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Elastic wave propagation and scattering in solids
with uniaxially aligned cracks

Liyong Yang and Joseph A. Turner
Department of Engineering Mechanics, University of Nebraska-Lincoln, W317.4 Nebraska Hall, Lincoln,
Nebraska 68588-0526

(Received 11 November 2002; revised 18 May 2003; accepted 19 May 2003

In this article, elastic wave propagation and scattering in a solid medium permeated by uniaxially
aligned penny-shaped microcracks are studied. The crack alignment refers to the case in which the
unit normals of all cracks are randomly oriented within a plane of isotropy. The analysis is restricted
to the limit of the noninteraction approximation among individual cracks. Explicit expressions for
attenuations and wave speeds of the shear horizontal, quasilongitudinal, and quasishear vertical
waves are obtained using stochastic wave theory in a generalized dyadic approach. The ensemble
average elastic wave response is governed by the Dyson equation, which is solved in terms of the
anisotropic elastic Green’s dyadic. The analysis of expressions is limited to frequencies below the
geometric optics limit. The resulting attenuations are investigated in terms of the directional,
frequency, and damage dependence. In particular, the attenuations are simplified considerably within
the low frequency Rayleigh regime. Finally, numerical results are presented and discussed in terms
of the relevant dependent parameters.2@03 Acoustical Society of America.

[DOI: 10.1121/1.1592158

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35]CdC]

I. INTRODUCTION tion. The analysis of this scattering attenuation is, therefore,

. _— . . fnore complicated than that of the isotropic case.
The investigation of wave propagation and scattering o In this article. the framework used previoudhis ex-
elastic waves in damaged solids is of considerable interest to ' P ¥

nondestructive evaluation and materials characterizatior;[,enOIed to study the attenuation of elastic waves in solids with

particularly for ultrasonic techniques. Analytical and eXperi_uniaxially aligned cracks that are statistically homogeneous.

mental examinations of attenuation and wave speeds of ufroain, the microcracks are assumed to be noninteracting,
trasonic waves in cracked solids provide a direct approacﬁenny'Shaped cracks. Here, the unit norm_als_; of a_II cracks are
for the detection of material damage. Material responses?sstm]ed to be coplar.1ar,- but random W'th'r_] th|.s plane of
which are typically evaluated ultrasonically by the decreasdSCtroPY. Thus, the uniaxial symmetry direction is perpen-
in wave velocity or increase in wave attenuation, vary withdicular to this plgne. This case is different from_ the case of
microcracking changes. Both of these phenomena are causBg€Ct 5crack alignment by all cracks, as discussed by
by the stifiness degradation of the material by the cracksiudson; for example. The effective elastic moduli of the
Studies of elastic wave attenuation in cracked solid medign€dium that contains many penny;}shap'eq cr.acil;s are re-
have been studied for at least 30 years, since the work ofiewed by Nemat-Nassét, Kachanov,® Krajcinovic,'” and
Mal, 12 Piau3 Chatterjeeet al,* Hudson® Martin® Krenk, others. General wave propagation and scattering problems
and Martin and Wickharfi.In addition, wave propagation in for anisotropic media are discussed by Stanke and Kino,
cracked solids has been reviewed by Zhang and AchertbactAhmed and Thompsol?, and Hirsekorr?>?* All those dis-
Zhang and Gros¥:** Smyshlyaev and Willi$? and Eriksson cussions involve a scattering integral with an isotropic
and Datta'® Previous research has primarily been focused orf>reen’s function. The use of an anisotropic Green’s function
specific wave types and wave directions for either a singldor modeling the scattering in anisotropic media was inves-
crack or distributed cracks, but a more comprehensive, geriigated by Turnef? Here, this approach is employed as well
eral study has never been undertaken. In our previout® formulate the uniaxially aligned crack problem. In this
article* explicit general expressions of wave attenuationsvay, the mean response is written in terms of the Dyson
and wave speeds in a medium with damage from randomigquation as discussed by Fri§¢and Weavef The Dyson
distributed penny-shaped microcracks were derived. Undegquation is solved in the spatial Fourier transform domain
the assumption of statistical isotropy used in that work, thewithin the limits of the first-order smoothing approximation
attenuation is independent of propagation direction. How{FOSA), or Kelle® approximation. A further approximation
ever, in the case of structural materials such as concretés also made which restricts the results to frequencies below
polycrystalline metals, fiber-reinforced composites, and oththe high-frequency geometric optics limit. The resulting at-
ers, those microcracks induced by directional loading or temtenuations are shown to be directional dependent, frequency
perature are typically parallel to some direction. In this casedependent, and damage dependent for the shear horizontal,
the effective media may acquire an anisotropy essentiallguasilongitudinal, and quasishear vertical waves. In particu-
due to the presence of such uniaxially aligned cracks. Thudar, the angular dependence of the attenuations in the Ray-
the scattering attenuation is a function of propagation direcleigh limit is obtained explicitly. Outside the Rayleigh limit,
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simple expressions of the attenuations of the shear horizon- X3
tal, quasilongitudinal, and quasishear vertical waves are de-

rived in terms of integrations on the unit circle. Quantitative 0
and qualitative comparisons with previous results by Zhang a
and Gros$?*! Zhang and AchenbachEriksson and Datt&
Ahmed and Thompsot?, and Turne?® show that the more

5>

1
1
1
1
|
general, direct expressions derived here are reliable and com- unit sphere \ ! >
prehensive for practical applications of detecting damage 0™ g | X2
from microcracks. N
This article is organized in the following manner. The x i

effective elastic properties of a solid containing uniaxially
aligned cracks are discussed in Sec. Il. The wave propaga-
tion and scattering model described by an anisotropic FIG. 1. Geometry of a penny-shaped crack.
Green's function is included for completeness in Sec. lll.
The attenuations of each wave type through the uniaxially

. . . . . crack is characterized by its radiasand two Euler angleg
aligned cracks are given in a direct form subsequently in Sec,

IV. In Sec. V, numerical results and discussion are resenteémd ¢, which define the direction of the unit normal as
; C . P shown in Fig. 1. It is also assumed that the microcracks do
Finally, conclusions are presented in Sec. VI.

not interact with each other. Thus, the effective stiffness may
be determined by integration over a continuous distribution
of crack sizes and orientations. In general, the specific dis-
tribution of the crack radii and orientations is described by
The effective stiffness attributed to a single penny-the probability density functioW(a,6,¢). In some cases,
shaped crack, which is located within an infinite, homoge-the microcrack radii and orientations are often correlated.
neous, isotropic and elastic continuum is considered firstHere, it is assumed that the microcrack radii and orientations
Estimating the effective elastic properties of a statisticallyare not correlated. As such, the density function may be
homogeneous elastic solid which contains a large number afeparated into independent radius and orientation functions
microcrackss was investigated by Nemat-Nasser and Hori, of the form
K:_ichanov’& a}nd others. US|r_1g similar methods, the effective W(a,8,¢)=A(a){(6,). 4)
stiffness attributable to a single, penny-shaped crack of ra-
diusa in a unit volume, called the crack basis Green’s func- It is also assumed that all microcracks are parallel to the
tion, is given in the forr* Xz axis (A direction with their unit normals(lying in the
=2, d] X1 Xp plane_), h_avmg a random distribution, as shown in
c e @) Fig. 2. In this situation, due to the symmetry about ihe
where the repeated indéxdenotes the summation conven- —X, plane, the average elastic properties are those of trans-
tion over the range of=1-6. It should be noted that this verse isotropy, with thex; axis as the uniaxial symmetry
summation convention and range are used throughout thi&xis. Here, the distribution of the microcracks is supposed to
article. The coefficientsl; are given by be dilute, and the distribution of the crack sizes is also as-
sumed to be independent of their orientations. The crack ori-

Il. EFFECTIVE PROPERTIES IN SOLIDS WITH
UNIAXIALLY ALIGNED CRACKS

201 _ _
d,=0, d2=1_6 ac Vl a3, 3= 4=1_6V(1_V)a3, entation distribution function in Eq4), which implies that
3 (1-2v) 3 1-2v the orientation functio(6,¢) is independent of the angte
21— 16 v(1— ) (2) s then given by
5532, YT T3 =,

an
| _ | _ §(e,<p>=25( - §>. 5
The stiffness of a single crack is dependent on the unit nor-
mal m, which defines the crack orientation. This orientationTherefore, the effective continuum material properties
is implicit in the tensord. These basis tensors are given in caused by all microcracks per unit volume are weighted by
terms of unit vectorrh and Kronecker delta function as
follows.®

=3 (SimSint 8indim)s Himn= i} Smn,
X2

X3

6 [P ©)

_l/m A PPN PPN PGPS
ijmn_Z(mimmajn"'mimn‘sjm"'mjmm5in+mjmn5im)-

The ensemble average properties contributed by all X2 ) 1
cracks are considered next. The cracks are assumed to h i %, plane

embedded in an infinitely extended, homogeneous, isotropic
and elastic three-dimensional continuum. The penny-shaped FIG. 2. The distribution of microcracks parallel to tkg-axis.

1
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the density function, Eq(4), over the basis Green’s function, The moduli fluctuations, which have zero me;{mf):o,
Eq. (1), and are then given by are given by

e 27 (72 aT C—=C*_ (s
: 6C= H 14
Cﬁmn:ﬁfo fwlzb‘((p_E)Ci(j%n(a’(p)gmpded@' oc .C (X.)1 , o
©) and the functiorH (x) is defined as
In Eqg. (6), the nondimensional microcrack density per unit H(x)= 1 if xe$ (15)

volume is defined by 0 otherwisé

whereS denotes the space of all cracks.

In the next section, the fundamental elastodynamics of
) ) elastic wave propagation and scattering are introduced in
whereN is number of cracks per unit volume and the angulatems of appropriate Green's dyadic. The formalism is devel-
brackets denote the ensemble average. This damage densiifeq for a transversely isotropic material. The mean re-
definition was introduced first by WalShfor the case of &  sponse, which is expressed in terms of the Dyson equation, is
statistically isotropic distribution of penny-shaped microc-4iscussed for the case of a transversely isotropic medium.

racks. A more general form of the (.jam(r;ge. density is disThe elastic modulus tensor is specified for this case and ex-
cussed by Budianskyi.The basis functio€{),, is expressed pressions of the attenuation for each wave type are given.

s=N<a3>=LajA(a)a3da, (7)

ijmn

in Eqg. (1). By integrating over the Euler angles in E§), the
effective stiffness due to the distribution of uniaxially

aligned penny-shaped microcracks is derived as [ll. ELASTIC WAVE PROPAGATION AND SCATTERING

: MODEL
Cr}mn: Dajl', (8
- _ The equation of motion for the elastodynamic response
where the coefficient® anda; are of an infinite, linear-elastic material to deformation is given
161—v v in terms of the Green’s dyadic by
DZZSM?E’ a1=1—Z, o
- 5jmp(x)‘?t2+ ﬁXiCijmn(X)ﬁXn}Gma(nyr )
v(15—20v+41?) v(—T7+2v)
- —am— =8,,8%(x—=x") (1), (16)
L= gy? 0 BT gagy 0 O o o _
where 6°(x—x") is the three-dimensional spatial delta func-
_1— v _ ﬂ tion. The second order Green's dyad&,,,,(x,x’;t), defines
a5= 2’ A= 8" the response at locationin the mth direction to a unit im-

In the t 4 din Ea(8). th ientation is that of th pulse at locationx’ in the ath direction. The moduli are
n the tensors used in Eq(8), the orientation is that of the considered to vary spatially and density is assumed uniform

symmetry d|r_ect|onn_, ra_ther than th_e directionh. It is throughout with units chosen such that density is unity. The
hoped that this notation is not confusing to the reader. If the . :
oduli C are assumed to be spatially heterogeneous and

original undamaged state of the material is homogeneous a the f in Ea(10). Th . f1h duli i
isotropic, the stiffness tensor is given in the standard for ave the form in a( . ). The covariance of the moduli is
characterized by an eighth-rank tensor

CO=\1%+2ult.
The ensemble effective stiffness is now redefined such  (5Cjjnn(x) 5Caﬁy5(y)>:5ﬁﬁ’r’1‘5W(x—y)_ (17
he spatial and tensorial parts of the above covariakce,

that the average fluctuations are zero as done previGlsly.
Such a procedure, while not necessary, is convenient for the . ; .
calculation of material covariance and attenuation. Theand W, _respectl\_/ely, are assumed mdependt_ant. The sp_atlal
moduli are assumed to be spatially varying and of the formcorrelanon functionWis also assume_d a functlo_n Of_ the.d'f'
ference between two vectors;-y. This assumption implies

C(x)=C%+ 6C(x), (100 that the medium is statistically homogeneous. However, the
additional assumption of statistical isotropy as considered
where previously** such thatW is a function ofix—y|, is not made
Co=Co-c*. (1  here.

The mean respons€G), is governed by the Dyson

Thus, the average moduli have the form equation which is given 15§

CO=(C(X)) =N 124 14T (P14 +T 5154+ T41°,
e S (610000 =601+ | [ GxyMpy.2)

(12
where the effective elastic coznstants are x(Gja(z,x’))d3y oz, (18)
T - Dv(15- 20”+24V ), = D(4_V)’ In Eq. (18), the quantityGP is the bare Green’s dyadic. It
8(1-2v) 8 defines the response of the medium without heterogeneities,
(13 namely, the solution of Eq16) with 5Eijmn(x) =0. The sec-
_Dv(7—2v) r.=pl -1+ 3) r _3Dw ond order tensoM is the mass or self-energy operator. The
17 8(1—-2v) 1 2 2] "3 8 Dyson equation, Eq(18), is easily solved in Fourier trans-
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form space under the assumption of statistical homogeneity.

The assumption of statistical homogeneity ensures @%at

R:F1+ 2F2+ Fg(ﬁ‘ﬁ)z.

M and(G) are functions of a single wave vector in Fourier It should also be kept in mind that the vectégsand (s are
space. The Dyson equation is then transformed and solved fgnctions of the direction of propagatiop, relative to the

give the result fokG(p)) of the form

(G(p)=[C%p)*=M(p)] ™ 19

Here, M is the spatial transform of the self-energy. An ap-
proximation of the self-energi can be written as an ex-

pansion in powers of moduli fluctuations. To first oré&f®
M is expressed &%

Mg;(y,2)

2 Iy 2 9
~ Eécaﬁyé(y)ﬂ_}hsGym(yrz)&_Ziacijmn(Z)a_Zn :
(20

Such an approximation is assumed valid if the fluctuations,

5C, are not too large. The components Idf, which are

employed to calculate the phase velocity and attenuation of
the wave modes, are discussed next. Further details of the

uniaxial symmetry direction,n. This dependence,y
= (0) will remain implicit throughout.
The bare Green'’s dyadic is then presented in the form

GO(p) = 92u(P) 0101 + ggp(P) U205+ 935 P) U303, (24)

where the dispersion relations for the bare response of the
SH, gP, andqSVwaves are given by

9en(p)=[w®—p(p, +T,c08 ©)] 1
=[w?—p?ciyl

9ap(P)=[@?—p%(Q+P cos y+Rcog(O +y))]*
=[w?—p%cip] L (25

gasuP)=[w®—pA(Q+P sin? yr+Rsin(O + )]

— 2 2A2 -1
—[(1) —-p CqSV] )

scattering theory can be reviewed by the reader in the articles

of Karal and Kelle”® Frisch?® Stanke and Kind® Weaverr*
and Turnef?

with Q, P, andR defined in Eqs(23).
The mean responséG(p)), is governed by the Dyson

The medium of uniaxially aligned cracks is consideredequation, Eq.(19). The solution oKG(p)) is expressed in
to be transversely isotropic, a medium with a single symmeterms ofG°(p) andM (p). Similar toG°, the mean response

try axis defined here by the unit vectr The fourth-rank

(G(p)) and self-energy (p) may be written in terms of the

elastic moduli tensolC, in a transversely isotropic medium, orthonormal basis defined iy, 0,, andd in the form

given in Eq.(12), is written in terms offi by

Eijmn: A é\ij Smnt 1 ( 5im5jn+ é\in5jm) +1'y( 5ij AmNy
+ 5mnﬁiﬁj)+1“2(5imﬁjﬁn+ 5inﬁjﬁm+ 5jmﬁiﬁn
+5jnﬁiﬁm)+r3ﬁiﬁjﬁmﬁn. (21

The above elastic constants are defined in Ef.

(G(p))=0sH(P)010;+ gqp(P) 020, + gqs(P) U303,
- (26)
M (p) = mMgn(p) U0, + mMgp(p) U0, + Mys\(p) UzUs,

where it is again noted that the propagation directiois
implicit within the directions(;, 0,, andQs.
The dispersion relations for the mean response are then

For propagation in th direction, the shear horizontal 9iven by the solution of the Dyson equation, E#9), as

wave (SH) in a transversely isotropic medium is polarized in

direction(,, that is perpendicular to the plane definedfby
andf. The angle between the andi is defined a®d. The

95(P)=[g%(p) "t =mg(p)] " =[w?—p?ci—my(p)] %,
(27)

quasiP and quasiSV waves are polarized in directions de- for each wave typep. These are the expressions for the

fined byQ, and {3, respectively, both of which lie in thg
—f plane. It is noted thafl;, 0,, and(O3 form an orthonor-
mal basis such thdt;=0,X0,. The vector(, is directed at
an angley from the propagation directiop (see Fig. 3. G°
may be diagonalized by using the directiansandis, such
thatl —0404=0,0,+ 0305.

Substituting the elastic stiffness tengdiinto the trans-
form form of the equation of motion, E{L6), gives in direct
notatiorf?

{0104[ 0?—p?(u, + T, c08 O)]+ 0,0,[ w?
—p%(Q+P cog ¢+ R coF(0 + )] + U305 w?
—pA(Q+Psir? y+RsiF(O+4))]}-GAp)=I. (22
The quantitieQ, P, andR in Eq. (22) are defined by
Q= +T5(pA)>—(T1+ 1) (1= (p-h)?),

P=\ +pu, +T,+T5,, (23

594  J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003

dispersion relation of the mean response, which defines the
phase velocity and attenuation of each wave type from solu-
tion of

w?—p?cs;—mp(p)=0, (28)

for the wave vectop. The attenuation of each wave type is
given by the imaginary part gf. Explicit expressions of the
attenuation can be determined using an approximation valid
below the high-frequency geometric optics limimg(p)
~mpg(w/cgp)).'*** This approximation allows the imagi-
nary part ofp to be calculated directly from E@28). Thus,

the attenuation of each wave type is given as

1 1)
aﬁ(p)=—mlmm[;(c—ﬂp). (29)
The attenuations for the three wave types, which are
each defined in Eq(29), are finally given in the general
form??

L. Yang and A. Turner: Elastic wave propagation and scattering



aﬁ(ﬁ):

(O]

SR
3P| 4 cZyd e P

CsH(d S

where the brackets,), denote an ensemble average, and
Apun=(Sun—Nuhy). The unit vector is the uniaxial sym-
metry axis. All averages of odd numbersrafs are zero.

~ . toee T 4 In addition to these tensorial averages, the average of the
= Uk psvy 2
XA, iy PS, ZJ d"s o(3) spatial part of the covariance must be determined. As dis-
a cussed previousli? the necessary relation is given by
owl o @ o (H(X)H(y))=¢ Pr(r|0), where Pr(|0)=(1—&)W(r)+e,
ca(P) P E) is defined as the conditional probabilfy.Due to the as-
4 sumption of small damage density, the higher order terms
<5 -+l PSV, Zj d2s @ may be neglected. Therefore{dCijmn(X)C,s,45(Y))
CUpS, 4 Cosu(® —eW(r):I‘J’ﬁZ{s Averaging over all crack orientations, the
covariance is thus defined by
w w O DSV
XW| ——p— - S)E "TKE’fYS}, (30)
c Cqsu(S “Ugpsy —a T i
P " Casud kP IS f f (ClniC 75)5(4’_5) sine de do,

whereK is defined as the polarization for the wave typél, 33)
2, or 3 for wave typesSH, qP, andgSV, respectively. In

Eq. (30), it can be seen that the integrals are over the unitvhere the definition o€ is given by Eq.(60) in Ref. 14.
sphere, which is defined by unit vectér The directionp Substituting the identities of Eqé32) into Eq.(33), the gen-
defines the propagation directidis the scattered direction, erally compact form ofZ is constructed in terms of Kro-
and G and ¥ are defined as the polarization directions. Thenecker deltas and pairs éfs. The general compact form of
dependence of the vectoiison p and of v on §is implicit. = is not presented here due to brevity. The form of the at-
The inner products on the covariance of the moduli fluctuatenuations given in Eqg30) is dependent on various inner
tions are given in terms of these four unit vectors. The arguproducts on the covariance tensor. The vecfoend$, re-
ment of the correlation is the difference between the incomspectively, represent the incoming and outgoing propagation
ing and outgoing propagation directions. directions. The vector@ andV are vectors defining the po-

It is clear that the above expressions of the attenuatioffarization directions of the particular waves. These vectors
for uniaxially aligned crack distributions are more compli- are perpendicular to the plane defined%gr p andn (for
cated than those for a distribution of randomly orientedSH waves or they lie in this plandfor qP andqSV).
cracks as discussed previouslyThey can be simplified to Now the necessary inner products involved in determin-
the forms given there in the case of statistical isotropy. Thisng the attenuations are calculated. The attenuations will vary
framework is the same as that given by Turffen the next angularly only within the plane defined by the propagation
section, the covariance and attenuation are specified. direction p and the crack alignment directigh Therefore,
without loss of generality, a reference plane is defined as the
p-f plane (see Fig. 3 The following vectors are then de-
fined with respect to a generalx,x; coordinate system as

The reIevant inner products on the covariance of Fhe A=%s, P=%,SINO+%sc080,
effective moduli fluctuations are necessary for calculating
the attenuations. The tensorial part of the covariance is rep-
resented by an eighth-rank tensor which is given explicitly

IV. COVARIANCE AND ATTENUATION

(34)
§=X,sin®’ cos¢’ +X,siNO’ sing’ +X3c0s0".

by The polarization vectors are then defined with respect to
— 0PV s QMR A ~ A A AR A A these angles ang as discussed by Turn&.The anglesy
= UPSY_ = yijmn ' .
2. e (D apystsimPaPnSiSs0,0; - (3D and y’ used hereafter are defined by

For the case of uniaxially aligned cracks, the covariance is
dependent on the crack orientatiafis To calculate the co-
variance, the following identities are needed

=0+y(0), ¥y =0"+y(0"). (39

These anglesy and y’, define the orientation angle of the
gP wave with respect to thé direction, for thep and s
ij directions, respectively.

Inserting these definitions of the relevant unit vectors
into Eq. (33), the required inner products are reduced to a
simple form. The inner products are:

fOI’ gy

(i) = 2A

(my; r’hj M) = %(Aij Apnt AimAjn + AinAjm)v

N A A A A A 32
<mimjmmmnmam,8> (32

1 .
= 15[ AjjAnsA gt all permutations

wLEnEmn el = 91?3'1—S|n2®5|n2® [— 7,08 @' Sir? &' + 5,],
—15 terms in al],

(i Mg, g, i) g Elgzz— SI? O sir? @' sir? /[ 7, cof ¢’ sir? ¢’ + 5],
1 . (39
= 38a[ AijAmnA oA y st all permutations

E:”'ulﬁ% Sir? O sir ®' cog y'[ 7, cog ¢'sir? ¢’ + 53],

—105 terms in al], -+Uypsvg
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for agp

”“2"3'1— sir? @ sir? O sir? y[ 5, cof ¢’ Sir? ¢’ + 53],

.m

- UpPSVp

-~ U PSv.

.m_

=sirf O sif O’ sirf y

X Sir? y'[ 7 sin? ¢’+7;4sin2 ¢+ 71s], (37

.m_

=sirf O sif ®' sirf y

X coS y'[ 7y sint ¢’ + 54 SIr? ¢' + 751,

and foraysy

m

'::5’35’3'1— Sir? © sir? ©' cog y[ 7, o ¢’ Sirt ¢’ + 73],

U2 S @ Sit O cod y

- Ui5psV,

m

X sir? y'[ gy sint ¢’ + 5, Sif ¢’ + 5], (38)

I

P 0 2
By Sir O sirf ®' cos y
X cog y'[ ny sint ¢’ + 54 SI? ¢' + 751,

where y and y' are defined in Eq(35). The coefficients
7 (i=1,...,5) andT; (j=1,...,7), aregiven by

7]l:4T3+ 16T6+4T7, 7]2:T3+4T6+4T7,

7]3:T4+4T5+4T6+ 6T7,
(39
74= AT+ 4T, + 32T+ 16T + 16T,

775:T1+4T4+4T7,

with
_ vA(80v*—4160°+ 47207+ 184y — 235 M?
i 1281—-2v)? ’
~ p(120°-28v%+ 127v— 184 M?
2= 384 ’
_v(1-2v)°M?
~ 384 :
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FIG. 3. Geometry for the propagation directipn the
scattered directio8,and the respective polarization di-
rectionst andV in the local coordinate system.

_(v=4)(v—12)(1-2v)°M?
3 384 ’

(40)

v?(10v—23)(2v—7)M?
384 ’
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5 384 ’
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where the constantl is defined asM = u(32/3)1—v/(2
—v)(1-2v)]. The expressions given by Eq86)—(38) are
also directly related to the diffuse energy propagation, in-
cluding backscatte’—32

If the tensorial and spatial components of covariance are

assumed to be independent, as discussed in(Ef), the
spatial correlation functiolV is uncorrelated with the tenso-
rial part. Here, the correlation functioff is assumed to have
an exponential formW(r)=e """, wherelL is the spatial
correlation lengthL. =2(a). The limits of such an assump-
tion have been reviewed by Stankeand Markov and
Willis.?®

Substituting the above inner products into E@@S) and
integrating over the azimuthal angi, the attenuations fi-
nally reduce to dimensionless forms

_ 4 € 3 -

I'sh-sH

5 Tan|®

+lsH-gs T
qSV/

8 . .
aqp(®)L=ng2p—2€4r§P(®)sm2® Sirf y
qP

5 5
| (—qu) +1 +1 V(—C P)
P—SH| = p—qptlgp—gs
q Con aP-aPTlaP-asV G-

(42

CsH
+|SHqP<—_

= . @

X
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u nl(YéH a_GXéH—a)
s ®)L=Xggy>—=a— = qs\/(@)sm2®coszy |SH,H=J
2 q 0 2YSH o
EqSV ° Cqsv ° 771(3X§H —2Xsh- aYgH— )
Xl lgsv-sHl = | tlgsv-qp| = > 7
SH a(XSH @ YSH a)
Xsh-a
+lasv-asv|, (43) Xy BSHoe S (@)1, i@’ dO,
(XSH a SH a)
with the density,p, now included in the general form. The (44)
terms denoted by, within the square brackets represent
integrals defined by and
I _j” 71(6X5h-su— Yan-si) | _f” (Yo sy 6X5 sp)
—SH™ a—SH™
SIS Jo 2Y§H75H : 2Y¢2178H
ﬂl(ZXSH—SHYéH—SH_3X§H—SH) 771(3Xi—SH_2Xa—SHYi—SH)
YéHsz(XéHsz_YngsH)m Yisz(Xisz_Yisz)llz
72XsH-SH 5 . 72Xa—sH 5 .
X r2y(®)sinf®' do’, X ray(®)sinf® doe’,
(XéH—SH_YéH—SH)m} sHO") (X2 _su—Y2_ H)3’2} sHO)
|
. Jw M(6X5 ot Y5 ) H20aY5 o T(AXG Y5 o= 3XG ) F maY5 o(2X5-aY5 o m X5 )
o 2Y5 Yool X5 0= Y5 0>
775X5*QY§— :| 5 .
r>(0")I,sirt®’ do’, (45
Yool X5 0= Y5 0>
|
with T
., ., '“‘SH:L 5t m r2(0")sirf @' do’,
Xp—y=1+Xgr5(0) +x3r5(0") 48)
—2XX I 5(O®)r. (®')cos® cosO’, 73
By BTy |5_a=f 2 M (O, s O de
(46) o\ 8 2 @

Y-y =2XgX, 1 g(©)r (©7)sin® sin®’, _ S
for all outgoing wave types. In the Rayleigh limit, the angu-

for the different wave types3 andy. The subscripté anda  lar dependence of the attenuation is explicitly seen. In the
denote either thelP or SV wave type, and the notation subsequent section, example numerical results and discus-
qu:sir?(®’+¢(®’)), Hqsvzco§(®’+¢(®’)) is used. In  sion are presented.
Egs. (41)—(46), the angular averaged wave speeds are de-
fined ascz=3/5cy(®)sin®dO, for each wave types. V. EXAMPLE RESULTS
Three nondimensional frequencies are then defined s
=wl/cgz and the slowness surface for each wave type '%n W
defined by the dimensionless quantity(®)=cz/c4(0).
Equations(41)—(45) are the primary results of this article.

In the long wavelength Rayleigh limik;<1 and these
integrals become independent of incident direction and fre
guency. Therefore, they reduce to a much simpler form as

™ 71
I'sh-sH= f ( g + 72
0

A
lSH—a_
0

Numerical results are now presented for a specific case,
hich the observed anisotropy of the cracked material is
essentially due to the presence of the uniaxially aligned
cracks. The material properties of the uncracked medium
used are Young’s modulus=2.0x 10** Pa, Poisson’s ratio
=0.30, and density = 7850 kg/ni. Using the dispersion

relatlons given in Eq925), the slowness surfaces calculated
for different damage densities,=0 and 0.1, are shown in
rgH(®’)sin3®’ de’, Fig. 4. The normalized effective wave velocitys(e)/cg(e

=0), of each wave type is presented in Fig. 5. The effective
(47)  velocities decrease with increasing damage densitjthin

the considered frequency range. The reduction of velocity of

SH and qP wave due to the presence of the uniaxially

aligned cracks is a maximum &t=90°, it becomes smaller
and as O decreases, and the reduction reaches a minimué at

st ns)rg(')nasin?'@' de’,
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=0°, though the changes are not substantial. These resulttﬁ t their att i it t ; i
are in basic agreement with those of Zhang and Gfasw at their attenuation resulls -are not zero for propagation

Eriksson and Datt® The qSVwave velocity is seen to have along the symmetry axis. They speculate that the attenuation
a greater reduction # =45° than a®=0° and 90° arises from Poisson effects. However, such a comparison is

In the Rayleigh limit, the attenuations simplify consid- ﬁ!fﬂ;ultfto make.smci thedl;?gus c|>ffthet|r worl; was 3tfmu;:]
erably since the integrals reduce to those given by E3. Igher frequencies. An additional teature observed for the

and (48). The attenuation depends on the fourth power Of_qSVwave in Fig. 6, is the asymmetry that developssas

frequency in the Rayleigh regime. Thus, the angular Raylncreases. This peak is aroufdd=45°, but shifts slightly as

leigh attenuation results shown in Fig. 6 are given in a gen? Increases fro_m 0.01 10 0.05. :

eral form of, aL/(x%), for each wave type. In Fig. 6, the . Fmally, using Eqs-(.“l)‘(“f)' attgnuauon results are

SH andqP waves are observed to have their maxim&®at given in terms of the single dimensionless frequengy,
=wl/cgy. Outside the Rayleigh regime, the attenuations

=90°—perpendicular to the crack alignment directibn : -
The qSV wave is observed to have zero attenuation forVere calculated using the complete integrals, £4€) and
(45), by numerical integration. In Fig. 7, the normaliz8¢H

propagation along the symmetry axi® € 0°) and perpen- it i Ik . ted functi f
dicular to it (® =90°). All wave types have zero attenuation Vo€ atenuationesy/ksy, IS presented as a tunction o
opagation direction for three different damage densities at

along the symmetry axis, because the material properties ) :
g y y brop requencyxsy=1.0. The attenuation for propagation perpen-

not vary in that direction. Those results are qualitatively thed_ lar to th K all ¢ direction i 0
same as previous worf2-22Zhang and Gros& comment icular to the crack alignment direction is seen to increase

more quickly than for other directions as the damage in-
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0.05F ' ' ' ' ‘ ' ' ' ] cracks. These cracks have unit normals that are randomly
oriented within a plane of isotropy. The ensemble average
elastic wave response is governed by the Dyson equation
which is solved within the limits of the first-order smoothing
approximation. The general Green’s dyadic for a transversely
isotropic medium was employed to derive expressions of the
attenuation of the shear horizontal, quasilongitudinal and
quasishear vertical waves. This dyadic approach is conve-
nient to make the results coordinate free. Thus, the final
forms of the attenuations for the three wave types were given
directly by simple compact expressions involving integra-
tions over the unit circle. In particular, the integrals are sim-
plified considerably in the Rayleigh regime. The general at-
, , , , , tenuations for each wave type are dependent on frequency,
0 2 Prggagation“gifectionso@ s gfges) 0 % %0 wave velocity, wave direction and damage density. Finally,
numerical results show how the attenuations and the effec-
FIG. 8. Angular dependence of the normalizgiattenuationaqp /kqp for - tive wave velocity of each wave type are affected by those
various damage densitiesat frequencys,=1.0. parameters. The general formulation is also directly related
to other types of elastic wave scattering such as backscatter.
The simple form of the results makes them particularly use-
behavior as th&H attenuation in terms of the change with ful for nondestructive testing and materia!s chargcterization
angle and damage. Analogous results have been observedr%sea.mh' However, the neglect of _mutual Interactions among
textured polycrystals by Hirseko, Ahmed and the mlcrocrgcks may_havg a Iarg_e mflqence fqr the scattering
Thompsor® and Turne?? In Fig. 9, the normalizedySV effects. This analysis will be investigated in subsequent

attenuationg,sy/Kqsy, is presented at various damage den-"O'k
sities for frequencys,=1.0. The attenuation for propaga-
tion at®=0° and 90° is zero as discussed above. For propgACKNOWLEDGMENTS
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