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Final-state-interaction effects on one- and two-photon detachment of Hin the presence
of a static electric field

Min-Qi Bao, llya I. Fabrikant, and Anthony F. Starace
Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 27 January 1998

We present a detailed theoretical formulation of the problem of an electron moving in a static electric field,
a laser field, and an atomic potential. Our formulation treats the electron-atom interaction in the zero-range
potential approximation and employs both the quasienergy approach and an analytic expression for the Green’s
function describing electron propagation in a combination of static and laser electric fields. Our formulation is
applied to one- and two-photon detachment of iH a strong static electric field and takes into account all
final-state interactions of the detached electron with the static and laser fields and with the atomic core. Our
results show that rescattering effects are small in the case of one-photon detachment, where our results are
close to those obtained previously by Gao and StafBbgs. Rev. A42, 5580(1990], who ignored rescat-
tering effects but who found a strong-field treatment of the laser field to be important, even in the limit of weak
laser fields, owing to interference terms involving both the laser and static electric fields. Our results for
two-photon detachment of H on the other hand, show that rescattering effects are very significant. In the
presence of a strong static electric field, moreover, the two-photon detachment cross section is found to be very
sensitive to the magnitude of the static fidl81050-294{8)09406-2

PACS numbg(s): 32.60:+i, 32.80.Gc

[. INTRODUCTION approximate, generally treating the electron—static-field in-
teraction exactly but ignoring both the electron-laser interac-
tion and the electron-atom rescattering interacti@rB,7—

Placmg negative lons and a_toms N various cgmbmanonsls]l Only recently have more complete treatments of these
of laser fields and static electric and magnetic fields allow%inal-state interactions appeark@|16—24

one to control rates of atomic processes. A typical example is Nicolaides and MercourikL6] treated all final-state inter-

negative-ion photodetachment in a static electric field Ieadéctions in principle exactlybut completely numericallyfor

in ntum-mechanical interferen ff which ar .
9 .to' quantu nechanical te erence € ects, N a%e case of the photodetachment of Land H . However,
exhibited as oscillations in the single-photon detachmen : . : .
) . ; or weak fields their results only confirmed results of simpler
cross section as a function of frequeridy. These oscilla- ) . :
éheorehcal calculations as well as the experimental measure-

tions can be manipulated by adding a static magnetic fiel
B . ) e ments for H photodetachmenf8]. No new effects were
[2-4]. Alternatively, at fixed excitation frequency these redicted for stronger fields. Fabrikaft7] used a frame

uantum interference effects may be controlled by changin ) ; . .
9 Y y g gansformatlon technique to treat the final-state rescattering

the duration of the laser pulse or b.y using two or more Sr?Orof the detached electron by the residual atom while ignoring
laser pulse$4,5]. Another alternative is to consider multi- . . .
ntthe final-state electron-laser interaction. He found that the

hoton pr in ic fields. Multiphoton hm .
photon p ocesses statc. e.ds' ultiphoto . detachme rescattering effect significantly lowérthe photodetachment
creates a different angular distribution for outgoing electrons ; . : o
ross section of H for strong static, uniform electric fields

as compared to that for single-photon detachment. This caf o
change the interference pattern and in some cases enha & the zero-static-field threshold. Gao and Starije

the oscillations in the detachment cross sections. Relevant reated the final-state electron-laser interaction exactly and

all of these coherent control approaches for photodetachmeﬁ%owed that it leads to an additional term in the transition

is the role of final-state rescattering of the photodetache&qamx element even in the limit of weak laser fields; this
electron by the residual atom and the interplay between th xtra term was shown o result in a measurab!y I_ower pho-

. : . X Fodetachment cross section near the zero-static-field thresh-
effect and other final-state interactions. In this paper we ex

e th . d ” $or th ¢ old when the static electric field is strong. Ostrovsky and
amine these questioriand provide answeysor the cases 9T Telnov[18] have carried out an analytic study of the photo-
one- and two-photon detachment of Hn a strong, static

detachment of negative ions that in principle includes all

electric field. _ _ final-state interaction effects. Their focus is on the particular
The subject of single-photon or multiphoton detachment

of negative ions in the presence of a static, uniform electric———
field has a long historysee, e.g., the brief review given in  1the |owering of the cross section is relative to what the cross

the Introduction of the paper by Gao and S.tar@- Nev-  section would be in a perturbative treatment that ignores all final-
ertheless, most theoretical treatments of final-state interagtate effects other than that between the electron and the static elec-

tions relevant to these processes have been selective afid field.

1050-2947/98/58)/411(15)/$15.00 58 411 © 1998 The American Physical Society
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case of a strong laser field and a weak static electric fieldtranscendental equations. An alternative procedure is to
However, no numerical results are provided. solve the integral equation for the time-dependent part of the
A number of theoretical studies are related tangentially tovave function by direct numerical integrati¢®1].
the subject of this paper. Two papers have treated photode- While Manakov and Fainshteif28] indicated that the
tachment plus excitation of Hand have included final-state quasienergy approa¢B7] combined with the zero-range po-
electron correlation effects. Slonim and Gre¢h8] used a tential model[25,26 can be applied to the calculation of
frame transformation technique and multichannel quanturmegative-ion decay in the presence of a laser field and a static
defect theory to treat final-state rescattering effects on thelectric field, no numerical results were given. The same
photodetachment of Hwhile ignoring the final-state inter- ideas were used by Slonim and DalidchB®] to find two-
action of the electron with the laser field. The focus of theirphoton and three-photon photodetachment cross sections for
study is on the effect of a static field on the well-known circularly polarized light in the presence of a static electric
shape and Feshbach resonances near the=2] threshold field. The decay width was expressed in terms of a combi-
rather than on the photodetachment cross section near the gtion of Airy functions(thus allowing one, in principle, in
(n=1) threshold. Du, Fabrikant, and Stard@@] also used the one-photon case to regain the well-known perturbative
a frame transformation approach but one basedmitio  resyits of the theory of one-photon detachment in a static

numerigal adiat_)atic hyperspherical tra_nsition .amplitudesﬁem [9,12]). However, Slonim and Dalidchik also present
(which include final-state electron-atom interaction effects almost no numerical results.

to study static electric field effects on the shape and Fesh- third ingredient of our theoretical approath addition

bach resonances near the R=(2) threshold in H photo- og] our use of a zero-range potentiab, 26 and the quasien-

detachment. They also ignored the final-state interaction : ; , )
the electron with the laser field and did not provide predic- gy method27,28) is our use of the analytic Green's func

tions for the H f=1) photodetachment cross section. Fi—tlorl obta_med by Bao and_Stara@_ég] for describing the
nally, in the absence of a static electric field, a number o ropagatloq Of. an elegtron in the f|e|qs OT both a laser and a
theoretical works have treated intense field multiphoton deStatic electric field. This Green’s function is expressed by the

tachmen{21] and ionizatior{22—24 for simple systems in- classical action integral for an interaction of the form _
cluding final-state interaction effects. F(t)-r_, V\_/here F(t) includes bot_h the laser _and the static
In this paper we investigate the photodetachment of H electric fields. This representation is a particular case of a
including all final-state interactions in a regime in which our 9éneral result of Feynmaji3,34 holding for all Hamilto-
predictions differ measurably from results of calculationshians having only linear and quadratic dependences on spa-
that ignore these effects. Specifically, our formulation in-tial coordinates. This classical path approach to the evalua-
cludes the final-state interaction of the detached electrofion of the path integral has been noted for being particularly
with both laser and static fields nonperturbativédjthough  simple and effectivg35]. Having an analytical result for the
the results presented are for the limit of a weak laser)field path integral (which is a representation of the system’s
The final-state short-range interaction between the electroGreen’s functioh permits one to evaluate the physical sig-
and the atom is represented by a three-dimensiérfainc-  nificance of each term as well as to carry out many of the
tion potential[25,26 whose use permits much of the theo- relevant integrals analytically.
retical work to be done analytically. The final-state electron- |n Sec. Il we present our Green’s function approach for
atom interaction is treated by a combination of thelinearly polarized laser detachment in the presence of a
quasienergy approacf27,28 and the Green's function static, uniform electric field directed along the axis of the
method. Our Green's function method uses the analytigaser polarization. Equations are presented for obtaining the
propagato 29] describing the motion of the detached elec-fing)-state wave function for the electron including its final-

tron in both the laser and the static electric fields. In whalate interactions with the laser and static electric fields as
follows, we elaborate a bit on each of these key componentg,) a5 with the residual atom. In Sec. Il we employ our
of our theoretical approach. final-state wave function to evaluate the transition matrix

The zero-range potential moqQSI,ZG] has been used in elements for linearly polarized laser photodetachment of H
many theoretical works to treat multiphoton detachment by a

strong laser field. Physically this method is justified if the N the presence of a static electric field in the limit of weak
polarizability of the atomic residue is not too high and if the laser fields and for the cases of one- and.two-photon detach-
de Broglie wavelength of the detached electron is large Comr_nent. In S?C' IV-we present our numencall results for the
pared to the effective radius of the electron-atom interactioncorreésponding photodetachment cross section and compare
The advantage of this approach is that it allows one to elimiOUr results with those of othef$,12]. In Sec. V we present
nate spatial coordinates: the problem of solving the time®ur numerical results for the two-photon detachment cross
dependent Schebnger equation is reduced to a one- section and, in the absence of the static electric field, com-
dimensional integral equation in time. Further simplificationpare our results with those of othd@6]. Finally, in Sec. VI

can be achieved if the laser field is circularly polarized. Inwe summarize our results and present our conclusions. The
this case Bersori25] and Manakov and Rapopof30] three appendixes provide details of our formulation: Appen-
showed that using the quasienergy apprdadf allows one dixes A and C transform some of the analytic expressions in
to reduce the problem to solving a transcendental equatiothe main text to forms suitable for numerical evaluation; Ap-
for the quasienergy. The same approach can be applied in tipendix B gives the relation between final-state wave func-
case of linear and, more generally, elliptical polarizationtions satisfying ingoing-wave and outgoing-wave boundary
[28], but then one has to solve an infinite set of coupledconditions.
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Il. GREEN'S FUNCTION APPROACH FOR LINEARLY A. Final-state wave function
POLARIZED LASER DETACHMENT

IN THE PRESENCE OF A STATIC ELECTRIC FIELD The final-state wave function satisfies the time-dependent

Schralinger equation
Consider the H ion in the following combination of a (-

parallel static electric field and a laser field, both defined 7%t ("\V

along the positivez axis? ot

1 _
- 5V2+zE(t)+V(r)) p(r ), (5

where the electric field is defined in E(L). To solve this
equation, we first introduce the wave functigg(r,t) which

) _ _ solves the time-dependent Sctilmger equation in the ab-
The short-range interaction between the final-state electrogence ofv/(r):

and the atom residue will be modeled by the zero-range po-

E(t)=E¢+ Epsinwt=z(E¢+ Epsinwt). 1)

tential (atomic units are used throughout Io(r t) 1
i—=<——V2+zE(t)>zpo(r,t). (6)
ot 2
B 2 J
V(r)= 75“)5“ 2) The corresponding retarded Green’s function describing

propagation of the detached electron in both the static and

wherex=/2¢; ande; is the energy of the initial bound state. laser electric fields is

In the limit of Es— 0, the wave function for this bound state

; _ 1
has the well-known expression ot EVZ—ZE('{))GO(I‘,'[;I",'{')= S(r—r')s(t—t’).

— Kr ()
(1) =B"—,

Using ¢y and Gy as defined in Eq¥6) and(7), the solution

of Eq. (5) which satisfies the outgoing-wave boundary con-
whereB is a normalization constant whose value is 0.315 5Aition is’

[12].

For interaction times sufficiently short that depletion ef-
fects may be neglected, the multiphoton transition from the
initial bound state of H, described in the short-range poten-
tial approximation by the one-electron wave function
Yi(r,t), and a final state of the detached electron, described
by ¢4 7)(r,t), may be calculated using tf&matrix element

[37] where we have employed E) for the short-range poten-
tial. The main goal of this section is to solve H§) for the
final-state wave functions$*)(r,t). In order to do this we
begin by introducing analytic expressions for bath(r,t)
andGg(r,t;r',t").

S0 = go(r t)+2—77f dr’ft dt’ Go(r,t;r’,t")8(r)
f ’ o\l P . olh,4L, 1,

X

e t’)) ®
gt L)

sfiz—ijjc (4 7)(r 1) |2Egsinwt| ;i (r,t))dt, (4)

where the minus superscript aj/;’) indicates that incoming-
wave boundary conditions apply. This expression for the
S-matrix element is exact within the short-range potential A Mmomentum space representation {y has been given
model approximation if the final-state wave function de-in Ref. [6]; the coordinate space representation, which we
scribes exactly all final-state interactions of the detachedequire here, is given b}38]

electron with the static and laser electric fields as well as the

short-range atomic potential and if the initial-state wave %o(r.t)=¥5(X,t) ¥ (y.t) ¥z t)exp{ —i(E§/Bw?)sin 2wt
function includes static electric field effects on the short-

1. Analytic expression forp,(r, t)

_ 2 2
range potential’s bound-state wave function. We present and H(Eg/4w )t} ©)
discuss here our evaluations ¢f ) and ; in turn. In the where
next section we present our calculations for tBenatrix
elements for one- and two-photon detachment. 1
l//);(X,t):TeXFii(pr_fft)]. (10
o

°Note that in Ref[17], whose results we shall comment upon
later, the electric fields are defined along the negatiagis so that 1
the force on the electron is along the positvaxis. Our formulas P(y,t) = —ex(i (pgx_ ef,'t)], (11)
in this paper are written so that comparison with those in Ref} \/E
requires simply changing the signs of the electric fiel@ertain
normalization factors involving only the magnitude Bf therefore
employ the absolute valy&,|.) 3We shall later obtains{ )(r,t) using our result fors{)(r,t).



414 BAO, FABRIKANT, AND STARACE PRA 58

1/3

Y(zt)= gsAl

a

€ E
(2ES)1’3( 72— -2 — "%5in wt

1
E. 2 Gi(t,t )Z—H[(tz—t)(t —ty)o(t—t")

E 2B :
+i——-CcoSswt+i——Ccoswt—ie,t
w® @

p[ oEs 2 ] + (L= t) (=t 6t —1)]. (19
Xex )

For later convenience, we change the variabjeandt,
(12 tot andt—t',r, tor, letr, go to zero, and use the explicit
form of E in Eq. (1), in order to obtain from Eq(18) the
Here a denotes a particular set of conserved quantum numfollowing analytic result for the classical action:
bers @ ,py ,€;). The energy of the final-state electron is
I(r,t;0t—t’ Xryz Eoz t
—_ a a a r N — = — —_—
€=€,Te, te,, (13 (r.t0, ) 2t’ () cose
whereeg=3(p)* and ey=3(py)*. Eoz . _
- T[smwt—smw(t—t’)]
2. Analytic expression for G(r,t;r’,t") ot

According to a general result of Feynmf33] (holding Egzt' E§t’3 E%t’
for all Hamiltonians with only linear and quadratic depen- T2 T 24 4,2
dences on spatial coordinatethe Green's function we re- @
quire can be represented in closed analytical form. For the E.E
Hamiltonian + O3S[COS(ut—CO&u(t—t')]
w
H(r,r,t) 1'2+Et (14) EoEdt’
r,r,t)y==r or, ) )
( 2 ® + 52 [sinwt+sinw(t—t')]
2w
the Green’s function satisfying E7) is £2
0 . .
+ sinwt —sinw(t—t')]?
- 20t [ ]
Go(ra,ty;rq,ty))= ————exdil (r,,ty;r1,t1)]
ollz,t2,r1,11 (27 (t,— )] Ail(ra,tairg .ty Eé
— ——[sin2wt—sin2w(t—t’)]. (20
X B(tp—ty), 19 8wl ]
where @ is a Heaviside function and whetes the classical 3. Solution of the integral equation fors{*(r, t)

action, defined b . i .
y Before solving Eq.(8) for the final-state wave function

- #47)(r 1), we make two observations. First, owing to the
|(r2,tz:r1,t1)=f L(r,r,t)dt, (16)  function in the integral equation faki*)(r,t) in Eq. (8), the

g integral over the spatial coordinates is determined by the
behavior of the integrand near the origin. Second, owing to
the periodicity of the laser field, we can introduce the
guasienergy representatip27,28|

where the classical Lagrangian is given by

. 1.
L(r,r,t)=§r2—E(t)~r. (17
P =exp(—iet) @ (1), (22)
Note that in Eqs(14)—(17), r,=r(t,) andr,=r(t;), where _ o
classicallyr (t) is defined by Newton’s equations for the par- po(r,t)=exp(—iet)® (r,t), (22
ticle. The classical action may be obtained analytically by

doing the integration in Eq(16) along the classical path \yheree is the quasienergy, anti{")(r,t) and®©)(r,t) are

[29]: periodic functions ot. Furthermore®{*)(r,t) must satisfy
_ the following boundary condition appropriate for the short-
1(ra,tziry,ty) range potential in Eq(8) [25,26]:
1(r,—r)? [t t—t t,—t
:_g_ Zth(t)[rz ! +r1 2 1
2 -ty =ty Tl <1><;>(r,t)|,ﬂ0=(r—,< u(t). (23
1t tp
+—J dtJ dt'Gs(t,t")E(t)-E(t'), (18 o . o
2y y Substituting Egqs(21)—(23) into Eq. ( 8), multiplying both

sides bye'®, and changing the integration variatileto =
where =t—t’, we obtain the following result:
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q>g+>(r,t)=q>g°>(r,t)—2wf dre'€"Gy(r,t;0t— 1)
0

Xu(t—r7). (29
From Eq.(15), we have, then,
Go(r 0t —7)= ——exdil (r,t:0t— 7], (25

(2miT)3?

where the action is given by Eq.(18) for the electric field
defined by Eq(1). Substituting Eq(25) into Eq. (24) gives

1 ©dr

()= 0(r,t)+ f —
S0=0Pmn+ o 5
xXexdil (r,t;0t—7)+ierju(t—7). (26)

Now for r—0, the singularity in the integran@stemming

from the 737 facton for 7—0 is canceled by the rapid

oscillations of exp() [cf. Eq. (18) and note thatr—0 im-
plies t,—t;—0 in that equatioh However, for r=0,
[(0,t;0t— 7) does not lead to rapid oscillations in edp@s
7—0 and thus one must deal with the singularityrat 0.
In order to treat the singularity in E¢26) for r=0 and

7—0, we follow the procedure of Manakov and Fainshtein

[28] and introduce the free-particl&P) Green'’s function

GFP(r,t;O,t—r)E(ZTIT)S/Zexp{iIO(r,T)], (27)
where
I’2
Io(r,r)EZ—T. (28

This result follows from Eqgs(15) and(18) upon setting the
electric fields equal to zero and making the appropriat
change of variables; one may also easily verify from thes

equations that

=i
Go(r=0t;0t—17) — Gpp(r =0t;0t—17)= )3i2°
7—0

(29

(2miT

Because the free-particle Green’s function equ@jsas =

—0 [and thus permits us to eliminate the singularity as
7—0 in Eq. (26) for r=0], we add and subtract the free-
particle Green’s function to or from the Green’s function in

Eq. (25 and substitute the result in the integrand in E2f)
to obtain

1 wdr
(+) —p) ——— | —€'*
oL (r,t)=d! (r’t)+(2wi)1’2 0 Talzelé

X[ HE0= Dyt — 1) —gllolhDy(t)]

u(t)

©dr
+— RE—
(277' )1/2 0 7_3/2

ilo(r,7)+ier

(30

FINAL-STATE-INTERACTION EFFECTS ON ONE- AD . ..

esubstitute Eq(23) on the left of Eq(32) and replace
é].+ikr on the right to obtain

415

One observes in Eq30) that the first integral on the right-
hand side is now well behaved for=0 whenr— 0 because
the quantities in brackets exactly cancel. On the other hand,
the second integral in Eq30) involving the free-particle
Green'’s function can be carried out analytically,

- ik
1 f ﬁeirz/zwmzi (31)

(2’7Ti)1/2 0 7_3/2 r’

where k=\/2¢e. Substituting this result in Eq30) gives,

then,
1 J"” dr
(277_' )1/2 0 7_3/2

X eier[eil (r,t;O,tfr)u(t_ ’T) _ eilo(r,‘r)u(t)]

O (r,t)y=00(r,t)+

u(t)eikr
+ r .

(32

Two observations regarding E2) must now be made.
First, although the singularity in the integral has now been
removed by adding and subtracting the free-particle Green’s
function to the Green’s function for the photoelectron in the
presence of the laser and static electric fields, we still have a
singularity atr—0 from the integral of the free-particle
Green'’s function. Second, everything on the right-hand side
of Eq. (32 is known analytically except for the time-
dependent functioru(t). Hence, if we can determine this
function, we shall have determined the exact final-state wave
functiond)(j)(r,t), which can then be obtained directly from
Eq. (32.

4. Determination of ut)

One may obtain an equation that permits one to determine
u(t) by considering the —0 limit of Eq. (32). Specifically,
ikr by

—u(t)(k+iv2e)

=004+ ———
€ ( ) (27Ti)1/2

* dr ieT] f
Xfo (T)glze [exp(il (0,04 = Du(t—7)—u(v)].

(33

Although this equation is similar to one obtained by Mana-
kov and Fainshteinicf. Eq. (4) of Ref. [28]], there are two
important differences. First, we use the length rather than the
velocity gauge. Second, we look for the final-state wave
function for a fixed real quasienergy rather than for the
complex quasienergy considered in REI8] since we are
solving the final-state scattering problem with outgoing-
wave boundary conditions. Therefore we have the additional
inhomogenious term on the right-hand side of our equation
for u(t). Expandingu(t) and(b(eo)(o,t) in Floquet series,
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+oe Second, expand the wave function in Efj2) up to first
u(t)= E U.exp—inwt), (39 order inEy and compare the result with E(B5) to obtain
n=-—w
1/3
< D= ———AI(—§), (40)
dO0= 3 dPexp—inwt), (35) 2m|E4Y
n=-—ow
: 1/3 2/3
. . . 0) IEO ES . ES .
and taking the Fourier transform of E(B3), we obtain a Q)&lz Ai'(— &)+ Ai(—&) ¢,
. . < 24372\ ||V o113,
system of coupled algebraic equations for the coefficients s
which determineu(t): (4D
where
— + H — (0) +
(K |\/2_€)Un q)n Em: IVlnmUma (36) fE(Z/Eg)lBe?, (42)
where and where the prime on the Airy function in E@1) is the
total derivative(and not the derivative with respect £.
© e Finally, substituting Eq(38) into Eq. (36) we may solve
Mam= —1/2[ dtexd i wt(n—m)] for the coefficientd), andU _; [keeping only terms of order
2m(2mi) ") 7o (Eo)° in Uy and of order Eg)* in U_,:
= d ) — _ O _ -1
xf (T;Ze'”{exr{il (01,01 —7)+inwr]—1}. Uo==Po (=Yt ) 7, (43
0(7
U 1=—(PO+M_;Uo)(—Yeotr)l (44
37) 1 (S 1,0J0)(—Ye- 0T k) (44)
. ) . where we have defined, for later convenience,
To summarize, Eqg36) and(37) permit one to determine
the coefficientsU,, which defineu(t) [according to Eq. “Veina=Mptiy2e. (45)

(34)]. With u(t) determined as well a®®, I, and |, Eq.
(32) may be used to obtain the desired final-state wave func- In Egs. (43) and (44), ®{ and ®°) are given in Egs.

tion. (40) and (41); the matrix elementd y, (equivalentlyy,),
M_;_, (equivalentlyy._,), andM_, ; are defined by Eq.
5. Evaluation of Uy and U_; in the limit E,—0 (38) and our method for their evaluation is presented in Ap-
As will be shown in Sec. IIl, in which we evaluate the PeNdix A. Equationd43) and (44) are necessary for deter-

transition matrix elemenficf. Eq. (4)] for the cases of one- Mining the final-state wave function in the lint,—0. We
shall employ these results when we evaluate $hmatrix

and two-photon detachment in the limit of weak laser fields, T
the only coefficientsJ , [cf. Eq. (36)] that we require arel, elements for one- and two-photon detachment in this limit in
andU _;. We evaluate these here. Sec. Il.

We show first that in the limiEy— 0, the summation in . .
Eq. (36) is severely truncated. Substitute the 0 value of B. Initial-state wave function
the action in Eq(20) into Eq. (37), expand the exponential  |n our approacHcf. Eq. (4)] the initial state should in-
up to terms linear irEo, and carry out the integral ovérto  clude all interactions other than the atom-laser interaction.
obtain Then it can be represented by the function

] Ji(r,t)y=e P (r)=27BG4(r,0), (46)

B 1 ©dr (e ) E§7'3
Mnm_&nm(zﬂ-—i)l/z OTT/ZG expl an_W

iEOES »dr .
Foneam i) 72!

whereB is a normalization constaifivhose numerical value
equals 0.315 52 wheB;=0 [12]), and G4(r,r’) is the sta-
tionary Green'’s function for the electron in the static field
Es. Owing to the possibility of decay in the static field, the
wave function in Eq(46) is not, strictly speaking, stationary,
iEQEs (=dt and should be calculated for a complex energy whose imagi-
(27T—i)1/2 0 TT,Z nary part g.ivgs the decay width. However, in this paper, as in
previous similar treatments of the probldé-12], we con-
sider the limit of pure rea¢; . Physically it means that for the
Q-_(7), (38)  fields under consideration the rate for detachment in the laser
field is much greater than the rate for detachment in the static
field. Although this condition puts certain limitations on the
strength of the static field, the latter might still be relatively
(1—e 107 (1+e 1) strong. Typically_it is possible to_haye a fielel up to 3
+ I (399 MVicm without inclusion of static-field-decay effects. It
2w 4i w? should be emphasized that in spite of this approximation, the

(e+nw)r

2.3
_EST

24 ”Q+(7)+5n—1,m

xex;{i

Q.=Q*=

2.3
S
(etnw)r— 2 )

where
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e*iff‘@ij(r,—t,— Eo)|zEgsin wt|y;(r,t))dt
(52

effect. [Note, however, that we have found the static field Shi=-
effects on the initial-state wave function to be small for the
field strengths we consider; thus, in practice, our calculations

have employed the zero-static-field result for the initial-statqs the rescattering correction. In what follows, we obtain the

—o0

radial wave function in Eq46) does include the static field _ Jw
i

wave function given in Eq(3).] S-matrix elements in Eqg51) and(52) appropriate for one-
and two-photon detachment in the limit of weak laser fields
lIl. FORMULAS FOR ONE- AND TWO-PHOTON E, but strong static field€g (although not so strong that
DETACHMENT CROSS SECTIONS field ionization of the ground state is significant

IN THE WEAK-LASER-FIELD LIMIT

A. One- and two-photon S-matrix elements

The S-matrix element in Eq(4) requiresyt (r,t), which
a4) reg s (r,0) ignoring rescattering

is the appropriate wave function for photodetachment pro-
cesses, whereas in the previous section we have obtained The part of the totalS-matrix elementS;; in Eq. (50
¢§+)(r,t), which is the appropriate wave function for which ignores rescattering effectS? , has been treated by
electron-atom scattering processes. As shown in Appendiao and Starace, whose results we employ hé® shown
B, however, these two final-state solutions are related as foin Ref.[6], upon carrying out the time integration in E§1)
lows: one may write

(L E, pY) =g (r,—t,—Eg,—p%).  (47)

The matrix element in Eq(4) actually requiresyi*,
which equals

: (53

E2
= % s?f“”(s( €+ —4;’2 —&—No

whereN is the number of photons absorbed by theidn in
P (L Eg, pY) =e ietd D% (1 t Ey,p®) the photodetachment proce&%/4w? is the ponderomotive

ietea shift, andS?™ is given in the limitE,—0 by Eq.(62) of
+en' DL (r,—t,—Eg), (48)  Ref.[6]. ForN=1 and 2 one obtaingising Eq.(3)]

where the first term on the right-hand side is obtained from 223,8E,( EY
Egs. (99—(13) and (22), and the second term on the right- S?i(N:1)=—2 = [ i"(—&)
hand side is defined by Eq&6) and (34) * ® |Ed|
a(r,—t,— (E2/2)Y3

O (r,—t,—Eop) + STAi(—§) (54)

=0 (r,—t,—Eg)—®O(r,—t,—Eq,— p%

! ! and
__ ! fo ar i[1(r,t;08— Eq)+ | TBE2 213 2
= o _Mglzexp{ i[1(r,t;0t—7;,Ep) + €71} on=2)_ i mBE; B¢ 1 E (=6
| (22/3w3| Es|1/6) 21/3w 4 2(,03
X 2 Up(—Egernet=n, (49) V34
n=—o - w2 A|,(_§) . (55)
In obtaining Eq.(49) we have used the fact thifr, —t;
—t+t’,—Eg)=—I(r,t;t—t",Ep) [cf. Eqg. (20)] as well as _
Eq. (34) for u(—t+7). In Eq.(48), U,(—E,) is obtained from B. One- and tlwg_'PhOtO“S'mff‘”'x elements
Eq. (36) [using the analytic expressions fd®)(—E,) and Including rescattering
M,m(—Ej)]. Substituting Eq(48) into Eq. (4), we obtain In the limit E;— 0, because of the fact@, coming from
o ca the electric dipole interaction between the laser and the ini-
Sti= S+ S (500 tial state of the ion, only terms independentE&yf (respec-

where tively, of orderEy) in <I>";‘f contribute to the rescattering part

of the S matrix in Eq.(52) for a one-photorn(respectively,
two-photon transition. We thus expanfﬁi‘f in powers ofE,

up to first order and, in order to carry out the time integra-
tions, convert all factors of time to exponential form. The
is theS-matrix element ignoring rescattering by the atom andresult is

sﬁz_if:e+ifft<q>g?>|onsin wt|ygi(r,t))dt (51

“Note that the singularity in the integral in EG9) at 7=0 for Note that although Refl6] employs a different gauge for the
r—0 is treated by adding and subtracting the free-particle Green'taser field than that employed here, R] has shown that for an
function, as discussed in Sec. Il A 3 above. For simplicity of nota-initial state of the form in Eq(3) the S-matrix element in Eq(51)
tion, we have not indicated this procedure explicitly in E4P). is gauge invariant.
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+oo integral must result in an energy-conserving delta function

@ (r,—t,—Eg)=—2m > etinety (—Egp) 5(e;+E3l4w?>—Nw—¢;), whereN=1 or 2. These consid-

n=- erations give the following result fad=1:
+1
qulefiq“’thi'q‘(—Eo)'qt (56 S‘?i(Nzl):—szUOEof drGy(r,e)z0(r),  (61)
where wheré
Qa= fowdfe‘“f*”“’)’Gs(r,T)xq(r,r)- (57) Gs(r,ef)EfomdreiEfTGs(r,T). (62)

G, is the Green’s function for an electron moving in the For N=2 we obtain
static electric field,

it B B SHN 2=+ 2R, [ drl (1201,
sihn)=———sexpll5-——F———|(, O
(277) 27 2 24 —2m2E,U_4(—Eo)

and

xf drGy(r,e;— w)z®!O(r 1), (63
XCI:O:]" (59)
where

z qz . Eq .

Xo-=1=5, ~ oo (1€ "+ =5 [1-qe” 7] -
o™ w Hef(r)zf d7re I Gy(r, 7) x 1 1(r, 7). (64)
0
qEST —iqor
+ 4iw2[1+e 1. (60) A convenient way to evaluaiﬁef is given in Appendix C.

Substituting Eqs(43) and (44) for Uy and U _; [using
The rescattering contribution to tl&matrix elements for Egs. (40), (41), and (45)] into the rescattering part of the
one- and two-photon detachment may now be calculated bg-matrix elements in Eq961) and (63) and combining the
substituting Eqs(56)—(60) into Eq.(52) and carrying out the results with theS-matrix elements ignoring rescattering ef-
time integrations. For one-photon detachment, only terms ofects [Egs. (54) and (55)], we obtain finally the complete
order E, are included, while for two-photon detachment, S-matrix elements including rescattering effects. For one-
only terms of ordeEg are included and, of course, the time photon detachment we obtain

N=1)_ O(N=1 N=1)
S V=N P sy

228 EO( E

(EY2)  (=Yetw)
w? \|E3|1/6

+w
w (2|E4)*?

[Ai’(—§)+Ai(—§)

fers(r,ef)(z/r)e‘””. (65)

In Eq. (65), the evaluation of, is discussed in Appendix A. For two-photon detachment we obtain

—i7B E2 27/3E4/3 27/3E1/3w
SIN=2)_ O(N=2) , qa(N=2) _ O I Aj"(— S 4 > fer re—ow)(zlrye ™
fi fi fi 28/3w3|ES|1/6 ( g) wz (_yef—w+K) S( f )( )
2 25/3E2/3 8(1)3
. S S —
+Ai(— + - + T
Ai(—§)|1 2 - & (—yEf+K)jdrH€f(r)(Z/r)e
4Es [ 2M_;d-Ep &°

f drGy(r,e;—w)(z/r)e '

+(_yef7w+K)\1+l EsEo (—y5f+K) ] (66)

In Eqg. (66) the matrix elemenM _, o and the functiony ..., are discussed in Appendix A, and the integral involvlﬂiq(r)
is discussed in Appendix C.

*Note that Ref[17] employs the sign convention for Green'’s functions in which a minus sign appears on the right-hand side
of an equation such as E(2). Comparisons of formulas in this paper with those in R&¥] must take this into account.
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C. Generalized one- and two-photon cross sections

The S-matrix element§(N) for N=1 and 2 in Egs(65) and (66) may now be used to obtain the corresponding cross
sections, which are defmed as follops:

1
a<N>:E f Wi dpldplde], (67)
where the transition rat&/{"V) is defined by
E2
vv§,N>:(2w)1|s§iN>|25( e+ —O—ei—Nw) (68)
4w?
and where the photon flux is given by
cE3
iy (69)

Our results in the next section are presented for the generalized cross $86tiagiven by

FN =

: (70

since this generalized cross section is independeBiaoh the lowest order irE. In evaluating Eqs(67) and (68), we note

that we may writed p'd py= p'dp'dg, =d(3p?)d6, , wheree;=21p?+ €. Combining Eqs(67)—(70), we obtain, for the
generalized cross section,

87w N 2,
(}(N): . J'ei+Nw7EO4w| (N)| (71)
cEj

where theS matrix is evaluated ap, = pl , Where %52
single-photon detachment cross section,

=¢+Nw— E0/4w—6 From Egs.(42) and(65), we obtain, for the

2

167°B2|E a E22)1  w*(k—Ye)”

oP=ol= e Ai’(—§)+Ai(—§)[ —+ CIED" fdres(r er)(zlr)e” Kf] (72)
Similarly, from Egs.(42) and (66) we obtain
. 4BZ 2|E 1/3 27E4 1/3 27E 1/3
o= —c(2|45| J’ déj A (=€) ( Z) ((K y) fer rei—w)(zlrye
w w €— w
A 1 2EZ (25E2)'S w’ Jd (1) (@r)e
+AI(— + - r ry(zirye
(-8 1 —-— oy (1
2
AE 2M_;  —Eg)@® f o
+ =y (1 EEo(r—Ye) drGy(r,es—w)(z/r)e” (73

The upper limits of the integrations in Eq32) and(73) are  detached from H: its interactions with the static electric

defined by field, with the laser field, and with the atomic potential
(which we treat in the zero-range potential approximation
én=(&+Nw—Ej/4w)(2/ED)>. (74 Two points should be emphasized concerning the field
strengths. First, our results are presented in the weak-laser-
IV. RESULTS FOR PHOTODETACHMENT OF H - field limit. quever, our formulation tre_at_s the laser field
IN A STRONG, STATIC ELECTRIC FIELD nonperturbatively and we then take the limit of our results as

Ey—0. As shown in Ref[6], even in this limit an additional
Our results in this section and the next take full account oterm appears that is not included in formulations that treat
all three final-state interactions affecting an electron photothe laser field in the lowest order of perturbation theory. The
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FIG. 2. Photodetachment cross section of b a function of
the static electric field strength Atv=0.85 eV. Curves are labeled

09 |- as in Fig. 1.
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for the photodetachment of Hin a static electric field of 1
MV/cm [Fig. 1(@)] and 2 MV/cm[Fig. 1(b)] with predictions

of both weak-field[12] and strong-field 6] theories which
ignore rescattering effects. Near the zero-static-field thresh-
old, we predict the plateau region to be substantially lower
than the results of the weak-field thedid2]. On the other
hand, our present results are close to the strong-field results
of Gao and Staracf6]. This indicates that the rescattering
effect is small. The results of previous calculations of one of

Photodetachment Cross Section (a.u.}

0.1 iL 1 us[17], in which rescattering effects were calculated in the
00 | L ‘ ‘ ‘ weak-laser-field approximation using the frame transforma-
070 078 O oton ey V) 0% 100 tion theory, overestimate the rescattering effect for strong

static electric fields.

FIG. 1. Photodetachment cross section as a function of photon Figure 2 plots the photodetachment cross sections for H
energy for a static electric field strength of 1 MV/c@ and 2, g external static electric field for a particular photon en-
M_V/cm (b). Shortfdashed line: results ofawe@dx_seb field theory ergy, 0.85 eV, which corresponds to the right edge of the
without rescattering effectpl2]. Long-dashed line: results of a 2100 near the zero-static-field threshold, as a function of
strong(lasey field .theory without rescattering Eﬁe(.{ﬁ]' Solid I!ne: the static field strength. Note that the magnitude of the cross
present resultfusing Eq.(72)], which include all final-state inter- section and the differences between our results and those of
actions. - ) o -

the weak-field[12] and strong-field 6] predictions without

_ . ~ rescattering decrease as the static electric field becomes
effect of this extra term is observable for strong static fieldssmaller. The cross sections converge to the weak-field pre-
[6]. (In fact, it arises as a result of interference between thjiction [12] when the external static field decreases to zero,
static and laser field$].) Second, we present our results for as expected. These conclusions are confirmed by recent cal-
static electric fields of the order of 1 MV/cm. As shown in cylations of Mese and Potvliedd2] who found the cross
Ref. [6], such high static field strengths are still not so highsections for photodetachment in a static electric field using
that they significantly field ionize the Hion. They are, nev-  the Sturmian-Floquet approach with a screened Coulomb po-
ertheless, much higher than is typically employed in therential for thee™-H interaction. Their results are quite close

laboratory. Nevertheless, such field strengths have beeg ours for the cross section as a function of field strength.
achieved in experiments using a relativistic Heam to con-

vert a laboratory magnetic field into a static electric field in

V. RESULTS FOR TWO-PHOTON DETACHMENT
the H™ rest frame[8,40,41.

OF H™ BOTH WITH AND WITHOUT A STRONG,

_ O_ur results for the photodetachmer)t of Hre presgnted STATIC ELECTRIC FIELD
in Figs. 1 and 2 and are compared with the theoretical pre-
dictions of Du and Delo$12] and of Gao and Staradé]. It is well known that accurate prediction of the two-

The predictions of Ref.12] are typical of weaKlase) field  photon detachment cross section of lfbr the case of lin-
theories that ignore final-state interactions of the electrorearly polarized light requires that one take into account the
with the laser field as well as with the atomic potential 1S® phase shift of the detached elect{@6,43. This implies
[2,3,7-19. The predictions of Ref.6] represent results of a that the rescattering effects we treat should be strong for the
strong (lasey field theory that ignores final-state electron- two-photon detachment process. Hence we present our pre-
atom (rescattering interactions. dictions for zero static electric field for the purpose of deter-
Figure 1 compares our resulisbtained using Eq(72)] mining the reliability of our approach by comparison with
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FIG. 3. Generalized two-photon detachment cross section for
H™ plotted versus photoelectron kinetic energy. Solid curve:
present zero-range potential model results. Dash-dotted curve: ef-
fective range model resultg36]. Dashed curve: present free-
electron model results.
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results of others. We then present our results for two-photon
detachment of H in the presence of a strong static electric
field. (Our remarks given in the first paragraph of Sec. IV
apply also to this section.

Figure 3 presents generalized two-photon detachment
cross sections for Hwithout the presence of a static electric
field in three levels of approximation: the free-electron ap- 1 ‘ ‘ ‘ ‘
proximation(which includes no final-state electron-atom in- S ey
teraction$, the present zero-range potential model approxi-
mation  (which includes final-state electron-atom FIG. 4. Generalized two-photon detachment cross section for
interactiony, and an effective range theory result from Ref. H™ plotted versus photon frequency fg=0.5 MV/cm (a) and 1.0
[36]. The effective range theory is more realistic than theMV/cm (b). Solid curve: present zero-range potential model results.
zero-range potential model. Specifically, our zero-range poPashed curve: present free-electron model results.
tential approximation corresponds to the following expres-

] (b) E=1MV/cm

Generalized Two-Photon Cross Section
@

sion for the phase shift: values of the static fieldEs=0.5 and 1.0 MV/cm. The am-
plitude of oscillations grows with increasings, and the
k cotds= — «, (75  whole cross section pattern exhibits a high degree of sensi-

tivity to final-state interactions. This sensitivity provides one
whereas effective range thedd4] provides a more precise an opportunity to extract information on tlsewave scatter-
expression foids, ing phase shift from any experimental results for the photo-
detachment cross section. In principle, it can be done even
1 — for zero static field. However, by adding a nonzero static
K Cotds=—k+ STer(k“+K7), (78) " field, one can manipulate the detachment cross section and
make it more sensitive to final-state interactions. This would

where the variationally determined valuergf is 2.646 for ~ allow a more precise determination of the phase shift.

H™ [45]. The two-photon detachment cross section incorpo-

rating this latter phase shift was obtained by Eiual. [36_3]. V1. SUMMARY AND CONCLUSIONS

One sees from Fig. 3 that the final-state rescattering interac-

tion effect changes drastically the cross section near thresh- In this paper we have treated theoretically the effect of

old (as compared to the free-electron approximation risult final-state interactions on the photodetachment cross section

Furthermore, the effect is described reasonably well withirof H™ in a strong static electric field in the zero-range po-

the zero-range potential approximation, as evidenced by thential model approximation. As this model permits much of

good agreement with the effective range model results. Thithe theoretical work to be done analytically, we have pre-

good agreement provides support for the reliability of oursented the necessary development and the final results in

results in the presence of a static electric field, in which caséetail, in a form suitable for numerical evaluation. Indeed,

there are no other results with which to compare. many of the details presented here are difficult to find else-
In Fig. 4 we present the frequency dependence of thevhere; we present them for the benefit of others who may

generalized two-photon detachment cross section for twavish to employ the zero-range potential model, the quasien-
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ergy approach, and/or the analytic Green’s function that havé62)] and the last two terms on the right-hand side stem from
been key ingredients of our formulation of the theory. Thesehe equality in Eq(31) upon expanding the exponential on
ingredients have enabled us to treat final-state interactions dfie right-hand side of that equation to first order kn
the detached electron with the static electric field, the lasef=/2er). In order to handle the apparent singularity near
field, and the atomic potential. Although our results are prer =0 in Eq. (A1) we introduce the quantity,, where

sented for the weak-laser-field limit, we emphasize that this

limit is obtained from our strong-field formulation, based on d
Ref. [6], which leads to terms that are not present in a for- yeEZT’a_r[er(r'é)“FO' (A2)
mulation which treats the laser field perturbatively.

For single-photon detachment of Hwe find that final- Consider now the behavior @(r,e) nearr=0. As dis-

state rescattering effects have only a very modest influenceussed in Sec. Il A 3, we use the procedure of R28] to
on the cross sections. Our results are similar to those of Gageat the singularity inG¢(r,e) for r—0 near the limitr
and Starac¢6], who treat final-state interactions of the de- =0 in the integral representation for this Green’s function
tached electron with the static and laser electric fields, buficf. Egs. (58) and (62)]; namely, we add and subtract the
who ignore rescattering effects. Our results also indicate thgtee-particle Green’s functioficf. Egs. (27) and (28)], as
results of calculations employing a frame transformationfollows:
theory[17] apparently overestimate the effect of rescattering
interactions for strong static electric fields. L ien

For two-photon detachment of Hwithout a static electric Gy(r.e)= fo d7e""[Gy(r, 7) = Gl 7)]
field, for which rescattering effects are known to be strong
[36,43, we find that our zero-range potential model results
are in reasonable agreement with results of an effective range
theory treatmenf36]. This agreement is evidence that our
results in the presence of a static electric field are also likelWow, from Eq.(32),
to be reliable. Our results show that the generalized two-
photon detachment cross sections for &te highly sensitive 2 ien
to both final-state rescattering interactions and to the magni- f 0 d7e'“"Geelr, 7) =~ 2T (A4)
tude of the static electric field.

+ focheiETGFp(l’,T). (A3)
0

eikr

and the integral of the difference betweBpandGgpis well
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APPENDIX A: EXPRESSIONS FOR M1,

In the applications presented in this paper we evaluate th&he only nonzero contribution to the derivative term in Eq.
matrix elementM ., defined by Eq(37), to first order in  (AS) comes from the second integral on the right-hand side
E,. The analytic result is given in EG38). This result, how- Of EQ. (A3), whose value is given by EqA4). Expanding
ever, is not convenient for numerical computations. Muchthe exponential in powers af, one obtains
more readily evaluated expressions may be obtained by em- JG 1
ploying the stationary Green's function for an electron mov- lim27r —(r,€)= —. (AB)
ing in a static electric field and its representation in terms of r—0 ar r
Airy functions. We obtain these expressions here in turn for
a general diagonal matrix elemevit,, and for the particular Comparison of Eq4A5) and(A6) with Eq. (A1) shows that
off-diagonal elemenM _;, which we require.

Mnn:_yeJrnw_i\/Z_E- (A7)
_ = ExpreSS|.0ns-f0rMnn o This relationship was employed in Eqg.3)—(45).
The diagonal elememd ,, is given by the first line of Eq. The functiony, defined by Eq(A2) is most conveniently
(38). This expression foM,, may be rewritten as the fol- calculated by using the representation for the Green’s func-
lowing limiting expression: tion G4(r,€) in terms of Airy functions obtained by Dalid-

chik and Slonim46]:
1
M= —lim ZWGS(r,e—I-nw)—i-F-I—i\/Z—e . (A1) 1
0 Gs(r,e)=T[Ai(fl)Ci’(fz)—Ai’(él)Ci(fz)], (A8)

In this equationG; is the stationary Green'’s function for an
electron moving in a static electric fiel@¢f. Egs.(58) and  where
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Ci(£2)=Bi(&2) +1 Ai(&,) (A9) 15w
and where the arguments are defined by =&+ (2E9)Y3%2,
2E 1/3 _
ot ), E=£ 20, (A16)
(2E 1/3 gzge—2w+(2Es)1/32'
= ¢+ ———(z+T1) (A10)
&=t 2 ' In the Iimit_z—>0, we may expaﬂd C#,) and Ci(,) about
&, and Ci(¢,) and Ci(&,) abouté;. Using also the fact that
2¢ [47]
s Ai(£)CI' (&~ A" (§Ci(§ =71, (A17)
In Egs.(A8) and(A9), Ai(£) and Bi(¢) are the regular and we obtain
irregular Airy functions[47]. Substituting Eq(A8) into Eq.
(A2) and making use of the differential equation satisfied by (2Es)1’3
each Airy function to replace the second derivative terms Gg(0,e— w)—G¢(0,e—2w)=+ T[Je,w—\le,m],
[47], we obtain, finally, (A18)

Y= —m(2E) A (£)C1 (£)— EAIEICI(E)]. (ALD | hore we have defined

2. Expressions forM _ o J=AI"(E)CI (€ — EAI(E)CI(EL), (A19)

Forn=-1 andm=0, Eq.(38) gives where ¢, is defined by Eq.A10). Finally, the derivative
. 2 3 terms in Eq.(A14) may be obtained by differentiating Eq.
M zijwﬁex i(e—w)r—i EsT (A8) and taking the limitr —0:
-10 2(27mi) w30 732 24

9Gs . C1/an: .
lim——(r,e)=lim(2E) " Y3Ai(£,)Ci(&,)

. wT .
X|1—e "7+ ﬁ(lﬂte"‘”)}. (A12) r—0 J€ r—0
=(2E¢) " Ai(£)Ci(EL). (A20)
Using Eqgs.(58) and(62) for the stationary Green'’s function o . .
for r=0 as well as the expression Substituting Eq(A18) and (A20) into Eq. (A14), we obtain
finally an expression foM _,q in terms of Airy functions,
dG4(r,e) (= _ which are convenient for numerical evaluation:
TZIJ TdTeleTGS(I’,T), (A13)
’ oS (269
i M*lOZ_I— [‘JE*LU_‘]E*ZIA)]
we may rewrite Eq(A12) as w3 2
M _10=— TS(Ggo,e—w)—Gs(o,e—zw) —Z(ZES)M.[A'<fefw>C'<fefw>
_ ;( ﬂfs(o,e_ o)+ ‘Z_Gs(o,e_ 2w)) ] (AL +Ai<§fzw)Ci<552w>]] , (A21)
€ €

Through use of Eq(A8), one may express EqA14) in  whereJ, is defined by Eq(A19).

terms of Airy functions. However, one must employ the ex-

pressions for the Green’s functions with nonzero values of ~ APPENDIX B: RELATION BETWEEN {*) AND (™
and take the limit ag—0. For simplicity, one may take

— 7 and then take the limit 0. Thus Although for calculation of the photodetachment matrix

element we need the solutiaif ), it was more convenient

liM[Gy(z,e— w)—Gy(z,e—2w)] for us to calculate first//$+) . Therefore we need to establish
20 the relationship between these two solutions of our nonsta-
1 tionary problem for an electric field of the form in E(L).
=lim{ — Z[Ai(gl)Ci’(gz)—Ai "(€1)Ci(&5)] We write first Eq.(8) in @ more general form
z—0
_ — J— J— + 0 t ’ '
P NGO (E) A ECE)]], (a1s) YRS J o[ ar

(+) Y IN () et g7
where[cf. Eq. (A10)] XGy (r,tir "t Eg) V(") g (r',t7), (B1)
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where the retarded Green'’s function is given by @8d) and  where
Yie. = o by Egs.(9)—(12). (Note that our slight change of
notation in this appendix from that used in the main text is
meant to indicate explicitly the dependence on the electron’s
momentump and the laser field amplitud&,.) In the sta-

tionary theory, the “minus” solutiony{~) can be obtained

from the “plus” solution 4/1%” by performing three opera- We discuss here methods for calculat]ﬂgf(r), which is
tions: complex conjugatiorp— —p, andt— —t. However, defined by Eq(64). Substituting Eq(60) into Eqg. (64), we
in a nonstationary problem, time reversal changes the Hamikave

tonian. Therefore, there is no general relationship between

PElr )=y (). (87)

APPENDIX C: EXPRESSIONS FOR Hef(r)

“plus” and “minus” solutions. However, in our problem P e z Ciwr
the Hamiltonian does not change if the operatien—t is «(1= fo dre" " Gy(r, 7) Z_zinT[l_e ]
performed together witky— — E, as can be seen from Eq.

(1). In particular, it can be verified directly th , given

by Egs.(9)—(12), does not change if we perform the follow-

ing four operations: complex conjugatiop;— —p, t— —t, ) . ]

and Ey— — E,. where the Green’s functioG4(r,7) is defined by Eq(58).
Applying now all these operations to E@1), and using  Noting from Eqs.(58) and (62) that

Eq. (15) for the retarded propagator, we obtain

+E—1 "'”+E 1+e T (CyY
Zw[ © ]4| Lrelf,

GS =dr iesT
i —2|—2)(r,ef)=J'0 7Gs(r,7)e i (C2

-t
Cx_ (r,—t)=¢Q (1.t +f dt’fdr’—
VopTe(N U= e (r)+ | it

(t+t)]%2 and using Eq(A13), Eqg. (C1) may be rewritten in terms of
XeXF[_il g, (r,_t,r,,t,)]V(r’) Gs(r,éf) as follows:
dGq
XYl (1 1), (B2) _Z z
[14(1)= 55, Clren+ ) —~2 (e
Introducing a new integration variabié= —t’ and using the
following property of the actioricf. Eq. (20)], dGs (re— o)
_ L€—
4 4 (9 2
|_g(—t—t)=—lg (L1"), (B3) (%)
. E
we obtain + _Z[Gs(ryff)_Gs(raEf_w)]
2w
Pl *e (r,—1)
0 s [ 9Gs 9Gq 3
102 de; (r,ep)+ a_ef(f,ff w)|. (C3

o i
=¢§JOE)O(r,t)+J dt”f dr’ —
! [=2mi(t"=1)] Equation (C3) may be more conveniently expressed in
x exgil g (1 t,r’,t”)]V(r’)zp(fp)fE (r',—t"). (B4) terms of Airy func_tions._ From the Airy functi_on representa-
0 tion for G4(r,€) given in Eq.(A8), we obtain[using Eq.
According to Reisg37], the advanced Green’s function (A9) and (A10)]
corresponding to the “minus” solution can be written as

&GS(I',G) 3 1 (ZES)]-/ , ,
W_P —Gy(r,e)+ > +AI'(&)Ci' (&)
()= o) (ntr ] (B9) (ge = ) )Ai(gl)a(gz)”' 9
This allows us to rewrite EqB4) as The terms in Eq(C3) involving 9G/de; may be expressed

in terms of Airy functions using the first equality in Eg.
(A20). Thus, Eqs(A8), (A20), and(C4) allow us to express
Hff(r) in terms of Airy functions. The apparent singularity
in the limit r—0 for the third term in Eq(CJ) (involving a
difference of Green'’s functions for two energiaway be
treated as in EqSA18) and (A19).

waO(r t)= ¢<°>(r,t)+fdt’f dr’

XGE (14t )V ) e (r' ,t'), (B6)
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