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Scattering of elastic waves in heterogeneous media
with local isotropy

Joseph A. Turner and Phanidhar Anugonda
Department of Engineering Mechanics, W317.4 Nebraska Hall, University of Nebraska–Lincoln, Lincoln,
Nebraska 68588-0526

~Received 14 August 2000; revised 20 February 2001; accepted 23 February 2001!

The scattering of elastic waves in heterogeneous media is discussed. Explicit expressions are
derived for the attenuation of longitudinal and transverse elastic waves in terms of the statistics of
the density and Lame´ parameter fluctuations. The derivation is based upon diagrammatic methods
with the problem posed in terms of the Dyson equation. The Dyson equation is solved for the mean
field response. The results are given here in a straightforward manner, in which the attenuations
reduce to simple integrals on the unit circle. The medium is assumed statistically homogeneous and
statistically isotropic. This model, with assumed local isotropic properties, is expected to apply to
many materials. ©2001 Acoustical Society of America.@DOI: 10.1121/1.1367245#

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg@DEC#

I. INTRODUCTION

The study of wave propagation and scattering of elastic
waves in heterogeneous media is related to nondestructive
testing, materials characterization, acoustic emission, and
seismic wave analysis. An improved understanding of the
effects of scattering provides insight into the microstructure
of a variety of materials such as polycrystalline metals and
ceramics, composites, geophysical materials, and concrete.
Elastic waves which propagate through such media lose en-
ergy due to scattering from the heterogeneous structure of
the material. The scattering effects may be characterized by
the attenuation. Previous research on scattering problems of
this nature has been dominated by studies of polycrystalline
materials.1–4 In these models, it is assumed that density fluc-
tuations are negligible and that the material is locally aniso-
tropic. The grains are usually assumed to be randomly ori-
ented, such that the medium is statistically isotropic. More
general cases have also been examined5–7 in which the
grains have some prescribed alignment~texture! such that
the medium is statistically anisotropic. This research, in
which expressions for attenuation were derived, was also ex-
tended to derivations of elastic radiative transfer equations
~RTE! and diffusion equations which describe the evolution
of diffuse elastic energy.3,4,8,9More recent developments in-
clude the derivation of the attenuations and elastic RTE us-
ing an asymptotic approach.10,11 In those articles, a different
microstructural model was used. The elastic moduli were
assumed to be locally isotropic and the density was consid-
ered to vary spatially. The medium was assumed to be sta-
tistically homogeneous and statistically isotropic as well.
Such a model is expected to be reasonable for geophysical
materials and concrete. They derived the differential scatter-
ing cross sections, elastic radiative transfer equations, and
the elastic diffusion equation.

In this article, the same microstructural model based on
local material isotropy is used to derive elastic wave attenu-
ations. The derivation is based upon the diagrammatic
approach3,12 in which the mean response is governed by the
Dyson equation. The Dyson equation is easily solved in spa-

tial Fourier transform domain within the limits of the first-
order smoothing approximation~FOSA!,12 or Keller13 ap-
proximation. A further approximation is also made which
restricts the results to frequencies below the high-frequency
geometric optics limit. This high-frequency limit, in which
refracted ray analysis must be used,2 is above the range of
most ultrasonic experiments. With this approximation, the
attenuations for the longitudinal and transverse elastic waves
reduce to simple integrations on the unit circle. The results
here are in basic agreement with those of Ryzhiket al.10

Therefore, their asymptotic method is presumed to be
equivalent to the FOSA with the additional frequency limi-
tation.

In the next section, the theoretical model is presented in
terms of the Dyson equation. The Dyson equation is solved
and expressions for the attenuations derived. Then expres-
sions for the mean free paths and elastic diffusivity are pre-
sented. Finally, further assumptions of the form of the fluc-
tuations are made and example calculations are presented.

II. MEAN RESPONSE

The equation of motion for the elastodynamic response
of a linear, elastic material to deformation is given in terms
of the Green’s dyadic by

H 2d jkr~x!
]2

]t2 1
]

]xi
Ci jkl ~x!

]

]xl
J Gka~x,x8;t !

5d j ad3~x2x8!d~ t !, ~1!

whered3(x2x8) is the three-dimensional spatial Dirac delta
function. The Green’s dyadic,Gi j (x,x8;t), is the response at
locationx in the i th direction due to an impulsive force ap-
plied atx8 in the j th direction. In Eq.~1!, r(x) andCi jkl (x)
define the material density and elastic modulus tensor, re-
spectively. These material properties are assumed to vary
spatially.

A spatio-temporal Fourier transform pair is defined as

1787 1787J. Acoust. Soc. Am. 109 (5), Pt. 1, May 2001 0001-4966/2001/109(5)/1787/9/$18.00 © 2001 Acoustical Society of America



f̃ ~p,v!5E
2`

1`E
2`

1`

f ~x,t !eivte2 ix"p d3x dt, ~2!

f ~x,t !5
1

~2p!4 E
2`

1`E
2`

1`

f̃ ~p,v!e2 ivteix"p d3p dv. ~3!

This transform pair defines the relation between space–time
variables~x and t) and wave vector-angular frequency vari-
ables~p andv!.

The temporal transform of the equation of motion, Eq.
~1!, is then

H v2d jkr~x!1
]

]xi
Ci jkl ~x!

]

]xl
J Gka~x,x8;v!

5d j ad3~x2x8!. ~4!

The material properties of the medium are assumed to
vary spatially. The density is written

r~x!5 r̄~11dr~x!!, ~5!

wherer̄ is the average density anddr(x) is a dimensionless
measure of the density fluctuations.

Previous wave propagation studies of polycrystalline
materials have used a locally anisotropic model which ac-
counts for the crystal anisotropy.2,3,7 Here, the elastic modu-
lus tensorCi jkl is assumed to be locally isotropic. It is writ-
ten as

Ci jkl ~x!5l̄~11dl~x!!d i j dkl1m̄~11dm~x!!

3~d ikd j l 1d i l d jk!, ~6!

wherel̄ andm̄ are the average Lame´ parameters. The elastic
moduli fluctuations are defined by the dimensionless mea-
suresdl(x) anddm(x). The material properties are assumed
to be centered random processes such that^dr(x)&
5^dl(x)&5^dm(x)&50, where the bracketŝ& denote an
ensemble average.

The derivation which follows also requires second-order
statistics of the fluctuations. The covariance of the density is
defined as

Rrr~y2z!5^dr~y!dr~z!&. ~7!

Similar definitions for the covariance~autocorrelation! of
Lamé parameters and the cross correlations between differ-
ent parameters are also made. The average medium is as-
sumed statistically isotropic and statistically homogeneous.
These assumptions imply that the correlation functions de-
pend only on the magnitude of the difference of the two
positions. Mathematically, these assumptions imply that
R(y2z)5R(r ), wherer 5uy2zu.

The bare Green’s dyadic,G0, is defined as the solution
to Eq.~4! when the fluctuations of all material properties are
zero. It is the solution to

H v2d jkr̄1~ l̄1m̄ !
]

]xj

]

]xk
1m̄d jk

]2

]xl
2J Gka

0 ~x,x8;v!

5d j ad3~x2x8!. ~8!

A spatial Fourier transform, as defined in Eq.~2!, allows
Eq. ~8! to be reduced to

$ p̂ j p̂k~ r̄v22p2~ l̄12m̄ !!1~d jk2 p̂ j p̂k!

3~ r̄v22p2m̄ !%Gka
0 ~p!5d j a . ~9!

The solution forG0 is given by inspection as

G0~p!5gL
0~p!p̂p̂1gT

0~p!~ p̂2p̂21p̂3p̂3!, ~10!

for propagation in thep̂ direction. The unit vectorsp̂2 andp̂3

are transverse to the directionp̂, and form an orthonormal
basis withp̂. The bare longitudinal and transverse propaga-
tors, which appear in Eq.~10!, are

gL
0~p!5@ r̄v22p2~ l̄12m̄ !#215@ r̄v22p2r̄cL

2#21,
~11!

gT
0~p!5@ r̄v22p2m̄#215@ r̄v22p2r̄cT

2#21, ~12!

where average wave speeds are defined in terms of the aver-
age material properties (r̄cL

25l̄12m̄, r̄cT
25m̄). The imagi-

nary parts of the propagators, which are used below, are
given by

Im gL
0~p!52

p

r̄
sgn~v!d~v22p2cL

2!, ~13!

Im gT
0~p!52

p

r̄
sgn~v!d~v22p2cT

2!. ~14!

Studies of wave propagation in heterogeneous materials
do not lend themselves to solution by perturbation methods.
Solutions of this sort do not converge.12 Instead, Frisch used
diagrammatic methods for solution of the mean response.
The mean response,^G&, is governed by the Dyson equation
which is given by3,7,12

^Gia~x,x8!&5Gia
0 ~x,x8!1E E Gib

0 ~x,y!Mb j~y,z!

3^Gj a~z,x8!&d3y d3z. ~15!

In Eq. ~15!, the quantityG0 is the bare Green’s dyadic
which was defined in Eq.~10!. The second-rank tensorM is
the mass or self-energy operator.12 The Dyson equation, Eq.
~15!, is easily solved in Fourier transform space under the
assumption of statistical homogeneity. The spatial Fourier
transform pair forG0 is given by

Gia
0 ~p!d3~p2q!5

1

~2p!3 E E Gia
0 ~x,x8!

3e2 ip"xeiq"x8 d3x d3x8, ~16!

Gia
0 ~x,x8!5

1

~2p!3 E E Gia
0 ~p!d3~p2q!

3eip"xe2 iq"x8 d3p d3q. ~17!

The Fourier transforms which define^G(p)& andM̃ (p)
are given by expressions similar to that definingG0(p). The
assumption of statistical homogeneity ensures that they are
functions of a single wave vector in Fourier space.

The Dyson equation, Eq.~15!, is then spatially Fourier
transformed and solved for^G(p)&. The result is

^G~p!&5@G0~p!212M̃ ~p!#21. ~18!
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The Dyson equation is exact and describes the mean re-
sponse of the medium. The main difficulty in the solution of
Eq. ~18! is the representation ofM̃ . Approximations ofM̃
are often necessary for closed-form solutions of Eq.~18! to
be obtained. The self-energy,M , can be written as an expan-
sion in powers of material property fluctuations. Approxima-
tion of M can then be made to first order using the first term
in such an expansion. Frisch discusses the equivalence of
this technique, which he called the first-order smoothing ap-
proximation~FOSA!,12 and the Keller approximation.13 Such
an approximation is valid if the fluctuations of the material
properties are small (dr(x)!1, dl(x)!1, dm(x)!1). To
this level of approximation, the self-energy is given by

Mb j~y,z!'^Lbg
1 ~y!Ggk

0 ~y,z!Lk j
1 ~z!&, ~19!

whereL1 is the first-order operator.12

The first-order operator for the problem studied here fol-
lows from Eqs.~1!, ~5!, and~6!. It is given by

Lbg
1 ~y!5v2dbgr̄dr~y!1l̄

]

]yb
dl~y!

]

]yg

1m̄
]

]yg
dm~y!

]

]yb
1m̄dbg

]

]yl
dm~y!

]

]yl
.

~20!

The spatial transform of the self-energy and the mean
Green’s dyadic will have the same form as the bare Green’s
dyadic. They are written

M̃ ~p!5mL~p!p̂p̂1mT~p!~ p̂2p̂21p̂3p̂3!, ~21!

and

^G̃~s!&5gL~s!ŝŝ1gT~s!~ ŝ2ŝ21 ŝ3ŝ3!. ~22!

The propagators for the mean response are then given by the
solution of the Dyson equation, Eq.~18!, as

gb~p!5@gb
0~p!212mb~p!#21

5@ r̄v22p2r̄cb
22mb~p!#21, ~23!

for each wave type,b ~L or T!.
The expressions for the propagators of the mean re-

sponse define the phase velocity and attenuation of each
wave type. The solution of

r̄v22p2r̄cb
22mb~p!50, ~24!

for the wave vectorp, is required, givenM̃ defined in Eq.
~19!.

The inverse Fourier transform of^G(p)& will be domi-
nated by the zeros of the propagators. The phase velocity is
given by the real part ofp and the attenuation by the imagi-
nary part. Such solutions of Eq.~24! are often done numeri-
cally using root finding techniques.2 However, explicit ex-
pressions for the attenuation can be determined using an
approximation valid below the high-frequency geometric op-
tics limit. In this case, the wave vector,p, within the self-
energy is approximated as being equal to the bare wave vec-
tor. Such an approximation,m(p)'m(vp̂/cb), is sometimes
called a Born approximation.2,3 In essence, the phase veloc-

ity is assumed to remain unchanged by the heterogeneities.
This approximation allows the imaginary part ofp to be
calculated directly from Eq.~24!. The attenuation of each
wave type, to this level of approximation, is given by

ab~ p̂!52
1

2r̄vcb
Im mbS v

cb
p̂D , ~25!

where the subscriptb refers to either wave type~L or T!.
Thus the determination of the attenuations requires the
imaginary part of the components of the spatial transform of
the self-energy. The self-energy, given by Eq.~19!, is a prod-
uct of the bare Green’s dyadic,G0, and two multiples of the
first-order operator,L1, defined in Eq.~20!. This operator
contains terms related to the density and Lame´ parameter
fluctuations. Therefore, the entire self-energy is a sum of six
terms—arr term and five others~ll, mm, rl, rm, andlm!.

The spatial double Fourier transform of the self-energy
is given by

M̃b j~p!d3~p2q!5
1

~2p!3 E E d3y d3ze2 ip"y^Lbg
1 ~y!

3Ggk
0 ~y,z!Lk j

1 ~z!&eiq"z. ~26!

Example calculations for two of the terms ofM̃ are
given here explicitly. The other terms follow from similar
derivations. The first term comes from the density terms in
each of the first-order operators. It is given by

M̃b j
rr~p!d3~p2q!5

r̄2v4

~2p!3 E E d3y d3ze2 ip"yGb j
0 ~y,z!

3^dr~y!dr~z!&eiq"z. ~27!

The spatial Fourier transforms of correlation functions
~the power spectra of the fluctuations! are defined as

R̃~p!5
1

~2p!3 E d3rR~r !e2 ip"r. ~28!

This definition allows therr term of the self-energy, Eq.
~27!, to reduce to

M̃b j
rr~p!5 r̄2v4E d3sG̃b j

0 ~s!R̃rr~p2s!. ~29!

Thus, the terms of the transform of the self-energy may be
written as convolutions between the bare Green’s dyadic and
the power spectra.

The term related to thell covariance is given by

M̃b j
ll~p!d3~p2q!

5
l̄2

~2p!3 E E d3y d3ze2 ip"y

3 K ]

]yb
dl~y!

]

]yg
Ggk

0 ~y,z!
]

]zj
dl~z!

]

]zk
L eiq"z. ~30!

Integration by parts yields

M̃b j
ll~p!5l̄2E d3sG̃gk

0 ~s!R̃ll~p2s!pbpjsgsk . ~31!
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The remaining calculations follow in a similar manner. The total self-energy is finally expressed as

M̃b j~p!5E d3sG̃gk
0 ~s!$r̄2v4d jkdbgR̃rr~p2s!1l̄2R̃ll~p2s!pbpjsgsk1m̄2~sbsj pgpk1sbpgplsld jk1dbgplslsj pk

1dbgd jkplslpmsm!R̃mm~p2s!1 r̄ l̄v2~dbgpjsk1d jkpbsg!R̃rl~p2s!1 r̄m̄v2@dbg~sj pk1plsld jk!

1d jk~sbpg1plsldbg!#R̃rm~p2s!1l̄m̄~pbsj pksg1pbsgplsld jk1sbpjskpg1pjskplsldbg!R̃lm~p2s!%. ~32!

The imaginary part of this final expression for the transform of the self-energy allows the attenuations to be determined.
The forms for the self-energy, Eq.~21!, and the bare Green’s dyadic, Eq.~10!, are used in simplifying the attenuations. These
expressions Eqs.~13!–~14! are substituted into Eq.~32!. Appropriate inner products of the resulting equation allow the
required components,mL(p) andmT(p), to be determined. The required quantity for the longitudinal attenuation is given by

Im mL~p!52
p

r̄

1

2v
p̂bp̂ jE d3sS 1

cL
d~s2v/cL!ŝgŝk1

1

cT
d~s2v/cT!~ ŝ2g

ŝ2k
1 ŝ3g

ŝ3k
! D $r̄2v4d jkdbgR̃rr~p2s!

1l̄2pbpjsgskR̃ll~p2s!1m̄2~sbsj pgpk1sbpgplsld jk1dbgplslsj pk1dbgd jkplslpmsm!R̃mm~p2s!

1 r̄ l̄v2~dbgpjsk1d jkpbsg!R̃rl~p2s!1 r̄m̄v2@dbg~sj pk1plsld jk!1d jk~sbpg1plsldbg!#R̃rm~p2s!

1l̄m̄~pbsj pksg1pbsgplsld jk1sbpjskpg1pjskplsldbg!R̃lm~p2s!%. ~33!

For the transverse attenuation, the required result is

Im mT~p!52
p

r̄

1

4v
~ p̂2b

p̂2 j
1 p̂3b

p̂3 j
!E d3sS 1

cL
d~s2v/cL!ŝgŝk1

1

cT
d~s2v/cT!~ ŝ2g

ŝ2k
1 ŝ3g

ŝ3k
! D

3$r̄2v4d jkdbgR̃rr~p2s!1l̄2R̃ll~p2s!pbpjsgsk1m̄2~sbsj pgpk1sbpgplsld jk1dbgplslsj pk

1dbgd jkplslpmsm!R̃mm~p2s!1 r̄ l̄~dbgpjsk1d jkpbsg!v2R̃rl~p2s!1@dbg~sj pk1plsld jk!

1d jk~sbpg1plsldbg!#r̄m̄v2R̃rm~p2s!1l̄m̄~pbsj pksg1pbsgplsld jk1sbpjskpg1pjskplsldbg!R̃lm~p2s!%.

~34!

The two longitudinal attenuations,aLL andaLT , are de-
termined first using Eqs.~33! and~25!. The total longitudinal
attenuation,aL5aLL1aLT . The first term fromG0 involv-
ing ŝŝ gives aLL , while the second term containing (ŝ2ŝ2

1 ŝ3ŝ3) gives aLT . The frequency-limiting approximation
implies that p'vp̂/cL in Eq. ~33!. The integral over the
magnitude of the wave number is trivial, leaving only an
integration over the unit sphere. The result for theLL attenu-
ation is

aLL5
pv4

4cL
4 E d2ŝH ~ p̂• ŝ!2R̃rr

LL1
~cL

222cT
2!2

cL
4 R̃ll

LL

1
4cT

4

cL
4 ~ p̂• ŝ!4R̃mm

LL 1~ p̂• ŝ!
2~cL

222cT
2!

cL
2 R̃rl

LL

1~ p̂• ŝ!3
4cT

2

cL
2 R̃rm

LL1~ p̂• ŝ!2
4cT

2~cL
222cT

2!

cL
4 R̃lm

LL J .

~35!

The notation used in Eq.~35! for the R̃ terms is defined by

R̃ll
i j 5R̃llS Uvci

p̂2
v

cj
ŝU D , ~36!

where the superscriptsi and j refer to the possible wave
types,L or T. The correlation functions depend only upon

the cosine of the angle between the incident and scattered
directions,x5p̂• ŝ, because of the assumption of statistical
isotropy. Thus, the integration in azimuthal angle is trivial.
The final result for theLL attenuation is

aLL5
p2v4

2cL
4 E

21

11

dxH x2R̃rr
LL~x!1

~cL
222cT

2!2

cL
4 R̃ll

LL~x!

1
4cT

4

cL
4 x4R̃mm

LL ~x!1x
2~cL

222cT
2!

cL
2 R̃rl

LL~x!

1x3
4cT

2

cL
2 R̃rm

LL~x!1x2
4cT

2~cL
222cT

2!

cL
4 R̃lm

LL ~x!J . ~37!

This result is consistent with that given by Ryzhiket al.10

The mode conversion attenuation,aLT , is found in a
similar manner to be

aLT5
pv4

4cLcT
3 E d2ŝH ~~ p̂• ŝ2!21~ p̂• ŝ3!2!R̃rr

LT

14~ p̂• ŝ!2
cT

2

cL
2 ~~ p̂• ŝ2!21~ p̂• ŝ3!2!R̃mm

LT

14~ p̂• ŝ!~~ p̂• ŝ2!21~ p̂• ŝ3!2!
cT

cL
R̃rm

LTJ . ~38!
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The medium considered here is statistically isotropic. In this
type of problem, the differential scattering cross-section~the
integrand! must be a function of onlyp̂• ŝ. It can be easily
shown that

~ p̂• ŝ2!21~ p̂• ŝ3!2512~ p̂• ŝ!2. ~39!

Thus, the mode conversion attenuation may be written

aLT5
pv4

4cT
3cL

E d2ŝ~12~ p̂• ŝ!2!

3H R̃rr
LT1

4cT
2

cL
2 ~ p̂• ŝ!2R̃mm

LT 1
4cT

cL
~ p̂• ŝ!R̃rm

LTJ . ~40!

After the azimuthal integration we have

aLT5
p2v4

2cT
3cL

E
21

11

~12x2!

3H R̃rr
LT~x!14

cT
2

cL
2 x2R̃mm

LT ~x!14
cT

cL
xR̃rm

LT~x!J dx,

~41!

where x5p̂• ŝ. The term in brackets corresponds tosps

given by Ryzhiket al., Eq. ~4.56!. The complete expression
agrees with that given by Papanicolaouet al.,11 Eq. ~A2!.

The calculation of the transverse wave attenuations pro-
ceeds along a similar line. The two transverse attenuations,
aTL andaTT , are determined from Eqs.~34! and ~25!. The
total transverse attenuation,aT5aTL1aTT . The first term
of G0 involving ŝŝ gives aTL , while the second term con-
taining (ŝ2ŝ21 ŝ3ŝ3) gives aTT . The frequency-limiting ap-
proximation implies thatp'vp̂/cT in Eq. ~34!. The integral
over the magnitude of the wave number is trivial, leaving
only an integration over the unit sphere. The result for the
TL attenuation is

aTL5
pv4

8cL
3cT

E d2ŝH ~~ ŝ•p̂2!21~ ŝ•p̂3!2!R̃rr
TL

14~ p̂• ŝ!2~~ ŝ•p̂2!21~ ŝ•p̂3!2!
cT

2

cL
2 R̃mm

TL

14~ p̂• ŝ!~~ ŝ•p̂2!21~ ŝ•p̂3!2!
cT

cL
R̃rm

TLJ . ~42!

Again, the differential scattering cross sections~the inte-
grands! must be only functions ofp̂• ŝ. It can be shown that

~ ŝ•p̂2!21~ ŝ•p̂3!2512~ p̂• ŝ!2. ~43!

Thus, we have

aTL5
pv4

8cL
3cT

E d2ŝ~12~ p̂• ŝ!2!

3H R̃rr
TL1

4cT
2

cL
2 ~ p̂• ŝ!2R̃mm

TL 1
4cT

cL
~ p̂• ŝ!R̃rm

TLJ , ~44!

or, after azimuthal integration,

aTL5
p2v4

4cL
3cT

E
21

11

~12x2!

3H R̃rr
TL~x!1

4cT
2

cL
2 x2R̃mm

TL ~x!1
4cT

cL
xR̃rm

TL~x!J dx.

~45!

As a check of self-consistency, the above expression foraTL

satisfies the required relation

aTL5
1

2 S cT

cL
D 2

aLT . ~46!

Finally, the TT attenuation may be reduced to

aTT5
pv4

8cT
4 E d2ŝ$~~ p̂2• ŝ2!21~ p̂3• ŝ2!21~ p̂2• ŝ3!21~ p̂3• ŝ3!2!R̃rr

TT1R̃mm
TT @~ ŝ•p̂2!2~ p̂• ŝ2!21~ ŝ•p̂3!2~ p̂• ŝ2!2

1~ ŝ•p̂2!2~ p̂• ŝ3!21~ ŝ•p̂3!2~ p̂• ŝ3!212~ p̂• ŝ!~~ p̂2• ŝ2!~ p̂• ŝ2!~ ŝ•p̂2!1~ p̂3• ŝ2!~ ŝ•p̂3!~ p̂• ŝ2!!12~ p̂• ŝ!~~ p̂2• ŝ3!~ ŝ•p̂2!

3~ p̂• ŝ3!1~ p̂3• ŝ3!~ ŝ•p̂3!~ p̂• ŝ3!!1~ p̂• ŝ!2~~ p̂2• ŝ2!21~ p̂3• ŝ2!21~ p̂2• ŝ3!21~ p̂3• ŝ3!2!#12R̃rm
TT@~ p̂2• ŝ2!~ ŝ•p̂2!

3~ p̂• ŝ2!1~ p̂3• ŝ2!~ ŝ•p̂3!~ p̂• ŝ2!1~ p̂2• ŝ3!~ ŝ•p̂2!~ p̂• ŝ3!1~ p̂3• ŝ3!~ ŝ•p̂3!~ p̂• ŝ3!1~ p̂• ŝ!~~ p̂2• ŝ2!21~ p̂3• ŝ2!2

1~ p̂2• ŝ3!21~ p̂3• ŝ3!2!#%. ~47!

Once again, the differential scattering cross sections must depend only onp̂• ŝ. The above combinations of inner products can
be reduced considerably. The necessary identities are

~ p̂2• ŝ2!21~ p̂3• ŝ2!21~ p̂2• ŝ3!21~ p̂3• ŝ3!2511~ p̂• ŝ!2, ~48!

~ p̂2• ŝ2!~ p̂• ŝ2!~ ŝ•p̂2!1~ p̂3• ŝ2!~ ŝ•p̂3!~ p̂• ŝ2!1~ p̂2• ŝ3!~ ŝ•p̂2!~ p̂• ŝ3!1~ p̂3• ŝ3!~ ŝ•p̂3!~ p̂• ŝ3!5~ p̂• ŝ!32~ p̂• ŝ!, ~49!

and

~ ŝ•p̂2!2~ p̂• ŝ2!21~ ŝ•p̂3!2~ p̂• ŝ2!21~ ŝ•p̂2!2~ p̂• ŝ3!21~ ŝ•p̂3!2~ p̂• ŝ3!25122~ p̂• ŝ!21~ p̂• ŝ!4. ~50!

These identities allowaTT to be written in terms ofp̂• ŝ only as
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aTT5
pv4

8cT
4 E d2ŝ$~~ p̂• ŝ!211!R̃rr

TT1~123~ p̂• ŝ!2

14~ p̂• ŝ!4!R̃mm
TT 14~ p̂• ŝ!3R̃rm

TT%. ~51!

Integration in azimuth leaves

aTT5
p2v4

4cT
4 E

21

11

$~x211!R̃rr
TT~x!1~123x214x4!

3R̃mm
TT ~x!14x3R̃rm

TT~x!%dx. ~52!

The TT attenuation,aTT , depends solely on the shear wave
speed as expected.

The attenuations given by Eqs.~37!, ~41!, ~45!, and~52!
are the main results of this section. The results here have
been reduced to integrations on the unit circle in terms of the
correlation power spectra. The forward-weighted attenua-
tions, a8, which quantify the amount of forward scattering,
are identical to the expressions for the attenuations given
above with an additional factor ofx5cosQ in the
integrand.14

In the low-frequency limit, the correlation functions are
expected to be constant. Also in this limit, the scattering is
nonpreferential~an equal amount of energy is scattered for-
ward as backward!. In this case, thea8s are zero. However,
as seen in the equations for the attenuations, Eqs.~37!, ~41!,
~45!, and ~52!, this is not necessarily the case. The angular
dependence associated with the autocorrelations are all even
functions. Those associated with the cross correlations are all
odd. The implications of these results are still unclear. Must
the cross correlations approach zero in the low-frequency
limit? In the next section, assumptions about the form of the
fluctuations are made and sample calculations presented.

III. MEAN FREE PATHS AND ELASTIC DIFFUSIVITY

The above expressions for the attenuations are now used
for determination of mean free paths and elastic diffusivity.

The above derivation resulted in expressions for the dis-
placement attenuations. The energy density is proportional to
the square of the displacements. Thus, the energy attenua-
tions are twice the displacement attenuations. In addition, the
scattering mean free paths,l L and l T , are the inverse of the
energy attenuation. Therefore, we have

l L5
1

2~aLL1aLT!
, ~53!

l T5
1

2~aTL1aTT!
. ~54!

In the low-frequency Rayleigh limit, the correlation
functions,R̃, are constant. Thus, the expressions for the at-
tenuations, Eqs.~37!, ~41!, ~45!, and ~52! reduce consider-
ably. In this limit, the integrands become simple polynomials
in x. After integration, we have

aLL5
p2v4

cL
4 S 1

3
R̃rr

LL1~122B2!2R̃ll
LL1

4

5
B4R̃mm

LL

1
4

3
B2~122B2!R̃lm

LL D , ~55!

aLT5
2p2v4

3cT
3cL

S R̃rr
LT1

4

5
B2R̃mm

LT D , ~56!

aTL5
p2v4

3cTcL
3 S R̃rr

LT1
4

5
B2R̃mm

LT D , ~57!

aTT5
2p2v4

cT
4 S 1

3
R̃rr

TT1
1

5
R̃mm

TT D , ~58!

whereB5cT /cL is the wave speed ratio. Also, in the low-
frequency limit, the transforms of the correlation functions
are independent of the wave types. In other words,R̃rr

[R̃rr
LL5R̃rr

LT5R̃rr
TT . Similar relations hold for thel and m

terms as well. The scattering mean free paths then reduce to

l L5
15cL

4B3/~2p2v4!

5~21B3!R̃rr115B3~122B2!2R̃ll14B2~3B512!R̃mm120B5~122B2!R̃lm

, ~59!

l T5
15cT

4/~2p2v4!

5~21B3!R̃rr12~312B5!R̃mm

. ~60!

These results differ slightly from those given by Ryzhik
et al.10

The elastic diffusivity,D, can be written14

D5
cTl T*

3

21B2L

21B3 , ~61!

whereL5 l L* / l T* is the ratio of transport mean free paths. The
elastic diffusivity is a weighted average of the diffusivities of
individual compressional and shear components. The weight-
ing is determined by the diffusive equipartitioning law,

which states that the energy in transverse form,ET , and the
longitudinal energy,EL , are related byET52EL /B3.15 In
the low-frequency limit, the transport mean free paths reduce
to the scattering mean free paths

l L* 5 l L5
1

2aL
, ~62!

l T* 5 l T5
1

2aT
. ~63!

Outside the long wavelength limit, the transport mean free
paths are given by14
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l L* 5
1

2

aT2aTT8 1aLT8

~aL2aLL8 !~aT2aTT8 !2aLT8 aTL8
, ~64!

l T* 5
1

2

aL2aLL8 1aTL8

~aL2aLL8 !~aT2aTT8 !2aLT8 aTL8
, ~65!

where the primed attenuations are the forward-weighted dis-
placement attenuations discussed above for the respective
scattering processes. In the limit of nonpreferential scatter-
ing, the primed attenuations vanish and the mean free paths
are seen to reduce to the inverse of the energy scattering
attenuation as in Eqs.~62!–~63!. Example calculations are
now presented using the above derived quantities.

IV. EXAMPLE RESULTS

Example results are now presented using additional ma-
terial assumptions. The results are put in dimensionless form
for the most widespread applicability. It is first assumed that
the material properties are uncorrelated with one another.
This implies that the cross correlations are zero (R̃ml5R̃rm

5R̃rl50).
In this case, the attenuations become

aLL5
p2v4

2cL
4 E

21

11

$x2R̃rr
LL~x!1~122B2!2R̃ll

LL~x!

14B4x4R̃mm
LL ~x!%dx, ~66!

aLT5
p2v4

2cT
3cL

E
21

11

~12x2!$R̃rr
LT~x!14B2x2R̃mm

LT ~x!%dx,

~67!

and

aTL5 1
2 B2aLT , ~68!

aTT5
p2v4

4cT
4 E

21

11

$~11x2!R̃rr
TT~x!1~123x214x4!

3R̃mm
TT ~x!%dx. ~69!

The forward-weighted attenuations3,14 are defined as
these with an extra factor ofx5cosQ within the integrand.
These attenuations are denoted with a prime.

Next, it is assumed that all autocorrelation functions
have the same spatial dependence. They are assumed to have
the form

Rgg5Ag
2R~r !, ~70!

where the subscriptg refers to the material parameters ofr,
l, andm. The magnitude of the fluctuations for each material
parameter is given byAg .

Finally, a form for the functionR(r ) is assumed. As
discussed by Stanke,16 an exponential function describes the
correlation of continuous and discrete materials reasonably
well. Thus, it is assumed that

R~r !5e2r /H, ~71!

where H is the correlation length. Such a model, with a
single length scale, is perhaps oversimplified for materials
with polydispersed scatterer sizes. However, for many mate-

rials such a model is expected to describe the statistics of the
material properties well. In transform space

R̃~p!5
H3

p2~11H2p2!2 . ~72!

With the length scale of the spatial correlation introduced,
dimensionless longitudinal and transverse frequencies are
defined asxL5vH/cL and xT5vH/cT . The transform of
the difference between two wave vectors can then be written

R̃i j ~x!5
H3

p2~11xi
21xj

222xixjx!2 , ~73!

where the superscripts,i j , correspond to the possible wave
types, L or T. The functions needed for determining the at-
tenuations are

R̃LL~x!5
H3

p2~112xL
2~12x!!2 , ~74!

R̃LT~x!5
H3

p2~11xL
21xT

222xLxTx!2 , ~75!

R̃TT~x!5
H3

p2~112xT
2~12x!!2 . ~76!

The attenuations may then be written in dimensionless form
as

aLLH5
xL

4

2 E
21

11 Ar
2x21Al

2~122B2!214B4Am
2 x4

~112xL
2~12x!!2 dx,

~77!

aLTH5
xL

4

2B3 E
21

11 ~12x2!~Ar
214Am

2 B2x2!

~11xL
21xT

222xLxTx!2 dx, ~78!

aTTH5
xT

4

4 E
21

11 Ar
2~11x2!1Am

2 ~123x214x4!

~112xT
2~12x!!2 dx.

~79!

The integrals for the final form of the attenuations, both non-
primed and primed, can be calculated in closed-form.3 All
integrations are of the form

E
21

11 xn

~a2bx!2 dx, ~80!

with n ranging from 0 to 5. The integrals were evaluated
using numerical integration. Recursive adaptive Lobatto
quadrature is available through the Matlab function
‘‘quadl.’’ 17

Figure 1 is a plot of the dimensionless longitudinal and
transverse attenuations,aLH and aTH, respectively, as a
function of dimensionless frequency,xL , for density fluctua-
tions only (Al5Am50). A wave speed ratio ofcT /cL

51/) has been used for these results and those that follow.
The attenuations are seen to increase with the fourth power
of frequency in the low-frequency limit. After a transition
region, the attenuations increase as the frequency squared.
The high-frequency geometric optics limit, in which the at-
tenuations are constant, is not predicted due to the
frequency-limiting assumption used above. The transverse
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attenuation is larger than the longitudinal as expected. The
difference between the two attenuations increases with fre-
quency, but is a constant in each frequency regime. The ac-
tual ratio of the attenuations is a function of the fluctuations.

Figure 2 is a plot of the dimensionless longitudinal and
transverse attenuations,aLH and aTH, respectively, as a
function of dimensionless frequency,xL , for modulus fluc-
tuations only (Ar50). The results have a similar form as
those in Fig. 1. Combinations of both density and modulus
fluctuations are simply the sum of the results from these two
figures. The component of the attenuation attributed to den-
sity fluctuations~Fig. 1! is seen to be much larger than the
component of attenuation attributable to modulus fluctua-
tions for the same level of fluctuations. The importance of
the density fluctuations has not been discussed previously.

The dimensionless transport mean free paths,l L* /H and
l T* /H, are shown in Figs. 3 and 4. The complex forms of
these terms, Eqs.~64!–~65!, do not allow simple addition of
factors from the different parameter fluctuations. Thus, a few

different combinations of fluctuation levels have been chosen
to highlight the range of these quantities. The ratio of the
transport mean free paths is of interest since it appears in the
definition of the diffusivity. It can be seen in Figs. 3 and 4
that the ratio,L5 l L* / l T* , comes very near unity at the higher
frequencies for many of the combinations of material fluc-
tuations shown.

Finally, the dimensionless elastic diffusivity,D/HcT , is
shown in Fig. 5 for various combinations of material fluctua-
tions. Again, the low-frequency limit has the expected form,
decreasing with the inverse fourth power of frequency. At
higher frequencies, the diffusivity becomes nearly frequency
independent as in the polycrystalline case.3

V. DISCUSSION

The propagation and scattering of elastic waves in het-
erogeneous media has been examined. Appropriate ensemble
averaging of the elastic wave equation resulted in the Dyson

FIG. 1. Dimensionless longitudinal and transverse attenuations,aLH and
aTH, as a function of dimensionless frequency,xL , for density fluctuations
only.

FIG. 2. Dimensionless longitudinal and transverse attenuations,aLH and
aTH, as a function of dimensionless frequency,xL , for modulus fluctua-
tions only.

FIG. 3. Dimensionless longitudinal transport mean free path,l L* /H, as a
function of dimensionless frequency,xL , for different material fluctuation
levels.

FIG. 4. Dimensionless transverse transport mean free path,l T* /H, as a func-
tion of dimensionless frequency,xL , for different material fluctuation
levels.
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equation, governing the mean response. The problem was
further specified for the case of both density and Lame´ con-
stants which varied spatially. The final forms of the attenua-
tions are given by simple expressions involving integrations
over the unit circle. The integrands are dependent upon inner
products on the covariance of fluctuations of the material
properties. The expressions derived here are in basic agree-
ment with those results found using asymptotic methods.10,11

Therefore, it is expected that the asymptotic approach would
have the same restrictions as the current method. The fluc-
tuations must be small and the frequency must not be so high
that the phase velocity is appreciably altered.

The results presented here are also directly applicable to
diffuse field methods such as backscatter techniques.18 Re-
cently, the above model has been further modified for two-
phase materials. This model has been used for comparison
with experiments of ultrasound diffusion in concrete.19 The
comparison between the theory and experiments is quite
good despite the simplicity of many of the assumptions.
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