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The bifunctional CO dehydrogenase�acetyl-CoA synthase
(CODH�ACS) plays a central role in the Wood–Ljungdahl path-
way of autotrophic CO2 fixation. A recent structure of the
Moorella thermoacetica enzyme revealed that the ACS active
site contains a [4Fe-4S] cluster bridged to a binuclear Cu-Ni site.
Here, biochemical and x-ray absorption spectroscopic (XAS) evi-
dence is presented that the copper ion at the M. thermoacetica
ACS active site is essential. Depletion of copper correlates with
reduction in ACS activity and in intensity of the ‘‘NiFeC’’ EPR sig-
nal without affecting either the activity or the EPR spectroscopic
properties associated with CODH. In contrast, Zn content is neg-
atively correlated with ACS activity without any apparent rela-
tionship to CODH activity. Cu is also found in the methanogenic
CODH�ACS from Methanosarcina thermophila. XAS studies are
consistent with a distorted Cu(I)–S3 site in the fully active en-
zyme in solution. Cu extended x-ray absorption fine structure
analysis indicates an average Cu–S bond length of 2.25 Å and a
metal neighbor at 2.65 Å, consistent with the Cu–Ni distance ob-
served in the crystal structure. XAS experiments in the presence
of seleno-CoA reveal a Cu–S3Se environment with a 2.4-Å Se–Cu
bond, strongly implicating a Cu–SCoA intermediate in the mech-
anism of acetyl-CoA synthesis. These results indicate an essential
and functional role for copper in the CODH�ACS from aceto-
genic and methanogenic organisms.

The bifunctional enzyme CO dehydrogenase�acetyl-CoA
synthase (CODH�ACS; EC 1.2.99.2) plays a central role

in the Wood–Ljungdahl pathway of autotrophic CO2 fixation
(1, 2). CODH catalyzes the two-electron reduction of CO2 to
CO (Eq. 1). The CO is directed through a 70-Å channel to
the ACS active site, where it is condensed with a methyl
group (donated by the methylated corrinoid iron–sulfur
protein, CH3-CFeSP), and CoA to generate acetyl-CoA
(Eq. 2) (3).

CO2 � 2 electrons � 2 H� 3 CO � H2O [1]

CO � CH3–CFeSP � HSCoA 3

CH3–CO–SCoA � CFeSP � H� [2]

A recent crystal structure reveals that CODH�ACS is a
300-kDa �2�2 protein with two core CODH � subunits teth-
ered on each side to two ACS � subunits (4). The A cluster
in each � subunit contains 1 Ni, 1 Cu, and 4 Fe ions, whereas
the � subunit contains 1 Ni and 10 Fe ions arranged into
three clusters, known as B, C, and D. Various studies indicate
that Ni is a required component of CODH in acetogenic bac-
teria (5, 6) and Rhodospirillum rubrum (7). Ni also is essential
for ACS activity, and a subpopulation of the Ni ions in the
ACS active site, called the ‘‘labile Ni,’’ is required for ACS
activity and for generation of an EPR signal called the
‘‘NiFeC signal’’ (8). When CODH�ACS is reacted with CO,
this EPR signal forms and, upon reaction with the CH3–
CFeSP, it decays, both reactions occurring at catalytically rel-
evant rates, indicating intermediacy of the NiFeC species in

the ACS catalytic cycle (9). Until recently (4), Cu was not
known to be a component of CODH�ACS. The discovery of
Cu at the ACS active site was surprising, given that this en-
zyme has been studied for many years and this metal had
never been previously reported in a CODH�ACS.¶ Cu was
found in the Methanosarcina barkeri CODH (10); however,
ACS was not present in this preparation of methanogenic en-
zyme, and Cu has not been reported in the three CODH
crystal structures (4, 11, 12) or in other CODHs that have
been characterized. A relationship between Cu content and
ACS activity was indicated in an earlier report (4); here we
provide convincing biochemical and spectroscopic evidence
for the importance of Cu in the ACS mechanism.

Materials and Methods
Materials. CO (99.99%) and N2 (99.998%) were purchased
from Matheson Gas (Joliet, IL). N2 (99.998%; Linde, Lincoln,
NE) and other inert gases were purified of traces of oxygen
by passage over a heated BASF catalyst (R3-11G). Titanium
trichloride (TiCl3) was obtained from Pfalz and Bauer as a
30% wt�vol solution in 2.0 M HCl. All other chemicals were
from Aldrich, Sigma, or Acros Organics (Morris Plains, NJ)
and were of the highest purity. CoA biosynthetic enzymes
(phosphopantetheine adenylyltransferase and dephospho-CoA
kinase) from Escherichia coli were obtained by published
methods (13). 1H NMR was performed on a Varian INOVA
400 instrument.

Synthesis of Seleno-CoA. Seleno-CoA was obtained by means of
a chemo-enzymatic synthetic strategy modified from pub-
lished methods (14, 15). NMR spectroscopy was performed
on each intermediate. Detailed methods are provided in Syn-
thesis of Seleno-CoA, which is published as supporting infor-
mation on the PNAS web site, www.pnas.org.

First, Se-benzylselenopantetheine was prepared by coupling

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: XAS, x-ray absorption spectroscopy; XANES, x-ray absorption near-edge
spectroscopy; EXAFS, extended x-ray absorption fine structure; CODH, CO dehydrogenase;
ACS, acetyl-CoA synthase; U, unit(s).

§To whom correspondence should be addressed at: Department of Biochemistry, Beadle
Center, University of Nebraska, Lincoln, NE 68588-0664. E-mail: sragsdale1@unl.edu.

¶It is surprising that the Cu content was overlooked with such a well studied enzyme in
which plasma emission analyses indicated that metals other than Ni and Fe were found at
substoichiometric levels (19). Reexamining some early (circa 1983) plasma emission anal-
yses corroborates that many preparations of CODH indeed lacked Cu; however, at that
time, cells were cultured differently, the enzyme was isolated under different conditions,
and the enzyme was not known to contain ACS activity. Therefore, a Cu-depleted enzyme
with high CODH activity, but devoid of ACS activity, would not have been recognized.
Once the M. thermoacetica CODH was recognized to be the ACS (22), preparations low in
ACS were discarded without further analysis. Reexamining the results of metal analyses
after 1987 and after the metal content had been ‘‘established’’ indeed reveals that Cu was
present in variable amounts, similar to the amount observed in current enzyme prepara-
tions. Unfortunately, this Cu was overlooked because the focus of attention was on
assessing integrity of each preparation by measuring the concentrations of the previously
established metals. Another reason Cu was overlooked is that addition of Cu(II) to a
solution containing CODH�ACS leads to inactivation (S.W.R., unpublished data).
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sodium pantothenate to benzylselenoethylamine hydrobro-
mide in the presence of hydroxybenzotriazole, N-ethylmor-
pholine, and 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide
in dimethylformamide. Next, Se-benzylselenopantetheine 4�-
O,O-dibenzylphosphate was synthesized as described (14, 15)
by phosphorylating Se-benzylselenopantetheine. Seleno-
pantetheine 4�-phosphate was obtained by deprotecting the
Se-benzylselenopantetheine 4�-O,O-dibenzylphosphate by
treatment with sodium in liquid ammonia, dissolving in water,
and adjusting the pH to neutrality by adding 1 M NaOH. To
prepare seleno-CoA, 15 mM selenopantetheine 4�-phosphate,
35 mM ATP, 10 mM DTT, 10 mM MgCl2, phosphopanteth-
eine adenylyltransferase (62 �g), and dephospho-CoA kinase
(86 �g) were reacted in 100 mM Tris�HCl buffer (pH 7.6).
Reactions were initiated by addition of the biosynthetic en-
zymes, incubated for 3 h at 37°C, and stopped by heating at
95°C for 5 min, and the precipitated protein was removed by
centrifugation (13,000 rpm for 5 min in an Eppendorf centri-
fuge). The diselenide product was purified by chromatography
on a DEAE-cellulose column using a gradient of NH4HCO3
(50–800 mM) and monitoring the elution at 234 nm. The
product eluted as the diselenide in the last fraction from the
column at �500 mM NH4HCO3. The lyophilized dry product
was stored. Reduction of the diselenide to seleno-CoA was
performed by treatment with a 2-fold excess of sodium boro-
hydride. Complete conversion to seleno-CoA was obtained, as
determined with Ellman’s reagent (16).

Purification and Manipulation of CODH�ACS. Moorella thermoace-
tica (formerly Clostridium thermoaceticum, strain ATCC
39073) was grown with glucose as the carbon source at 55°C
in undefined (17) or defined (18) media. CODH�ACS was
purified under strictly anaerobic conditions (19) in a Vacuum
Atmospheres (Hawthorne, CA) anaerobic chamber main-
tained at 18°C at an oxygen tension below 1 ppm. Oxygen
levels were monitored continuously with a model 317 trace
oxygen analyzer (Teledyne Analytical Instruments, City of
Industry, CA). CODH�ACS was �95% pure on the basis of
denaturing SDS�PAGE. Purified CODH�ACS had an average
specific activity of 600 units (U)�mg (1 U � 1 �mol of CO
oxidized per min) at 55°C and pH 7.6 with 10 mM methyl
viologen as electron acceptor (19). The average specific activ-
ity of CODH�ACS in the isotopic exchange reaction between
CO and [1-14C]acetyl-CoA was 0.16 U�mg at 55°C when 200
�M acetyl-CoA, 0.57 mM CO, 0.1 M Mes (pH 6.0), and 0.1
mM methyl viologen were used. Reactions were started by

adding radiolabeled acetyl-CoA. Protein concentrations were
determined by the Rose Bengal method (20). Metal analysis
was performed at the Chemical Analysis Laboratory at the
University of Georgia (Athens, GA) by using inductively cou-
pled argon plasma (ICP) detection for 20 elements.

Metal Removal. Ammonium tetrathiomolybdate (generously
supplied by Dimitri Coucouvanis, University of Michigan,
Ann Arbor) was dissolved in anaerobic water and used imme-
diately because hydrolysis to trithiomolybdate, dithiomolyb-
date, and monothiomolybdate occurs over time. The sample
was homogeneous on the basis of its UV–visible spectrum
(the extinction coefficients at 467 and 317 nm are 1.24 � 104

and 1.76 � 104 M�1�cm�1, respectively). Before metal re-
moval experiments, the protein samples were freed of DTT
by several cycles of concentration and dilution in an Amicon
stirred cell apparatus. This step has been found to be re-
quired for the removal of labile Ni from cluster A (8). De-
salted CODH�ACS was treated with pure anaerobic nitrous
oxide (N2O) before addition of tetrathiomolybdate. At the
end of the reactions, the chelators were removed from the
protein samples by concentration and dilution into 0.1 M
Tris�HCl (pH 7.60). Metal analysis and activity assays were
performed on the desalted samples. The desalting buffer was
used as a background control.

EPR and X-Ray Absorption Spectroscopy (XAS). X-band EPR spec-
tra were recorded in a Bruker ESP300e spectrometer con-
nected to a Hewlett–Packard Microwave Frequency Counter
model 5253B and a Bruker Gaussmeter model ER 035.

XAS experiments were performed at beamline 9-3 at the
Stanford Synchrotron Radiation Laboratory (SSRL) by using
Si(220) monochromator crystals. The energy was calibrated by
using metal foil as an internal standard in a three-ion cham-
ber geometry. The first inflection point of the Ni, Zn, Cu,
and Se foil spectra was calibrated to 8331.6, 8980.3, 9660.7,
and 12658.0 eV, respectively. The beam was fully tuned by
using a harmonic rejection mirror with an energy cut-off at
12 keV for Ni, Cu, and Zn edges and 15 keV for the Se edge.
During all x-ray measurements, the samples were maintained
at �10 K by using an Oxford Instruments CF1208 helium
flow cryostat. The spectra were recorded up to k � 13 Å�1

for Ni and Cu extended x-ray absorption fine structure
(EXAFS), and k � 14 Å�1 for Zn and Se EXAFS in 30-min
scans (four to six scans per sample). The fluorescence data
were collected by using a Canberra 30-element Ge detector

Table 1. Copper requirement for activity of CODH and ACS from Moorella thermoacetica and
Methanosarcina thermophila

Sample

CODH
activity,
U�mg

Acetyl-
CoA�CO

exchange,
mU�mg

NiFeC per
heterodimer,
spins per ��

Metal atoms per
heterodimer (��)

Cu Fe Ni Zn

As isolated 600 160 0.24 0.96 13.3 2.3 0.06
Desalted 510 92 0.22 0.76 12.1 2.0 0.38
EDTA 340 28 0.06 1.12 12.0 1.9 0.40
Neocuproine 520 35 0.20 0.83 11.2 1.8 0.16
o-Phenanthroline 320 ND 0.01 0.90 11.0 1.6 0.24
Tetrathiomolybdate 100 23 0.04 0.25 12.0 2.0 0.46
M. thermophila complex 140 150* 0.13 0.63 16.3 2.2 0.74

Conditions: See text for methods of determining CODH and ACS activities. EPR spectra were recorded at 80 K,
power � 40 mW, gain � 20,000, modulation frequency � 100 kHz, and modulation amplitude � 10 gauss.
Standard errors in metal analysis are about �0.12 ppm, which corresponds to �0.1 metal per heterodimer. ND,
not detected.
*Acetyl-CoA�CO exchange activity for the CODH complex from M. thermophila was measured in the presence of
0.98 mM titanium(III) citrate.

3690 � www.pnas.org�cgi�doi�10.1073�pnas.0436720100 Seravalli et al.



and Canberra 2026 amplifiers with 0.125-�sec shaping times.
Co, Ni, Cu, or Ga filters (optical density � 6) were used for
Ni, Cu, Zn, or Se edge, respectively, to absorb most of the
elastic scattered photons. Single-channel analyzers were used to
set electronic windows on the Ni, Cu, Zn, or Se K� f luores-
cence. The signal count rate at each individual detector ele-
ment was between 4,000 and 7,000 cps, while the total count
rates were on the order of 70,000 cps at the end of each scan.
XAS data were analyzed as described previously (21).

Results
The recent crystal structure of the M. thermoacetica CODH�
ACS revealed that the A cluster in the ACS active site con-
tains a [4Fe-4S] cluster bridged to a binuclear Cu–Ni site (4).
That the presence of Cu could have eluded detection for so
many years is surprising.¶ Thus, we used several approaches to
determine whether copper is essential and, if so, to assess its
role. We determined the amount of copper, nickel, iron, and
zinc among various enzyme preparations obtained from cells
grown in media lacking copper or containing 0.1–1 �M
CuCl2, and with reduced Zn concentrations. Concentrations
of Cu higher than 1 �M in the medium have detrimental ef-
fects. For example, growth of M. thermoacetica in the pres-
ence of 10 �M Cu2� results in a 50% decrease in the growth
rate and an enzyme with 50% lower CODH and ACS activity
and severely altered metal content (1.4 Cu, 8.0 Fe, 1.3 Ni,
and 0.72 Zn per heterodimer). We also treated CODH�ACS
with several copper chelators under various conditions.
Bathocuproine and neocuproine remove both Ni and Cu from
CODH�AVS, whereas o-phenanthroline is fairly selective for
removing Ni and tetrathiomolybdate for depleting Cu (Table
1). This reagent can selectively remove Cu(I) from proteins,
including metallothionein, and is used in anticopper therapies
for Wilson’s disease and metastatic cancer (23, 24).

Anecdotal information is available correlating ACS activity
and NiFeC signal intensity. To establish a firm relationship
(or lack thereof) between metal content and these activity
measurements, we measured the metal content, the NiFeC
signal intensity, and the ACS activity in a number of enzyme
preparations. Fig. 1A shows a strong relationship between
NiFeC signal intensity and ACS activity. However, the rela-
tionship is not strictly linear. Thus, we correlated metal con-
tent with both activity parameters.

Because loss of the labile Ni from ACS results in lowered
ACS activity (8), it is important to determine the effect of Cu
depletion in samples with a full complement of Ni. By treat-
ing CODH�ACS with tetrathiomolybdate and by studying var-
ious preparations of enzyme from bacteria grown under vari-
ous conditions, a fairly wide variation in Zn and Cu content is
obtained, whereas the Ni (2.0) and Fe (14.0) contents are
more consistent (Table 1, Fig. 1B). Interestingly, the total
Cu � Zn content reaches �1.0 per mole of � subunit. Corre-
spondingly, because earlier Ni depletion studies had been per-
formed without addressing effects on Cu, we determined the
activities of samples replete with Cu, but with lowered Ni
(Fig. 1B). In such samples, the amount of Cu or Ni in
CODH�ACS correlates directly with the ACS activity (Fig.
1B), which in turn correlates directly with the NiFeC EPR
signal intensity (Fig. 1 A). On the other hand, the amount of
Zn is inversely related to both ACS activity and NiFeC signal
intensity. CODH�ACS preparations devoid of zinc have high
CODH and ACS activity, whereas preparations high in Zn
are correlated with low ACS activity, but are uncorrelated
with CODH activity (Table 1). This finding suggests that Cu
and Zn can compete for the bridging position between Fe
and Ni in the A cluster, that active enzyme contains Cu in
that site, and that replacement of Cu by Zn destroys ACS ac-
tivity. The Methanosarcina thermophila CODH�ACS also con-

Fig. 1. Dependence of ACS activity and NiFeC signal intensity on metal content.
(A)Dependenceof theCO�[1-14C]acetyl-CoAexchangeactivityonthe intensityof
the NiFeC signal of CODH�ACS. E, Data from Table 1; F, data from 15 different
as-isolated CODH�ACS preparations without chelator treatment. Exchange as-
says were monitored as described in Materials and Methods. Desalted ACS
samples were treated with pure CO for 10 min before freezing and recording of
the EPR spectra. The conditions for the EPR spectra were temperature, 77 K;
power, 1–10 mW; gain, 20,000; modulation amplitude, 10 G; modulation fre-
quency, 100 kHz. Spin concentrations were determined by double integrations of
the EPR signal relative to a 1 mM Cu perchlorate standard. (B) Dependence of
NiFeC signal intensity and the CO�[1-14C]acetyl-CoA exchange activity on the
metal content of CODH�ACS from Table 1. �, Exchange activity; ● , NiFeC signal
intensity. The Cu and Ni dependencies correspond to samples with �1.95 Ni and
�0.9 Cu per heterodimer, respectively.

Seravalli et al. PNAS � April 1, 2003 � vol. 100 � no. 7 � 3691
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tains Cu (Table 1), suggesting that Cu may be a component
of active ACS from all organisms.

Measurement of the Cu K-edge XAS of CODH�ACS reveals
that the shape of the edge is intermediate between that reported

for other Cu(I)S3 and Cu(I)S4 species (25–27), and it clearly
rules out two-coordinate Cu(I) (Fig. 2). The inflection point en-
ergy of 8,983 eV is similar to the Cu(I) edge reported by Kau et
al. (26) and Carr et al. (28) and is 6 eV lower than the inflection
point for the Cu(II) form of blue copper proteins (29). Cu EX-
AFS spectra (Fig. 3) were first fit by including 3 S at 2.25 Å (Ta-
ble 2). Adding one more S increases the Debye–Waller factor to
an unreasonably high value. There is another dramatic feature at
�2.6 Å in the Fourier-transformed (phase-shifted according to
S) spectrum, which could be fit by a Cu–metal (Ni) interaction
at 2.65 Å. The goodness-of-fit parameter improves significantly
after adding the Cu–metal shell. The Cu–S and Cu–Ni distances
obtained from the EXAFS fit are consistent with the crystal
structure, which assigned three Cu–S bonds at distances ranging
from 2.16 to 2.28 Å and a Cu–Ni bond distance of 2.69 Å.
Therefore, XAS analysis of a freshly isolated and highly active
form of ACS in solution agrees with x-ray crystallographic re-
sults that the A cluster of ACS contains a [4Fe-4S] cluster
bridged to a binuclear Cu–Ni site.

In the proposed ACS reaction mechanism, a CoA thiolate
performs nucleophilic attack on an acetyl-metal intermediate
to release acetyl-CoA. The reactivity of thiol substrates is of-
ten enhanced by coordination to a metal center, which ap-
pears to present the active thiolate nucleophile to the electro-
philic center (30). To test the hypothesis that the thiolate of
CoA can ligate one of the metals in the A cluster, we per-
formed XAS of CODH�ACS in the presence and absence of
seleno-CoA. The Se edge and Se EXAFS in the presence and
absence of CODH�ACS clearly demonstrate that seleno-CoA
binds to a metal ion. The Se edge shifts by �1 eV to higher
energy in the presence of CODH�ACS (Fig. 2), indicating a
decrease in the effective anionic charge on the Se atom (31),
which is consistent with Se binding to a metal center that acts
as a Lewis acid. No noticeable change is observed in the Ni

Fig. 2. Cu, Zn, and Ni x-ray absorption near-edge spectroscopy (XANES) of
as-isolated (thick continuous line) and seleno-CoA-treated (dotted line)
CODH�ACS; Se XANES of seleno-CoA in the absence (thick continuous line)
and presence (dotted line) of enzyme. In the Cu panel, the Cu XANES of
two-coordinate (thin continuous line) (26), three-coordinate (long-and-short-
dashed line) (27), and four-coordinate (short-dashed line) (25) are compared
with CODH�ACS. The energy at 0 eV is relative to 8,980, 9,663, 8,335, and
12,658 eV for Cu, Zn, Ni, and Se edges, respectively. a.u., Arbitrary units.

Fig. 3. (Left) Top traces, Fourier-transformed (FT) Cu EXAFS of CODH�ACS in
the absence (continuous line) and presence (dashed line) of seleno-CoA.
Middle and bottom traces, FT Cu EXAFS (continuous line) and best fit (dashed
line) of as-isolated (middle) and seleno-CoA-treated (bottom) CODH�ACS.
(Right) Cu EXAFS in k space with plotting symbols as described for Left.

Fig. 4. (Left) Fourier-transformed Se EXAFS of seleno-CoA in the absence
(continuous line) and presence (dashed line) of CODH�ACS. (Right) Se EXAFS
in k space with plotting symbols as described for Left.

Table 2. Cu EXAFS fit parameters

Sample Fit N R, Å �2,* 103 Å F†

As isolated 1a 3 S 2.244 7.90 171.5
2a 3 S 2.248 7.49 108.2

1 Ni 2.646 8.82
Se-CoA-treated 1a 3 S 2.270 6.90 252.5

2a 3 S 2.280 6.90 186.1
1 Ni 2.727 6.99

3a 3 S 2.249 8.66 166.4
1 Ni 2.699 4.78
1 Se 2.437 7.74

*�2 is the mean-square deviation of R.
†The goodness-of-fit parameter F � 	 (�calc � �obs)2k6.
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edges of CODH�ACS, whereas minor modifications of the Cu
and Zn edges occur in the presence of seleno-CoA (Fig. 2).
Se EXAFS analysis (Fig. 4) indicates that the Se–metal dis-
tance is 2.39 Å. Consistent with the Se EXAFS, a metal–Se
distance at 2.43 Å is found in Cu (Fig. 3) and Zn EXAFS
(not shown); however, there is no indication of a Ni–Se inter-
action in the Ni EXAFS. XAS experiments of the enzyme in
the presence of seleno-CoA reveal a Cu–S3Se environment
with a 2.43 Å Se-Cu bond, strongly implicating a Cu-SCoA
intermediate in the mechanism of acetyl-CoA synthesis.
XAS studies also indicate that Zn competes with Cu in CoA
binding.

Although the S (or Se) group of CoA is expected to play a
fairly minor role in the binding interactions, it is important to
ensure that ACS binds CoASe(H?) similarly to CoASH. Be-
cause CoASH is a competitive inhibitor of the CO�acetyl-
CoA exchange reaction, one can directly determine the bind-
ing constant for CoASH (as the Ki) from the inhibition
kinetics. Seleno-CoA inhibited the exchange reaction between
CO and [1-14C]acetyl-CoA with an inhibition constant (Ki) of
213 
 40 �M (see Fig. 6, which is published as supporting
information on the PNAS web site), which is 30 times weaker
than the natural sulfur–CoA (Ki � 7 �M) inhibitor, but 28
times stronger than desulfo-CoA (Ki � 6 mM), in which a
hydrogen atom replaces the thiol group (32). These results
suggest that the two molecules bind similarly and indicate a
CoAS–Cu interaction, based on the Se and Cu XAS results.

Discussion
The CODH�ACS crystal structure reveals that the A cluster
contains a Cu–S3 center with three thiolate ligands. The Cu
center forms a bridge between a square-planar Ni and one of
the Fe sites in a [4Fe-4S] cluster. Here we have focused on
the Cu center, which, before the crystal structure was deter-
mined, was not known to be a component of this enzyme.
Here, we have shown that the amount of Cu in CODH�ACS
directly correlates with ACS activity and with NiFeC EPR
signal intensity. The metal-activity profiles shown in Fig. 1B
indicate that Cu is not the only metal that can occupy the Cu
site. Apparently, Cu is the metal of choice, because 1.0 mol of
Cu per �� heterodimer is present in active enzyme isolated
from cells grown in medium containing 1.0 �M Cu and 30
�M Zn. When Cu is not added to growth media containing
20 �M Zn, variable amounts of Zn and Cu are found, indicat-
ing that the trace amount of Cu present in the yeast extract,
tryptone, and other medium components is scavenged and
incorporated into the A cluster. The negative correlation be-
tween Zn content and ACS activity suggests that this metal
can replace Cu and inhibit the enzyme.

A methanogenic CODH�ACS also contains near-stoichio-
metric amounts of copper, which is not surprising because the
EPR spectra of the A clusters of the CODH�ACS from ace-
togens and methanogens are highly similar (33). Interestingly,
an early description of the methanogenic Methanosarcina
barkeri CODH reported stoichiometric amounts of copper
(10); however, this was the CODH-only form of the enzyme
lacking ACS. At least, based on the recent crystal structure of
the M. thermoacetica CODH�ACS complex (4), there was no
evidence for copper in the CODH component.

The results of XANES studies reveal that Cu(I) is present
in the as-isolated enzyme. This is consistent with the absence
of Cu(II) EPR signals from in any states of the enzyme so far
studied. The Cu(II)�(I) redox couple must be very positive,
because even N2O-treated enzyme does not exhibit a Cu(II)
EPR signal.

In the CODH�ACS crystal structure, the Cu(I) center con-
tains four ligands, including three thiolates from cysteine
residues 509, 595, and 597 and an extra ligand, perhaps an

acetyl intermediate, in a distorted environment. The bond
angles between the three Cu–S vectors in the crystal structure
are 120°, 83°, and 140°, instead of the 109° expected for a tetra-
hedral site or 120° for a trigonal site. The XANES experiment
also indicates that the Cu site is distorted with an x-ray ab-
sorption edge position midway between that of a trigonal and
tetrahedral site, consistent with the crystal structure. On the
basis of EXAFS experiments, the average Cu–S distance is
2.25 Å and the Cu–Ni distance is 2.65 Å, which is similar to
that shown in the crystal structure (2.8 Å). Therefore, XAS
results indicate that the active form of the A cluster of ACS
contains a distorted Cu(I)–S3 center with properties nearly
identical to those measured in the crystal structure. Because
the x-ray structure analysis was performed on crystals grown
in high concentrations of acetate buffer, whereas the protein
studied by XAS was in buffer lacking acetate, the minor dif-
ferences between the two analyses may derive from the extra
electron density at the Cu(I) site in the x-ray structure that
was interpreted as an Cu-acetyl intermediate. EXAFS studies
can be used to test the presence of a Cu–carbon bond in
enzyme prepared under conditions identical to those in the
crystallization, i.e., in the presence of 0.3 M acetate.

The Se and Cu EXAFS spectra of the seleno-CoA-incu-
bated enzyme reveal a Cu–S3Se environment with an �2.4-Å
Se–Cu bond. These, combined with the seleno-CoA inhibition
results, suggest that CoASH and CoASe bind similarly to
ACS and indicate a CoAS–Cu interaction. The x-ray structure
revealed a large cavity between the three domains that consti-
tute the ACS subunit (4). CoA can be modeled into this re-
gion, which also contains Trp-418 and six Arg residues that
have been implicated in CoA binding, on the basis of f luores-
cence and specific arginine modification studies (22, 34). Here
we have obtained evidence for a Cu(I)–SCoA intermediate.
Perhaps one role for Cu is to catalyze CoASH deprotonation,
since the pKa for the CoA thiol is 9.7 and the CoA thiolate
would be required for nucleophilic attack on a bound acetyl
intermediate. Many enzymes that use nucleophilic thiols con-
tain a zinc ion that coordinates the thiol substrate, forming a
thiolate at neutral pH; examples include methyltransferases
such as methionine synthase, the adenosine deaminase DNA-
repair protein, and farnesyl- and geranylgeranyl-protein trans-
ferases (30).

Fig. 5 is a proposed bioorganometallic mechanism of
acetyl-CoA synthesis. The most solid information about which
metal binds which substrate is the CoASe–Cu XAS data pre-
sented here. The crystal structure also provided evidence for

Fig. 5. Proposed mechanism of acetyl-CoA synthesis.
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Cu–CO and acetyl-Cu intermediates (4). The first step, car-
bonylation of ACS, generates a paramagnetic species called
the NiFeC species, whose intensity correlates with increased
ACS activity (Fig. 1 A). This species has been observed by
Fourier transform IR (35) and EPR (36, 37) spectroscopy and
shown to be a catalytically competent intermediate in the
pathway (9). It is so named because nuclear hyperfine interac-
tions are observed from enzyme with 61Ni and 57Fe, and from
bound 13CO (38, 39). The crystal structure shows the CO
channel terminating at the Cu, indicating a Cu–CO (4), as
shown in Fig. 5. It was assumed that the EPR signal results
from a spin-coupled Ni1�-X-[4Fe-4S]2� complex and that the
hyperfine interactions result from exchange interactions be-
tween Ni1� and an Fe site in the cubane (40). However, hav-
ing a diamagnetic Cu(I) species bridging the Ni and the [4Fe-
4S] cluster raises the possibility, as shown in Fig. 5, that the
NiFeC EPR signal arises from strong dipolar interactions be-
tween a reduced [4Fe-4S]1� cluster and Ni1�. This phenome-
non would be similar to the radical doublet observed in some
adenosylcobalamin-dependent reactions (41, 42). In these bi-
radical systems, Co(II) and an organic radical intermediate
exhibit strong enough dipolar coupling to observe nuclear
hyperfine interactions from Co(II) and from the substrate
protons�deuterons.

The next step in the reaction, methylation of ACS, has
been suggested to occur at Ni because removal of ‘‘labile

nickel’’ prevents methylation (43). It is clear that methylation
converts the paramagnetic form of the A cluster to a diamag-
netic state (9). Methylation of Ni(I) would generate a tran-
sient methyl–Ni(III) species, and, if the cluster is reduced, it
could donate an electron to generate methyl–Ni(II) and [4Fe-
4S]2�. This would be a true diamagnetic and EPR-silent state,
in accordance with rapid kinetics results. Migration of the
methyl group to a Cu–CO would generate the acetylated en-
zyme, which, based on the crystal structure, could be an
acetyl-Cu species (4). Here we have obtained evidence for a
Cu(I)–SCoA intermediate and suggest that coordination of
the sulfur to Cu stabilizes the active nucleophilic thiolate
form of CoA to react with the acetyl intermediate and gener-
ate acetyl-CoA.

In summary, the combined kinetic and spectroscopic results
indicate an essential and functional role for copper in the A
cluster of CODH�ACS.
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Supporting Materials and Methods 

All chemicals were from Aldrich, Sigma, or Acros Organics and were of the highest purity. CoA 

biosynthetic enzymes (phosphopantetheine adenylyltransferase and dephospho-CoA kinase) 

from E. coli were obtained by published methods (1). 
1
H NMR was performed on a Varian 

INOVA 400 instrument.  

Synthesis of Seleno-CoA 

Seleno-CoA was obtained by means of a chemo-enzymatic synthetic strategy modified from 

published methods (2, 3), as described below.  

Se-benzylselenopantetheine. Sodium pantothenate (579 mg, 2.4 mmol) was coupled to 2-

benzylselenoethylamine hydrobromide (445 mg, 1.5 mmol) in the presence of 1-

hydroxybenzotriazole (351 mg, 2.6 mmol), N-ethylmorpholine (229 μl, 1.8 mmol), and 1-(3-

dimethylaminopropyl)-3-ethyl carbodiimide (498 mg, 2.6 mmol) in 25 ml of 

dimethylformamide. The mixture was left stirring at 0° C for 1 h and then at room temperature 

overnight. After addition of ethyl acetate (100 ml), the solution was washed with 1 M HCl (twice 

with 20 ml), 1 M NaHCO3 (twice with 20 ml), and saturated NaCl (once with 20 ml). The 

organic layer was dried (Na2SO4) and filtered, and the solvent was evaporated to give the crude 

product as a yellow oil, which was used in the next step without further purification (516 mg, 

83%). 
1
H NMR (400 MHz, CDCl3): δ 0.89 (s, 3H), 0.95 (s, 3H), 2.36 (t, 2H), 2.59 (t, 2H), 3.38–

3.53 (m, 6H), 3.77 (s, 2H), 3.99 (s, 1H), 6.71 (t, 1H), 7.18–7.23 (arom, 1H), 7.26–7.30 (arom, 

4H), 7.51 (t, 1H).  

Se-benzylselenopantetheine 4'-O,O-dibenzylphosphate. Se-benzylselenopantetheine was 

phosphorylated by published methods (2, 3) and purified by flash column chromatography (silica 

gel; CH2Cl2/methanol, 94:6) to give the product as a clear oil in 52% yield. 
1
H NMR (400 MHz, 

CDCl3): δ 0.80 (s, 3H), 1.07 (s, 3H), 2.38–2.42 (m, 2H), 2.58-2.63 (m, 2H), 3.41 (q, 2H), 3.52–

3.58 (m, 2H), 3.60–3.64 (m, 1H), 3.79 (s, 2H), 3.90 (s, 1H), 4.02–4.07 (m, 1H), 5.02-5.10 (m, 

4H), 6.27 (b, 1H), 7.20–7.42 (arom, 15H), 7.68 (b, 1H).  

Selenopantetheine 4'-Phosphate. Se-benzylselenopantetheine 4'-O,O-dibenzylphosphate was 

deprotected by treatment with sodium in liquid ammonia as previously published (2, 3). The 

crude product was dissolved in water, and the pH was adjusted to neutral by addition of 1 M 



NaOH. The product was stored as reddish solutions (100 mM) at –20° C before use in the next 

step. 
1
H NMR analysis indicated the presence of some deselenated compounds as minor 

contaminants of the solution.  

Seleno-CoA. A 600-μ l reaction mixture contained 15 mM selenopantetheine 4'-phosphate, 35 

mM ATP, 10 mM DTT, 10 mM MgCl2, phosphopantetheine adenylyltransferase (62 μ g), and 

dephospho-CoA kinase (86 μ g) in 100 mM Tris•HCl buffer (pH 7.6). Reactions were initiated 

by addition of the biosynthetic enzymes, incubated for 3 h at 37°C, and stopped by heating at 

95°C for 5 min, and the precipitated protein was removed by centrifugation (13,000 rpm for 5 

min). The supernatants of five identical reaction mixtures were combined and loaded onto a 

single DEAE-cellulose column (1 ´ 25 cm) preequilibrated with 50 mM NH4HCO3, and the 

column was eluted at 1.5 ml/min with a gradient of NH4HCO3 (50 to 800 mM, 800 ml). The 

chromatography was monitored by A254. The product eluted as the diselenide in the last fraction 

at » 500 mM NH4HCO3. The product-containing fractions were combined and lyophilized, 

dissolved in water, and lyophilized again. This procedure was repeated until a constant weight of 

product was achieved. Yield: 5.4 mg (octaammonium salt) (68 %). 
1
H NMR (400 MHz, D2O): δ 

0.75 (s, 3H), 0.87 (s, 3H), 2.44 (t, 2H), 2.90 (t, 2H), 3.39–3.48 (m, 4H), 3.56 (d, 1H), 3.81 (d, 

1H), 4.00 (s, 1H), 4.26 (s, 2H), 4.58 (s, 1H), 6.18 (d, 1H), 8.20 (s, 1H), 8.55 (s, 1H).  

CoASe
–
 was prepared from the diselenide by reduction with NaBH4. A 50 mM solution of the 

dimer in 0.1 M Tris•HCl (pH 7.60) was treated with 2 eq of freshly prepared NaBH4. The 

amount of monomer formed was determined by reacting an aliquot of the reaction mix with an 

excess of 5,5'-bis(dinitrothiobenzoic acid) (DTNB, Ellman's reagent) and calculating the amount 

of free thiolate released by using an extinction coefficient of 13.6 mM
-1

•cm
-1

 at 412 nm. More 

than 95% reduction was obtained. Excess NaBH4 was removed by adjusting the pH to 7.0 with 

dilute HCl. The concentration of CoASe
–
 was determined from the absorbance at 260 nm with an 

extinction coefficient of 16.4 mM
-1

•cm
-1

.  
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Fig. 6. Inhibition of the CO/acetyl-CoA exchange activity by seleno-CoA. The reaction was 

performed at 55ºC in 0.205 mM acetyl-CoA, 0.1 M Mes (pH 6.0), 0.1 mM methyl viologen, and 

0.33 mg/ml (final) CODH/ACS.  
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