-reinforced composites, and oth-
ers, those microcracks induced by directional loading or tem-
perature are typically parallel to some direction. In this case,
the effective media may acquire an anisotropy essentially
due to the presence of such uniaxially aligned cracks. Thus,
the scattering attenuation is a function of propagation direc-

tion. The analysis of this scattering attenuation is, therefore,
more complicated than that of the isotropic case.

In this article, the framework used previously14 is ex-
tended to study the attenuation of elastic waves in solids with
uniaxially aligned cracks that are statistically homogeneous.
Again, the microcracks are assumed to be noninteracting,
penny-shaped cracks. Here, the unit normals of all cracks are
assumed to be coplanar, but random within this plane of
isotropy. Thus, the uniaxial symmetry direction is perpen-
dicular to this plane. This case is different from the case of
perfect crack alignment by all cracks, as discussed by
Hudson,5 for example. The effective elastic moduli of the
medium that contains many penny-shaped cracks are re-
viewed by Nemat-Nasser,15 Kachanov,16 Krajcinovic,17 and
others. General wave propagation and scattering problems
for anisotropic media are discussed by Stanke and Kino,18

Ahmed and Thompson,19 and Hirsekorn.20,21 All those dis-
cussions involve a scattering integral with an isotropic
Green’s function. The use of an anisotropic Green’s function
for modeling the scattering in anisotropic media was inves-
tigated by Turner.22 Here, this approach is employed as well
to formulate the uniaxially aligned crack problem. In this
way, the mean response is written in terms of the Dyson
equation as discussed by Frisch23 and Weaver.24 The Dyson
equation is solved in the spatial Fourier transform domain
within the limits of the first-order smoothing approximation
~FOSA!, or Keller25 approximation. A further approximation
is also made which restricts the results to frequencies below
the high-frequency geometric optics limit. The resulting at-
tenuations are shown to be directional dependent, frequency
dependent, and damage dependent for the shear horizontal,
quasilongitudinal, and quasishear vertical waves. In particu-
lar, the angular dependence of the attenuations in the Ray-
leigh limit is obtained explicitly. Outside the Rayleigh limit,
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simple expressions of the attenuations of the shear horizon-
tal, quasilongitudinal, and quasishear vertical waves are de-
rived in terms of integrations on the unit circle. Quantitative
and qualitative comparisons with previous results by Zhang
and Gross,10,11Zhang and Achenbach,9 Eriksson and Datta,13

Ahmed and Thompson,19 and Turner22 show that the more
general, direct expressions derived here are reliable and com-
prehensive for practical applications of detecting damage
from microcracks.

This article is organized in the following manner. The
effective elastic properties of a solid containing uniaxially
aligned cracks are discussed in Sec. II. The wave propaga-
tion and scattering model described by an anisotropic
Green’s function is included for completeness in Sec. III.
The attenuations of each wave type through the uniaxially
aligned cracks are given in a direct form subsequently in Sec.
IV. In Sec. V, numerical results and discussion are presented.
Finally, conclusions are presented in Sec. VI.

II. EFFECTIVE PROPERTIES IN SOLIDS WITH
UNIAXIALLY ALIGNED CRACKS

The effective stiffness attributed to a single penny-
shaped crack, which is located within an infinite, homoge-
neous, isotropic and elastic continuum is considered first.
Estimating the effective elastic properties of a statistically
homogeneous elastic solid which contains a large number of
microcracks was investigated by Nemat-Nasser and Hori,15

Kachanov,16 and others. Using similar methods, the effective
stiffness attributable to a single, penny-shaped crack of ra-
diusa in a unit volume, called the crack basis Green’s func-
tion, is given in the form14

C(s)52m di I
i , ~1!

where the repeated indexi denotes the summation conven-
tion over the range ofi 51 – 6. It should be noted that this
summation convention and range are used throughout this
article. The coefficientsdi are given by

d150, d25
16

3

n2~12n!

~122n!2 a3, d35d45
16

3

n~12n!

122n
a3,

~2!

d55
32

3

12n

22n
a3, d652

16

3

n~12n!

22n
a3.

The stiffness of a single crack is dependent on the unit nor-
mal m̂, which defines the crack orientation. This orientation
is implicit in the tensorsI . These basis tensors are given in
terms of unit vectorm̂ and Kronecker delta function as
follows.26

I i jmn
1 5 1

2 ~d imd jn1d ind jm!, I i jmn
2 5d i j dmn ,

I i jmn
3 5d i j m̂mm̂n , I i jmn

4 5m̂im̂jdmn ,
~3!

I i jmn
6 5m̂im̂j m̂mm̂n ,

I i jmn
5 5 1

4 ~m̂im̂md jn1m̂im̂nd jm1m̂jm̂md in1m̂jm̂nd im!.

The ensemble average properties contributed by all
cracks are considered next. The cracks are assumed to be
embedded in an infinitely extended, homogeneous, isotropic
and elastic three-dimensional continuum. The penny-shaped

crack is characterized by its radiusa and two Euler anglesu
and w, which define the direction of the unit normalm̂ as
shown in Fig. 1. It is also assumed that the microcracks do
not interact with each other. Thus, the effective stiffness may
be determined by integration over a continuous distribution
of crack sizes and orientations. In general, the specific dis-
tribution of the crack radii and orientations is described by
the probability density functionW(a,u,w). In some cases,
the microcrack radii and orientations are often correlated.
Here, it is assumed that the microcrack radii and orientations
are not correlated. As such, the density function may be
separated into independent radius and orientation functions
of the form

W~a,u,w!5A~a!z~u,w!. ~4!

It is also assumed that all microcracks are parallel to the
x3 axis (n̂ direction! with their unit normals~lying in the
x12x2 plane!, having a random distribution, as shown in
Fig. 2. In this situation, due to the symmetry about thex1

2x2 plane, the average elastic properties are those of trans-
verse isotropy, with thex3 axis as the uniaxial symmetry
axis. Here, the distribution of the microcracks is supposed to
be dilute, and the distribution of the crack sizes is also as-
sumed to be independent of their orientations. The crack ori-
entation distribution function in Eq.~4!, which implies that
the orientation functionz~u,w! is independent of the angleu,
is then given by

z~u,w!52dS w2
p

2 D . ~5!

Therefore, the effective continuum material properties
caused by all microcracks per unit volume are weighted by

FIG. 1. Geometry of a penny-shaped crack.

FIG. 2. The distribution of microcracks parallel to thex3-axis.
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the density function, Eq.~4!, over the basis Green’s function,
Eq. ~1!, and are then given by

Ci jmn* 5
«

2p E
0

2pE
2p/2

p/2

dS w2
p

2 DCi jmn
(s) ~u,w!sinw du dw.

~6!

In Eq. ~6!, the nondimensional microcrack density per unit
volume is defined by

«5N^a3&5E
a2

a1

A~a!a3 da, ~7!

whereN is number of cracks per unit volume and the angular
brackets denote the ensemble average. This damage density
definition was introduced first by Walsh27 for the case of a
statistically isotropic distribution of penny-shaped microc-
racks. A more general form of the damage density is dis-
cussed by Budiansky.28 The basis functionCi jmn

(s) is expressed
in Eq. ~1!. By integrating over the Euler angles in Eq.~6!, the
effective stiffness due to the distribution of uniaxially
aligned penny-shaped microcracks is derived as

Ci jmn* 5Dai I
i , ~8!

where the coefficientsD andai are

D52«m
16

3

12n

22n
, a1512

n

4
,

a25
n~15220n14n2!

8~122n!2 , a35a45
n~2712n!

8~122n!
, ~9!

a5512
n

2
, a652

3n

8
.

In the tensorsI used in Eq.~8!, the orientation is that of the
symmetry directionn̂, rather than the directionm̂. It is
hoped that this notation is not confusing to the reader. If the
original undamaged state of the material is homogeneous and
isotropic, the stiffness tensor is given in the standard form
C05lI212mI1.

The ensemble effective stiffness is now redefined such
that the average fluctuations are zero as done previously.14

Such a procedure, while not necessary, is convenient for the
calculation of material covariance and attenuation. The
moduli are assumed to be spatially varying and of the form

C̄~x!5C̄01dC̄~x!, ~10!

where

C̄05C02C* . ~11!

Thus, the average moduli have the form

C̄05^C̄~x!&5l'I21m'I11G1~ I31I4!1G2I51G3I6,
~12!

where the effective elastic constants are

l'5l2
Dn~15220n14n2!

8~122n!2 , m'5m2
D~42n!

8
,

~13!

G15
Dn~722n!

8~122n!
, G25DS 211

n

2D , G35
3Dn

8
.

The moduli fluctuations, which have zero mean,^dC̄&50,
are given by

dC̄5C* 2C(s)H~x!, ~14!

and the functionH(x) is defined as

H~x!5H 1 if xPS

0 otherwise
, ~15!

whereS denotes the space of all cracks.
In the next section, the fundamental elastodynamics of

elastic wave propagation and scattering are introduced in
terms of appropriate Green’s dyadic. The formalism is devel-
oped for a transversely isotropic material. The mean re-
sponse, which is expressed in terms of the Dyson equation, is
discussed for the case of a transversely isotropic medium.
The elastic modulus tensor is specified for this case and ex-
pressions of the attenuation for each wave type are given.

III. ELASTIC WAVE PROPAGATION AND SCATTERING
MODEL

The equation of motion for the elastodynamic response
of an infinite, linear-elastic material to deformation is given
in terms of the Green’s dyadic by

$2d jmr~x!] t
21]xiC̄i jmn~x!]xn%Gma~x,x8;t !

5d j ad3~x2x8!d~ t !, ~16!

whered3(x2x8) is the three-dimensional spatial delta func-
tion. The second order Green’s dyadic,Gma(x,x8;t), defines
the response at locationx in the mth direction to a unit im-
pulse at locationx8 in the ath direction. The moduli are
considered to vary spatially and density is assumed uniform
throughout with units chosen such that density is unity. The
moduli C̄ are assumed to be spatially heterogeneous and
have the form in Eq.~10!. The covariance of the moduli is
characterized by an eighth-rank tensor

^dCi jmn~x!dCabgd~y!&5Ji jmn
abgdW~x2y!. ~17!

The spatial and tensorial parts of the above covariance,J
and W, respectively, are assumed independent. The spatial
correlation functionW is also assumed a function of the dif-
ference between two vectors,x2y. This assumption implies
that the medium is statistically homogeneous. However, the
additional assumption of statistical isotropy as considered
previously,14 such thatW is a function ofux2yu, is not made
here.

The mean response,^G&, is governed by the Dyson
equation which is given by23,24

^Gia~x,x8!&5Gia
0 ~x,x8!1E E Gib

0 ~x,y!Mb j~y,z!

3^Gj a~z,x8!&d3y d3z. ~18!

In Eq. ~18!, the quantityG0 is the bare Green’s dyadic. It
defines the response of the medium without heterogeneities,
namely, the solution of Eq.~16! with dC̄i jmn(x)50. The sec-
ond order tensorM is the mass or self-energy operator. The
Dyson equation, Eq.~18!, is easily solved in Fourier trans-

593J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003 L. Yang and A. Turner: Elastic wave propagation and scattering



form space under the assumption of statistical homogeneity.
The assumption of statistical homogeneity ensures thatG0,
M and ^G& are functions of a single wave vector in Fourier
space. The Dyson equation is then transformed and solved to
give the result for̂ G~p!& of the form

^G~p!&5@G0~p!212M̃ ~p!#21. ~19!

Here, M̃ is the spatial transform of the self-energy. An ap-
proximation of the self-energyM can be written as an ex-
pansion in powers of moduli fluctuations. To first order,23,25

M is expressed as24

Mb j~y,z!

' K ]

]ya
dCabgd~y!

]

]yd
Ggm

0 ~y,z!
]

]zi
dCi jmn~z!

]

]zn
L .

~20!

Such an approximation is assumed valid if the fluctuations,
d C, are not too large. The components ofM̃ , which are
employed to calculate the phase velocity and attenuation of
the wave modes, are discussed next. Further details of the
scattering theory can be reviewed by the reader in the articles
of Karal and Keller,25 Frisch,23 Stanke and Kino,18 Weaver,24

and Turner.22

The medium of uniaxially aligned cracks is considered
to be transversely isotropic, a medium with a single symme-
try axis defined here by the unit vectorn̂. The fourth-rank
elastic moduli tensor,C̄, in a transversely isotropic medium,
given in Eq.~12!, is written in terms ofn̂ by

C̄i jmn5l'd i j dmn1m'~d imd jn1d ind jm!1G1~d i j n̂mn̂n

1dmnn̂i n̂ j !1G2~d imn̂j n̂n1d inn̂ j n̂m1d jmn̂i n̂n

1d jnn̂i n̂m!1G3n̂i n̂ j n̂mn̂n . ~21!

The above elastic constants are defined in Eqs.~13!.
For propagation in thep̂ direction, the shear horizontal

wave (SH) in a transversely isotropic medium is polarized in
direction û1 , that is perpendicular to the plane defined byp̂
and n̂. The angle between thep̂ and n̂ is defined asQ. The
quasi-P and quasi-SV waves are polarized in directions de-
fined by û2 and û3 , respectively, both of which lie in thep̂
2n̂ plane. It is noted thatû1 , û2, and û3 form an orthonor-
mal basis such thatû35û13û2 . The vectorû2 is directed at
an anglec from the propagation directionp̂ ~see Fig. 3!. G0

may be diagonalized by using the directionsû2 andû3 , such
that I2û1û15û2û21û3û3 .

Substituting the elastic stiffness tensorC̄ into the trans-
form form of the equation of motion, Eq.~16!, gives in direct
notation22

$û1û1@v22p2~m'1G2 cos2 Q!#1û2û2@v2

2p2~Q1P cos2 c1R cos2~Q1c!!] 1û3û3@v2

2p2~Q1P sin2 c1R sin2~Q1c!!] %•G0~p!5I . ~22!

The quantitiesQ, P, andR in Eq. ~22! are defined by

Q5m'1G2~ p̂"n̂!22~G11G2!~12~ p̂"n̂!2!,

P5l'1m'1G11G2 , ~23!

R5G112G21G3~ p̂"n̂!2.

It should also be kept in mind that the vectorsû2 and û3 are
functions of the direction of propagation,p̂, relative to the
uniaxial symmetry direction, n̂. This dependence,c
5c(Q) will remain implicit throughout.

The bare Green’s dyadic is then presented in the form

G0~p!5gSH
0 ~p!û1û11gqP

0 ~p!û2û21gqSV
0 ~p!û3û3 , ~24!

where the dispersion relations for the bare response of the
SH, qP, andqSVwaves are given by

gSH
0 ~p!5@v22p2~m'1G2 cos2 Q!#21

5@v22p2cSH
2 #21,

gqP
0 ~p!5@v22p2~Q1P cos2 c1R cos2~Q1c!!#21

5@v22p2cqP
2 #21, ~25!

gqSV
0 ~p!5@v22p2~Q1P sin2 c1R sin2~Q1c!!#21

5@v22p2cqSV
2 #21,

with Q, P, andR defined in Eqs.~23!.
The mean response,^G~p!&, is governed by the Dyson

equation, Eq.~19!. The solution of^G~p!& is expressed in
terms ofG0(p) andM̃ (p). Similar toG0, the mean response

^G(p)& and self-energyM̃ (p) may be written in terms of the
orthonormal basis defined byû1 , û2 , andû3 in the form

^G~p!&5gSH~p!û1û11gqP~p!û2û21gqSV~p!û3û3 ,
~26!

M̃ ~p!5mSH~p!û1û11mqP~p!û2û21mqSV~p!û3û3 ,

where it is again noted that the propagation directionp̂ is
implicit within the directionsû1 , û2 , andû3 .

The dispersion relations for the mean response are then
given by the solution of the Dyson equation, Eq.~19!, as

gb~p!5@gb
0~p!212mb~p!#215@v22p2cb

22mb~p!#21,
~27!

for each wave type,b. These are the expressions for the
dispersion relation of the mean response, which defines the
phase velocity and attenuation of each wave type from solu-
tion of

v22p2cb
22mb~p!50, ~28!

for the wave vectorp. The attenuation of each wave type is
given by the imaginary part ofp. Explicit expressions of the
attenuation can be determined using an approximation valid
below the high-frequency geometric optics limit (mb(p)
'mb(v/cbp̂)).18,24 This approximation allows the imagi-
nary part ofp to be calculated directly from Eq.~28!. Thus,
the attenuation of each wave type is given as

ab~ p̂!52
1

2vcb~ p̂!
Im mbS v

cb
p̂D . ~29!

The attenuations for the three wave types, which are
each defined in Eq.~29!, are finally given in the general
form22
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ab~ p̂!5
1

cb
3~ p̂! H p

4 E d2ŝ
v4

cSH
5 ~ ŝ!

WS v

cb~ p̂!
p̂2

v

cSH~ ŝ!
ŝD

3J̃
••••ûKp̂ŝv̂1

••••ûKp̂ŝv̂11
p

4 E d2ŝ
v4

cqP
5 ~ ŝ!

3WS v

cb~ p̂!
p̂2

v

cqP~ ŝ!
ŝD

3J̃
••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂21
p

4 E d2ŝ
v4

cqSV
5 ~ ŝ!

3WS v

cb~ p̂!
p̂2

v

cqSV~ ŝ!
ŝD J̃

••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3J , ~30!

whereK is defined as the polarization for the wave typeb ~1,
2, or 3 for wave typesSH, qP, andqSV, respectively!. In
Eq. ~30!, it can be seen that the integrals are over the unit
sphere, which is defined by unit vectorŝ. The directionp̂
defines the propagation direction,ŝ is the scattered direction,
and û and v̂ are defined as the polarization directions. The
dependence of the vectorsû on p̂ and of v̂ on ŝ is implicit.
The inner products on the covariance of the moduli fluctua-
tions are given in terms of these four unit vectors. The argu-
ment of the correlation is the difference between the incom-
ing and outgoing propagation directions.

It is clear that the above expressions of the attenuation
for uniaxially aligned crack distributions are more compli-
cated than those for a distribution of randomly oriented
cracks as discussed previously.14 They can be simplified to
the forms given there in the case of statistical isotropy. This
framework is the same as that given by Turner.22 In the next
section, the covariance and attenuation are specified.

IV. COVARIANCE AND ATTENUATION

The relevant inner products on the covariance of the
effective moduli fluctuations are necessary for calculating
the attenuations. The tensorial part of the covariance is rep-
resented by an eighth-rank tensor which is given explicitly
by

J~q!
••••ûp̂ŝv̂
••••ûp̂ŝv̂5J~q!abgd

i jmn ûbûmp̂ap̂nŝi ŝdv̂gv̂ j . ~31!

For the case of uniaxially aligned cracks, the covariance is
dependent on the crack orientationsm̂. To calculate the co-
variance, the following identities are needed

^m̂im̂j&5 1
2 D i j ,

^m̂im̂j m̂mm̂n&5 1
8 ~D i j Dmn1D imD jn1D inD jm!,

~32!
^m̂im̂j m̂mm̂nm̂am̂b&

5 1
48 @D i j DmnDab1all permutations

215 terms in all#,

^m̂im̂j m̂mm̂nm̂am̂bm̂gm̂d&

5 1
384 @D i j DmnDabDgd1all permutations

2105 terms in all#,

where the brackets,̂ &, denote an ensemble average, and
DMN5(dMN2n̂Mn̂N). The unit vectorn̂ is the uniaxial sym-
metry axis. All averages of odd numbers ofm̂’s are zero.

In addition to these tensorial averages, the average of the
spatial part of the covariance must be determined. As dis-
cussed previously,14 the necessary relation is given by
^H(x)H(y)&5« Pr(r u0), where Pr(r u0)5(12«)W(r )1«,
is defined as the conditional probability.29 Due to the as-
sumption of small damage density, the higher order terms
may be neglected. Therefore,̂ dCi jmn(x)dCabgd(y)&
5«W(r )Ji jmn

abgd . Averaging over all crack orientations, the
covariance is thus defined by

Ji jmn
abgd5

1

2p E
0

2pE
2p/2

p/2

~C̄i jmn
(s) C̄abgd

(s) !dS w2
p

2 D sinw dw du,

~33!

where the definition ofC̄(s) is given by Eq.~60! in Ref. 14.
Substituting the identities of Eqs.~32! into Eq.~33!, the gen-
erally compact form ofJ is constructed in terms of Kro-
necker deltas and pairs ofn̂’s. The general compact form of
J is not presented here due to brevity. The form of the at-
tenuations given in Eqs.~30! is dependent on various inner
products on the covariance tensor. The vectorsp̂ and ŝ, re-
spectively, represent the incoming and outgoing propagation
directions. The vectorsû and v̂ are vectors defining the po-
larization directions of the particular waves. These vectors
are perpendicular to the plane defined byŝ or p̂ and n̂ ~for
SH waves! or they lie in this plane~for qP andqSV).

Now the necessary inner products involved in determin-
ing the attenuations are calculated. The attenuations will vary
angularly only within the plane defined by the propagation
direction p̂ and the crack alignment directionn̂. Therefore,
without loss of generality, a reference plane is defined as the
p̂-n̂ plane ~see Fig. 3!. The following vectors are then de-
fined with respect to a generalx1x2x3 coordinate system as

n̂5 x̂3 , p̂5 x̂2 sinQ1 x̂3 cosQ,
~34!

ŝ5 x̂1 sinQ8 cosf81 x̂2 sinQ8 sinf81 x̂3 cosQ8.

The polarization vectors are then defined with respect to
these angles andc as discussed by Turner.22 The anglesg
andg8 used hereafter are defined by

g5Q1c~Q!, g85Q81c~Q8!. ~35!

These angles,g and g8, define the orientation angle of the
qP wave with respect to then̂ direction, for thep̂ and ŝ
directions, respectively.

Inserting these definitions of the relevant unit vectors
into Eq. ~33!, the required inner products are reduced to a
simple form. The inner products are:

for aSH

J
••••û1p̂ŝv̂1

••••û1p̂ŝv̂15sin2 Q sin2 Q8@2h1 cos2 f8 sin2 f81h2#,

J
••••û1p̂ŝv̂2

••••û1p̂ŝv̂25sin2 Q sin2 Q8 sin2 g8@h1 cos2 f8 sin2 f81h3#,

~36!

J
••••û1p̂ŝv̂3

••••û1p̂ŝv̂35sin2 Q sin2 Q8 cos2 g8@h1 cos2 f8sin2 f81h3#,
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for aqP

J
••••û2p̂ŝv̂1

••••û2p̂ŝv̂15sin2 Q sin2 Q8 sin2 g@h1 cos2 f8 sin2 f81h3#,

J
••••û2p̂ŝv̂2

••••û2p̂ŝv̂25sin2 Q sin2 Q8 sin2 g

3sin2 g8@h1 sin4 f81h4 sin2 f81h5#, ~37!

J
••••û2p̂ŝv̂3

••••û2p̂ŝv̂35sin2 Q sin2 Q8 sin2 g

3cos2 g8@h1 sin4 f81h4 sin2 f81h5#,

and foraqSV

J
••••û3p̂ŝv̂1

••••û3p̂ŝv̂15sin2 Q sin2 Q8 cos2 g@h1 cos2 f8 sin2 f81h3#,

J
••••û3p̂ŝv̂2

••••û3p̂ŝv̂25sin2 Q sin2 Q8 cos2 g

3sin2 g8@h1 sin4 f81h4 sin2 f81h5#, ~38!

J
••••û3p̂ŝv̂3

••••û3p̂ŝv̂35sin2 Q sin2 Q8 cos2 g

3cos2 g8@h1 sin4 f81h4 sin2 f81h5#,

where g and g8 are defined in Eq.~35!. The coefficients
h i ( i 51, . . . ,5) andTj ( j 51, . . .,7), aregiven by

h154T3116T614T7 , h25T314T614T7 ,

h35T414T514T616T7 ,
~39!

h454T214T4132T5116T6116T7 ,

h55T114T414T7 ,

with

T152
n2~80n42416n31472n21184n2235!M2

128~122n!2 ,

T252
n~12n3228n21127n2184!M2

384
,

T75
n2~122n!2M2

384
,

T35
~n24!~n212!~122n!2M2

384
, ~40!

T45
n2~10n223!~2n27!M2

384
,

T55
n~122n!~6n2231n144!M2

384
,

T65
~322n!~122n!2M2

96
,

where the constantM is defined asM5m(32/3)@12n/(2
2n)(122n)# . The expressions given by Eqs.~36!–~38! are
also directly related to the diffuse energy propagation, in-
cluding backscatter.30–32

If the tensorial and spatial components of covariance are
assumed to be independent, as discussed in Eq.~17!, the
spatial correlation functionW is uncorrelated with the tenso-
rial part. Here, the correlation functionW is assumed to have
an exponential formW(r )5e2r /L, where L is the spatial
correlation length,L52^a&. The limits of such an assump-
tion have been reviewed by Stanke,33 and Markov and
Willis.29

Substituting the above inner products into Eqs.~30! and
integrating over the azimuthal anglef8, the attenuations fi-
nally reduce to dimensionless forms

aSH~Q!L5xSH
4 «

2r2c̄SH
4 r SH

3 ~Q!sin2 QF I SH2SH

1I SH2qPS c̄SH

c̄qP
D 5

1I SH2qSVS c̄SH

c̄qSV
D 5G , ~41!

aqP~Q!L5xqP
4 «

2r2c̄qP
4 r qP

3 ~Q!sin2 Q sin2 g

3F I qP2SHS c̄qP

c̄SH
D 5

1I qP2qP1I qP2qSVS c̄qP

c̄qSV
D 5G ,
~42!

FIG. 3. Geometry for the propagation directionp̂, the
scattered directionŝ,and the respective polarization di-
rectionsû and v̂ in the local coordinate system.
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aqSV~Q!L5xqSV
4 «

2r2c̄qSV
4 r qSV

3 ~Q!sin2 Q cos2 g

3F I qSV2SHS c̄qSV

c̄SH
D 5

1I qSV2qPS c̄qSV

c̄qP
D 5

1I qSV2qSVG , ~43!

with the density,r, now included in the general form. The
terms denoted byI b2g within the square brackets represent
integrals defined by

I SH2SH5E
0

pFh1~6XSH2SH
2 2YSH2SH

2 !

2YSH2SH
2

1
h1~2XSH2SHYSH2SH

2 23XSH2SH
2 !

YSH2SH
4 ~XSH2SH

2 2YSH2SH
2 !1/2

3
h2XSH2SH

~XSH2SH
2 2YSH2SH

2 !3/2G r SH
5 ~Q8!sin3 Q8 dQ8,

I SH2a5E
0

pFh1~YSH2a
2 26XSH2a

2 !

2YSH2a
2

1
h1~3XSH2a

2 22XSH2aYSH2a
2 !

YSH2a
4 ~XSH2a

2 2YSH2a
2 !1/2

3
h3XSH2a

~XSH2a
2 2YSH2a

2 !3/2G r a
5~Q8!Pa sin3 Q8 dQ8,

~44!

and

I a2SH5E
0

pFh1~Ya2SH
2 26Xa2SH

2 !

2Ya2SH
2

1
h1~3Xa2SH

2 22Xa2SHYa2SH
2 !

Ya2SH
4 ~Xa2SH

2 2Ya2SH
2 !1/2

3
h2Xa2SH

~Xa2SH
2 2Ya2SH

2 !3/2G r SH
5 ~Q8!sin3 Q8 dQ8,

I d2a5E
0

pFh1~6Xd2a
2 1Yd2a

2 !12h4Yd2a
2

2Yd2a
4 1

h1~4Xd2a
3 Yd2a

2 23Xd2a
5 !1h4Yd2a

2 ~2Xd2aYd2a
2 2Xd2a

3 !

Yd2a
4 ~Xd2a

2 2Yd2a
2 !3/2

1
h5Xd2aYd2a

4

Yd2a
4 ~Xd2a

2 2Yd2a
2 !3/2G r a

5~Q8!Pa sin3 Q8 dQ8, ~45!

with

Xb2g511xb
2r b

2~Q!1xg
2r g

2~Q8!

22xbxgr b~Q!r g~Q8!cosQ cosQ8,
~46!

Yb2g52xbxgr b~Q!r g~Q8!sinQ sinQ8,

for the different wave types,b andg. The subscriptsd anda
denote either theqP or qSV wave type, and the notation
PqP5sin2(Q81c(Q8)), PqSV5cos2(Q81c(Q8)) is used. In
Eqs. ~41!–~46!, the angular averaged wave speeds are de-
fined as c̄b5 1

2*0
pcb(Q)sinQ dQ, for each wave type,b.

Three nondimensional frequencies are then defined asxb

5vL/ c̄b and the slowness surface for each wave type is
defined by the dimensionless quantityr b(Q)5 c̄b /cb(Q).
Equations~41!–~45! are the primary results of this article.

In the long wavelength Rayleigh limit,xb!1 and these
integrals become independent of incident direction and fre-
quency. Therefore, they reduce to a much simpler form as

I SH2SH5E
0

pS 2
h1

8
1h2D r SH

5 ~Q8!sin3 Q8 dQ8,

~47!

I SH2a5E
0

pS h1

8
1h3D r a

5~Q8!Pa sin3 Q8 dQ8,

and

I a2SH5E
0

pS h1

8
1h3D r SH

5 ~Q8!sin3 Q8 dQ8,

~48!

I d2a5E
0

pS 3h1

8
1

h4

2
1h5D r a

5~Q8!Pa sin3 Q8 dQ8

for all outgoing wave types. In the Rayleigh limit, the angu-
lar dependence of the attenuation is explicitly seen. In the
subsequent section, example numerical results and discus-
sion are presented.

V. EXAMPLE RESULTS

Numerical results are now presented for a specific case,
in which the observed anisotropy of the cracked material is
essentially due to the presence of the uniaxially aligned
cracks. The material properties of the uncracked medium
used are Young’s modulusE52.031011 Pa, Poisson’s ratio
n50.30, and densityr57850 kg/m3. Using the dispersion
relations given in Eqs.~25!, the slowness surfaces calculated
for different damage densities,«50 and 0.1, are shown in
Fig. 4. The normalized effective wave velocity,cb(«)/cb(«
50), of each wave type is presented in Fig. 5. The effective
velocities decrease with increasing damage density« within
the considered frequency range. The reduction of velocity of
SH and qP wave due to the presence of the uniaxially
aligned cracks is a maximum atQ590°, it becomes smaller
asQ decreases, and the reduction reaches a minimum atQ

597J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003 L. Yang and A. Turner: Elastic wave propagation and scattering



50°, though the changes are not substantial. These results
are in basic agreement with those of Zhang and Gross10 and
Eriksson and Datta.13 TheqSVwave velocity is seen to have
a greater reduction atQ545° than atQ50° and 90°.

In the Rayleigh limit, the attenuations simplify consid-
erably since the integrals reduce to those given by Eqs.~47!
and ~48!. The attenuation depends on the fourth power of
frequency in the Rayleigh regime. Thus, the angular Ray-
leigh attenuation results shown in Fig. 6 are given in a gen-
eral form of,aL/(x4«), for each wave type. In Fig. 6, the
SH andqP waves are observed to have their maxima atQ
590°—perpendicular to the crack alignment directionn̂.
The qSV wave is observed to have zero attenuation for
propagation along the symmetry axis (Q50°) and perpen-
dicular to it (Q590°). All wave types have zero attenuation
along the symmetry axis, because the material properties do
not vary in that direction. Those results are qualitatively the
same as previous work.19,21,22 Zhang and Gross10 comment

that their attenuation results are not zero for propagation
along the symmetry axis. They speculate that the attenuation
arises from Poisson effects. However, such a comparison is
difficult to make since the focus of their work was at much
higher frequencies. An additional feature observed for the
qSV wave in Fig. 6, is the asymmetry that develops as«
increases. This peak is aroundQ545°, but shifts slightly as
« increases from 0.01 to 0.05.

Finally, using Eqs.~41!–~43!, attenuation results are
given in terms of the single dimensionless frequencyxSH

5vL/ c̄SH . Outside the Rayleigh regime, the attenuations
were calculated using the complete integrals, Eqs.~44! and
~45!, by numerical integration. In Fig. 7, the normalizedSH
wave attenuation,aSH /kSH , is presented as a function of
propagation direction for three different damage densities at
frequencyxSH51.0. The attenuation for propagation perpen-
dicular to the crack alignment direction is seen to increase
more quickly than for other directions as the damage in-

FIG. 4. Slowness surfaces for damage densities«50,0.1.

FIG. 5. Wave velocity of each wave type normalized to the undamaged
wave speed,cb(«)/cb , versus damage density« at Q50°, 45° and 90°.

FIG. 6. Rayleigh limit as a function of direction for theSH, qP, andqSV
waves for damage density«50.01 (dashed) and«50.05 (solid). The di-
mensionless attenuationaL has been normalized by the fourth power of the
dimensionless frequency and damage density for the respective wave type:
aSHL/(xSH

4 «), aqPL/(xqP
4 «), andaqSVL/(xqSV

4 «).

FIG. 7. Angular dependence of the normalizedSHattenuation,aSH /kSH for
various damage densities« at frequencyxSH51.0.
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creases. The results for the normalizedqP attenuation,
aqP /kqP , are shown in Fig. 8. These results display similar
behavior as theSH attenuation in terms of the change with
angle and damage. Analogous results have been observed in
textured polycrystals by Hirsekorn,21 Ahmed and
Thompson,19 and Turner.22 In Fig. 9, the normalizedqSV
attenuation,aqSV/kqSV, is presented at various damage den-
sities for frequencyxSH51.0. The attenuation for propaga-
tion atQ50° and 90° is zero as discussed above. For propa-
gation atQ545°, the attenuation is the largest. In addition,
it is seen that the peak of maximum attenuation shifts as the
damage increases, although this shift is not significant. The
direction of maximumaqSV is dependent upon both fre-
quency and damage. This shift is thought to be the result of
the induced anisotropy from the cracks as shown in the slow-
ness plots in Fig. 4 as speculated elsewhere.22 However, fur-
ther investigation is necessary to determine the precise rea-
son for this peak shift.

VI. CONCLUSIONS

In this article, elastic wave propagation and scattering
have been examined for media with uniaxially aligned

cracks. These cracks have unit normals that are randomly
oriented within a plane of isotropy. The ensemble average
elastic wave response is governed by the Dyson equation
which is solved within the limits of the first-order smoothing
approximation. The general Green’s dyadic for a transversely
isotropic medium was employed to derive expressions of the
attenuation of the shear horizontal, quasilongitudinal and
quasishear vertical waves. This dyadic approach is conve-
nient to make the results coordinate free. Thus, the final
forms of the attenuations for the three wave types were given
directly by simple compact expressions involving integra-
tions over the unit circle. In particular, the integrals are sim-
plified considerably in the Rayleigh regime. The general at-
tenuations for each wave type are dependent on frequency,
wave velocity, wave direction and damage density. Finally,
numerical results show how the attenuations and the effec-
tive wave velocity of each wave type are affected by those
parameters. The general formulation is also directly related
to other types of elastic wave scattering such as backscatter.
The simple form of the results makes them particularly use-
ful for nondestructive testing and materials characterization
research. However, the neglect of mutual interactions among
the microcracks may have a large influence for the scattering
effects. This analysis will be investigated in subsequent
work.
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