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Scattering of elastic waves in heterogeneous media
with local isotropy

Joseph A. Turner and Phanidhar Anugonda
Department of Engineering Mechanics, W317.4 Nebraska Hall, University of Nebiaisikaln, Lincoln,
Nebraska 68588-0526

(Received 14 August 2000; revised 20 February 2001; accepted 23 Februajy 2001

The scattering of elastic waves in heterogeneous media is discussed. Explicit expressions are
derived for the attenuation of longitudinal and transverse elastic waves in terms of the statistics of
the density and Lamparameter fluctuations. The derivation is based upon diagrammatic methods
with the problem posed in terms of the Dyson equation. The Dyson equation is solved for the mean
field response. The results are given here in a straightforward manner, in which the attenuations
reduce to simple integrals on the unit circle. The medium is assumed statistically homogeneous and
statistically isotropic. This model, with assumed local isotropic properties, is expected to apply to
many materials. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1367245

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35[0§C]

I. INTRODUCTION tial Fourier transform domain within the limits of the first-
; - 12 3 o
The study of wave propagation and scattering of elastic rde'r smoothmg apprommatp(FOSA) o or Keller'® ap .
roximation. A further approximation is also made which

waves in heterogeneous media is related to nondestructivg . :
. ) o : o Efstrlcts the results to frequencies below the high-frequency
testing, materials characterization, acoustic emission, an

s : . . eometric optics limit. This high-frequency limit, in which
seismic wave analysis. An improved understanding of th ) .

. A ) tefracted ray analysis must be ugeis, above the range of

effects of scattering provides insight into the microstructure

. ! . dnost ultrasonic experiments. With this approximation, the
of a variety of materials such as polycrystalline metals an . N .
attenuations for the longitudinal and transverse elastic waves

ceramics, composites, geophysical materials, and concrete, . . . N
. . : reduce to simple integrations on the unit circle. The results
Elastic waves which propagate through such media lose en- . . . 10
X re are in basic agreement with those of Ryzéilal:
ergy due to scattering from the heterogeneous structure ; ; .
herefore, their asymptotic method is presumed to be

the material. The scattering effects may be characterized bg

the attenuation. Previous research on scattering problems aﬂitg\r/]alent to the FOSA with the additional frequency limi-

this nature has been dominated by studies of polycrystalline In the next section, the theoretical model is presented in

materialst™ In these models, it is assumed that density fluc- . el
) - oo .~ terms of the Dyson equation. The Dyson equation is solved
tuations are negligible and that the material is locally aniso- . . .
. ; .and expressions for the attenuations derived. Then expres-
tropic. The grains are usually assumed to be randomly ori-. S
. ) o ) ) sions for the mean free paths and elastic diffusivity are pre-

ented, such that the medium is statistically isotropic. More

X . sented. Finally, further assumptions of the form of the fluc-

general cases have also been exanifeith which the : :

: . . tuations are made and example calculations are presented.
grains have some prescribed alignmétexture such that
the medium is statistically anisotropic. This research, in
which expressions for attenuation were derived, was also ex-
tended to derivations of elastic radiative transfer equation. MEAN RESPONSE
(RTE) and diffusion equations which describe the evolution ] ) ]
of diffuse elastic energy*®°More recent developments in- The equation of motion for the elastodynamic response
clude the derivation of the attenuations and elastic RTE usof @ linear, elastic material to deformation is given in terms
ing an asymptotic approacfil!In those articles, a different ©f the Green’s dyadic by

microstructural model was used. The elastic moduli wer 2 J
assumed to be Io.cally isotropic 'and the density was consig-_ 5jkP(X)W+ Kcijkl(x)g Gra(X,X':)
ered to vary spatially. The medium was assumed to be sta- i '

tistically homogeneous and statistically isotropic as well. = 8;,0%(x—x") (1), (1
Such a model is expected to be reasonable for geophysical
materials and concrete. They derived the differential scattemwhere5°(x—x’) is the three-dimensional spatial Dirac delta
ing cross sections, elastic radiative transfer equations, arfanction. The Green’s dyadiG;;(x,x’;t), is the response at
the elastic diffusion equation. locationx in theith direction due to an impulsive force ap-

In this article, the same microstructural model based omplied atx’ in the jth direction. In Eq(1), p(x) andCij,(x)
local material isotropy is used to derive elastic wave attenudefine the material density and elastic modulus tensor, re-
ations. The derivation is based upon the diagrammaticpectively. These material properties are assumed to vary
approacf?in which the mean response is governed by thespatially.
Dyson equation. The Dyson equation is easily solved in spa- A spatio-temporal Fourier transform pair is defined as
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'f(p'w): j+xj+mf(xlt)eiwte—iX'p d3X dt, (2) {ﬁjﬁk(ﬁwz_ p2(y+ Zm)+(5jk_ ﬁj I’jk)

X (p’ = P?u)}GRo(P) = 8} ©)
(1) = o )4] f (p,w)e “e*Pd3p dw. (3) The solution forGP is given by inspection as
G%(p)=9gl(P)PP-+gT(P)(P2P2+ P3ba), (10)

This transform pair defines the relation between space—time
variables(x andt) and wave vector-angular frequency vari-
ables(p and w).

The temporal transform of the equation of motion, Eq

for propagation in th@ direction. The unit vectorp, andps
are transverse to the directigh) and form an orthonormal
basis withp. The bare longitudinal and transverse propaga-

(1), is then ‘tors, which appear in Eq10), are
9 3 gb(p)=[pw’—p?(\+2m)] *=[pw’—p’pci]
© 5Jkp(x)+ |JkI(X) Gka(x X', o) 11
, _Rn2 _ CZ *l, 12
=5jaée(x_x). @) 97(p) =[pw?~p’u] *=[pw’~p?pci] (12
The material properties of the medium are assumed te;vhere average wave speeds are defined in terms of the aver-
vary spatially. The density is written age material propertie¢f =\ +2u, pci=w). The imagi-
] nary parts of the propagators, which are used below, are
p(X)=p(1+p(X)), (5 given by
wherep is the average density anth(x) is a dimensionless -
measure of the density fluctuations. ImgP(p)=— =sg ) (w?—p3c}), (13
Previous wave propagation studies of polycrystalline P
materials have used a locally anisotropic model which ac- 0 T
counts for the crystal anisotropy:’ Here, the elastic modu- Imgr(p)=— —sgr( ) (w?—p?c). (14
lus tensorC;j is assumed to be locally isotropic. It is writ- . .
ten as Studies of wave propagation in heterogeneous materials
o do not lend themselves to solution by perturbation methods.
Cijkt (X) =N (14 6N (X)) 8ij Oy + w( 1+ Su(X)) Solutions of this sort do not converé%lnstead, Frisch used

diagrammatic methods for solution of the mean response.
The mean respons€G), is governed by the Dyson equation
where\ andzz are the average Lammarameters. The elastic Which is given by"*?

moduli fluctuations are defined by the dimensionless mea-

suresdl (x) andSu(x). The material properties are assumed (Gia(x,x')>=G?a(x,x')+f j Gioﬁ(x,y)Mﬁj(y,z)

to be centered random processes such thép(x))

=(6\(X))=(u(x))=0, where the bracket§) denote an X(Gj,(z,x"))ydy d®z. (15

ensemble average. L0 , .
In Eq. (15), the quantityG" is the bare Green’s dyadic
Statisics of the luctuations. The covariance of te deny (21ich was defined n EG10.. The second-rank tensbl i
defined as Y Bhe mass or self- -energy operalbiThe Dyson equation, Eq.
(15), is easily solved in Fourier transform space under the
R,,(Y=2)=(bp(y)6p(2)). (7)  assumption of statistical homogeneity. The spatial Fourier
transform pair forG° is given by

X (i ji + i Ojk), (6)

Similar definitions for the covariancéutocorrelation of
Lame parameters and the cross correlations between differ- 0 0 ,
ent parameters are also made. The average medium is as- Gia(p)ée(p—q)=WJ J Gia(XX")
sumed statistically isotropic and statistically homogeneous.

These assumptions imply that the correlation functions de- x e~ iPxglax’ g3y o3y’ (16)
pend only on the magnitude of the difference of the two
positions. Mathematically, these assumptions imply that (x X')= f f (p)be (p—q)
R(y—2)=R(r), wherer=|y—2|. (2m)°

The bare Green’s dyadiG®, is defined as the solution ipxa—igx’ 43 43
to Eqg.(4) when the fluctuations of all material properties are xere d*p d*q. 17
zero. It is the solution to The Fourier transforms which defif&(p)) and M (p)

P 2 are given by expressions similar to that defin®%p). The
0?5, kp+()\+_) % I +,u,5]k Gka(x X" w) assumption of statistical homogeneity ensures that they are
! ' functions of a single wave vector in Fourier space.
= 5ja53(X—X ). (8) The Dyson equation, Eq15), is then spatially Fourier

) ] ] ) transformed and solved fdG(p)). The result is
A spatial Fourier transform, as defined in E8), allows

Eq. (8) to be reduced to (G(p))=[G°(p) *—M(p)] ™. (18
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The Dyson equation is exact and describes the mean réy is assumed to remain unchanged by the heterogeneities.
sponse of the medium. The main difficulty in the solution of This approximation allows the imaginary part pfto be

Eq. (18) is the representation an. Approximations ofM calculated directly from Eq(24). The attenuation of each
are often necessary for closed-form solutions of @@ to ~ wave type, to this level of approximation, is given by

be obtained. The self-energyl, can be written as an expan- 1 ©
sion in powers of material property fluctuations. Approxima- ag(p)=— =+ _p), (25)
tion of M can then be made to first order using the first term 2pwCpy Cp

in such an expansion. Frisch discusses the equivalence @fhere the subscripB refers to either wave typé. or T).

this technique, which he called the first-order smoothing apTnys the determination of the attenuations requires the
prOX|mat|o.n(F(-)SA).,12 and the Keller apprommaﬂo]r?.Such ~ imaginary part of the components of the spatial transform of
an approximation is valid if the fluctuations of the material i, self-energy. The self-energy, given by EXp), is a prod-
properties are smalldp(x)<1, oN(X)<1, du(X)<1). TO ¢t of the bare Green’s dyadiG?, and two multiples of the
this level of approximation, the self-energy is given by first-order operatorg!, defined in Eq.(20). This operator

Im mg

M 4i(y,z)~(£L GO (y.2)£L(2)), 19 contains terms related to the density and [apasameter
B'(Y )= .'By(y) (2 Bl % (19 fluctuations. Therefore, the entire self-energy is a sum of six
where ¢! is the first-order operatdf. . terms—app term and five other\\, uu, p\, pu, andiw).
The first-order operator for the problem studied here fol- ~ The spatial double Fourier transform of the self-energy
lows from Egs.(1), (5), and(6). It is given by is given by
3 (y)= 028, pp(Y)+ e SN (y) — W, (p)3(p—q)= — j j oy dze P gl
By By Y5 y, 5i(P) (p_Q)——g(zﬂ_) y d°ze”"PY(L;.(y)
—d g _ . d J X GY(y,2) Lt (2))€' 92 (26)
+u—u(y) — +udg, 39 —. AT EIK]
“ay, u(y) ay, OBy, u(y) 3]

Example calculations for two of the terms & are
(20 given here explicitly. The other terms follow from similar
The spatial transform of the self-energy and the mearderivations. The first term comes from the density terms in
Green'’s dyadic will have the same form as the bare Green’sach of the first-order operators. It is given by

dyadic. They are written — 4
Y Af Ao Lo s M”‘?(p>b‘°’(p—q)=p—w3f f d®y d®ze "PYGY,(y,2)
M (p)=m(p)PPp+mr(p)(P2P2+ P3Pa), (21 2 (2m) pl

and X(8p(y) 9p(2))€'™. 27
(é(s))=gL(s)§§+ g1(8)(5,5+5%;). (22 The spatial Fourier transforms of correlation functions

The propagators for the mean response are then given by tlgtepe power spectra of the fluctuatiorere defined as

solution of the Dyson equation, E¢L8), as

9s(p)=[gp(p) 1 —mg(p)]~*
T2 n2re2 — -1 23 This definition allows theyp term of the self-energy, Eg.
[pw®—p“pCs—mgy(p)] 23 (27), to reduce to

~ 1 )
R(p)=WJ d3rR(r)e 'PT. (28)

for each wave types (L or T).
The expressions for the prgpagators of thg mean re- M%_J(p):?w4j d3sﬁgj(s)ﬁpp(p—s). (29)
sponse define the phase velocity and attenuation of each

wave type. The solution of Thus, the terms of the transform of the self-energy may be

pw?— pzﬁcff m(p)=0, (24)  written as convolutions between the bare Green’s dyadic and
5 the power spectra.
for the wave vectop, is required, giverM defined in Eq. The term related to th&\ covariance is given by
(19). -
The inverse Fourier transform ¢G(p)) will be domi- M} (p) 8% (p—a)
nated by the zeros of the propagators. The phase velocity is >
given by the real part gp and the attenuation by the imagi- _ A f j d3y dPze Py
nary part. Such solutions of E(R4) are often done numeri- (2m)®
cally using root finding techniquésHowever, explicit ex- J J J J
pressions for the attenuation can be determined using an ><<_5)\(y) —Gok(y,z)—ﬁ)\(z)— e'dZ (30
approximation valid below the high-frequency geometric op- YNp ayy 7 9z 92

tics limit. In this case, the wave vectags, within the self- Integration by parts yields
energy is approximated as being equal to the bare wave vec-
tor. Such an approximatiom(p)~m(wp/cg), is sometimes ~oans o[ i3m0

called a Born approximatiof® In essence, the phase veloc- M5 (P)=\7 | d°SGu(9IR(P=S)PgP;SySc- (3D)
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The remaining calculations follow in a similar manner. The total self-energy is finally expressed as
Mﬁj(p):f dsSégk(s){Ezw46jk5ﬁyﬁpp(p_S)+Pﬁ)\)\(p_S)pﬁpjsysk—i_ﬁz(sﬁsjpypk+sﬁpyplsl Okt 05,P1SIS; Pk

+ 8, 01kP1SIPmSm) R ., (P—9) + PN (85,0 Sk+ SikP Sy Ron (P—9) + prew?[ 85,(Si Pyt PiSi Sik)

+ Ok (Sghy T PiS| 5ﬁ7)]ﬁpu(p_ SERVT| PsS;PKkSy T PS,PIS| Ojk TSP SkP, + PjSkPISI 55y)~R>\,L(p_ 9. (32

The imaginary part of this final expression for the transform of the self-energy allows the attenuations to be determined.
The forms for the self-energy, E(R1), and the bare Green's dyadic, Ed0), are used in simplifying the attenuations. These
expressions Eq9.13)—(14) are substituted into Eq32). Appropriate inner products of the resulting equation allow the
required componentsy, (p) andmy(p), to be determined. The required quantity for the longitudinal attenuation is given by

71 o1 .1 PN P ~
Immy(p)=-=52 p,gpjf os| - S5~ wlC)8, 8t — 8(s—wlCr) (82 85,485 &) [{p*0" 61 0p,Rpy (P9

+N2pP;S,SkR\\ (P—9) + 2(S4S; PP+ SaPPISI Sjk+ S5,PISISiPKF 855 01kP1SIPmSm) Ry (P—9)

+Phw?( OpyPjSKt 5jkpﬂsy)§pk(p_ S +puw? 0p,(SjPKt PiS9j) + Oj(Sehy+ PiS) 53y)]~Rp,L(p_ S)

+ Al P sSiPkS, T PS,PiSI Ojk T SP;SkPyt PjSkPISI 5ﬁy)ﬁkﬂ(p_ S)}. (33
For the transverse attenuation, the required result is

1 R 1 . 1 o o
Immy(p)=— ?E(pzﬂpzﬁpsﬁpsj)f d3s(C—L5(s—w/cL)Sysk+ C—T5(S_ @/Cr)(82 S, 85 S5,)

X {sz45jk5[3'y§pp(p_ 9+NZRy(p— S)PgP;S, Sk w2(SSi PP+ SpP,PISI Ok + 8 5,P1SIS; Pk
+ 85, 01kPISIPmSmI R, (P—9) +PA( 85D Skt 8ikPS,) R\ (P—9) +[ 85,(Si Pkt P15 5ik)

+ Ojk(Sghy T PiSi 557)]Ww2~RpM(p_ SERVT| PSiPkS, T PsS,PiSI Sji +SPjSKkPy T PjSkPIS) 5ﬁy)~Rm(p_ )}
(34

The two longitudinal attenuationg, | ande| 7, are de- the cosine of the angle between the incident and scattered
termined first using Eq$33) and(25). The total longitudinal  directions,y=p-§, because of the assumption of statistical
attenuationg, = ay | + a 7. The first term fromG° involv- isotropy. Thus, the integration in azimuthal angle is trivial.
ing 8 gives a| |, while the second term containing,§,  The final result for the_L attenuation is
+%%;) gives a, 1. The frequency-limiting approximation

implies thatp~wp/c, in Eq. (33). The integral over the et [+1 1L (c2—2c3)%. n
magnitude of the wave number is trivial, leaving only an CVLL:FL dxi x Rpp(X)JFTRn X)
integration over the unit sphere. The result for theattenu- - -
ation is 4ct . 2(ct—2c%) ..
. 2 o2 +FX4R,5;(X)+XT ()
T o) a aomiL, (CLT20D)° L L
LT F d<s (pS) Rpp+—4R}\)\ 2 2, 2 2
4c cL Jact. | JAci(ci—2ch) . |
4 2 2 +X _ZRpIu,(X)_l_X —4R}\M(X) . (37)
4CT A A ATSLL A 2(CL_2CT)~LL CL CL
+ 7 (P9 R+ (P8 —— 7Ry
L L This result is consistent with that given by Ryzhikal®
o 4c2 o 4c3(c?—2c2) . The mode conversion attenuation, +, is found in a
+(D-S)37R,L),LL+(D'S)2C—4 g similar manner to be
L L
(35) Tt
~ o T=—"73 d%8! ((p-8)%+(p-%)HRT
The notation used in Eq35) for the R terms is defined by LT 4c.cd [((p %)+ (PSR,
2
i o~ [lo. o L 20T LA
RQﬁRn( P —33‘ : (36) +4(P-9? 2 ((p-%)*+(B-3)")R,,
i j CL
where the superscripts and j refer to the possible wave Cre
types,L or T. The correlation functions depend only upon +4(ﬁ-§)((f)-é2)2+(;3-§3)2)C—R;; . (38
L
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The medium considered here is statistically isotropic. In this Tt _
type of problem, the differential scattering cross-sectibe aTL=goas f %81 ((3-p2)°+ (5 Pa))R];
integrand must be a function of only-5. It can be easily LT
shown that , ) ) c? TL
5.2 +4(p5)((sp)+(sp)) R
(P-8)°+(p-%)°=1-(p-9”. (39 ’ et

Thus, the mode conversion attenuation may be written TL
+4(P-3((3Po)°+ (& pg)z) R (42

4

mTw
o | @751 (p-97) o e
4cyc, Again, the differential scattering cross sectioftbe inte-

4c2 4c grands must be only functions gp- 8. It can be shown that
LT LT Tia.apLT
[R +—(p 7R, + C—L(p-s)RW]- (40) (8 P,)2+ (5 P3)2=1—(p- 92 (43
After the azimuthal integration we have Thus, we have
4
772(1)4 +1 — T f 2a _(A. &2
~2¢%, (1-x% *T =83, d<8(1—-(p-9°)
2 4c? 4c
CT TL Y= TL T a TL
~ + _ .
x{R;Z<x>+4gzx2R”(x>+4 xR (x)de, [R 2 (PR, + 5 (p S>Rw]' 49
(41) or, after azimuthal integration,
where y=p-8 The term in brackets corresponds ags N =772‘1’4f 1(1_ 2)
given by Ryzhiket al, Eq. (4.56. The complete expression TWacde, ) X

agrees with that given by Papanicolaeual,! Eq. (A2). 2e? .

The calculation of the transverse wave attenuations pro- ~TL CT =11 Ct ~1L
ceeds along a similar line. The two transverse attenuations, x [ Rop () + c_fX Run(X) C_LXRW(X)] d
a7, and art, are determined from Eq$34) and (25). The (45)
total transverse attenuatiom;;= a1 + atr. The first term
of G involving & gives at, while the second term con- As a check of self-consistency, the above expressioa{gr
taining (5,%,+%%) gives at7. The frequency-limiting ap-  satisfies the required relation
proximation implies thap~ wp/ct in Eq. (34). The integral 1
over the magnitude of the wave number is trivial, leaving aTL=§<
only an integration over the unit sphere. The result for the
TL attenuation is Finally, the TT attenuation may be reduced to

cr\?
o arT. (46)

Pa)%(p-%)?

(7o}

4
arr=ger | PSl((P )7+ (b5 &)+ (B 807+ (b5 &) IRE RIS 92020 8 4

+(3 P2)%(P- 8)7+ (3 Pa)?(P- %) 7+ 2(P- 9 ((P2- %) (- %) (3 P2) + (P3- £) (3 Pa) (- %)) +2(P-3)((P2- %) (5 P2)
X(P-83) +(P3-3) (5 Pa)(P-89)) + (P 9)%((P2- 8) 2+ (Ps- )2+ (Pa- 8)°+ (P3- %)) ]+ 2R] 11 (B2 %) (3 o)

X (P-8) +(P3- %) (5 Pa)(P- &) +(P2- 8) (3 P2) (- 35) + (Pa-35) (3 Pa) (P-F) +(P- 9 ((P2- &) °+ (Ps-B)?

+(P2- %)%+ (Ps- %)) 1} (47)

Once again, the differential scattering cross sections must depend ophgomhe above combinations of inner products can
be reduced considerably. The necessary identities are

(P2 %)%+ (D3 %) °+ (P2- %)+ (P3- &) *=1+(p-3)?, (48)

(P2-%)(P-%) (5 P2) + (D3 5) (3 P3)(P- &) + (P2- %) (3 P2) (B- &) + (P~ %) (3 Pa) (P &) = (P-9°—(p-9), (49)
and

(8-P2)%(P- %)%+ (3 P3)2(P- %)+ (8- P2) (P~ %)+ (3 P3) (P~ %) °=1—2(p-§)*+ (- §*. (50

These identities allowr to be written in terms op-§ only as

1791 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001 J. A. Turner and P. Anugonda: Scattering in heterogeneous media 1791



Tt U - s The above derivation resulted in expressions for the dis-
aTT:Wj d8{((p-9°+1R,,+(1-3(p-§ placement attenuations. The energy density is proportional to
T the square of the displacements. Thus, the energy attenua-
+4(p- g)4)~R/T”TL+ A(p- g)SNRZ;}_ (51  tions are twice the displacement attenuations. In addition, the
o ) scattering mean free patHs, andly, are the inverse of the
Integration in azimuth leaves energy attenuation. Therefore, we have
2 4
T W +1 -
arr="4 f {2+ DRIT0+ (1= 3x+ 4x) [ (53
T/l 2(a tary)
XRILO0 4R () dx. (52) ~ 1 54
T_—.
The TT attenuationgtt, depends solely on the shear wave 2(ar tary)
speed as expected. In the low-frequency Rayleigh limit, the correlation

The attenuations given by Eq87), (41), (45, and(52)  f,¢tions, R, are constant. Thus, the expressions for the at-

are the main results of this section. The results here han%nuations Eqs(37), (41), (45), and (52) reduce consider-

been reduced to integrations on the unit circle in terms of th%bly. In this limit, the integrands become simple polynomials
correlation power spectra. The forward-weighted attenuag, Y. After integration, we have

tions, o', which quantify the amount of forward scattering,

are identical to the expressions for the attenuations given _772w4 1., AT
above with an additional factor ofy=cos® in the a'-L_C—‘Ll §Rpp+(1_28 )R §B Ru
integrand*

In the low-frequency limit, the correlation functions are n fBz(l_ZBz)“RLL) (55)
expected to be constant. Also in this limit, the scattering is 3 A
nonpreferentialan equal amount of energy is scattered for- 2724 4
ward as backwand In this case, thex's are zero. However, LT:WT BT+ _BZ’QLT), (56)
as seen in the equations for the attenuations, &5, (41), 3cre, |\ P50 K
(45), and(52), this is not necessarily the case. The angular 20 4
dependence associated with the autocorrelations are all even CYTL:—Q(F?,'S,I'*' _BZFQ;L>, (57)
functions. Those associated with the cross correlations are all 3creL 5
odd. The implications of these results are still unclear. Must 22wt 1. 1.
the cross correlations approach zero in the low-frequency aTT:T(§ ,T;;JrgR,TJL , (58

T

limit? In the next section, assumptions about the form of the
fluctuations are made and sample calculations presented. whereB=c+/c, is the wave speed ratio. Also, in the low-
frequency limit, the transforms of the correlation functions
I1l. MEAN FREE PATHS AND ELASTIC DIFFUSIVITY are independent of the wave types. In other worTé;;,,
The above expressions for the attenuations are now usedR;-=R.T=R]". Similar relations hold for the. and x
for determination of mean free paths and elastic diffusivity.terms as well. The scattering mean free paths then reduce to

| 15¢/B%/(2m%w®) 59
L: —_ —_ —~ —~ ’
5(2+B%R,,+15B%1-2B%)?R,, +4B*(3B°>+2)R,,, + 20B%(1-2B?)R, ,
|
150#/(277%4) Whic_h st_ates that the energy in transverse fd&m, %n{js the
l+= — —. (60 longitudinal energyE, , are related bye;=2E, /B*.”> In
5(2+B3) Rypt2(3+ 285)RW the low-frequency limit, the transport mean free paths reduce
These results differ slightly from those given by Ryzhik to the scattering mean free paths
et allf
The elastic diffusivity,D, can be writtelf* *—| — 1 62)
L L 2a|_ ’
crl* 2+B2L 61
"3 2B 6D 1
Ix=l=5— (63

whereL =1{/17 is the ratio of transport mean free paths. The 2a7"
elastic diffusivity is a weighted average of the diffusivities of
individual compressional and shear components. The weighBDutside the long wavelength limit, the transport mean free

ing is determined by the diffusive equipartitioning law, paths are given B
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1 ar—ahrtal rials such a model is expected to describe the statistics of the
It=5 ; 7 7 (64)  material properties well. In transform space
2 (ap—a)(ar—agr)—alyar 5
! ! = H
[ 1 a —ap tag ’ 65 R(p)=772(1+—Hzpz)z- (72)

T2 (a = )(ar—arp)—altaq . . .
] ) . _With the length scale of the spatial correlation introduced,
where the primed attenuations are the forward-weighted disgimensionless longitudinal and transverse frequencies are

placement attenuations discussed above for the respectiyRfined asx = wH/c, and x;=wH/cr. The transform of

scattering processes. In the limit of nonpreferential scatterg, yifference between two wave vectors can then be written
ing, the primed attenuations vanish and the mean free paths

are seen to reduce to the inverse of the energy scattering Bl () = H®
attenuation as in Eqg62)—(63). Example calculations are ()= m(1+ X+ Xj2—2Xinx)2’
now presented using the above derived quantities.

(73

where the superscripts},, correspond to the possible wave
types, L or T. The functions needed for determining the at-

IV. EXAMPLE RESULTS tenuations are

Example results are now presented using additional ma- H3
terial assumptions. The results are put in dimensionless form Rt (y)= —; 5 5, (74)
for the most widespread applicability. It is first assumed that 7 (1+2x (1= X))
the material properties are uncorrelated with one another. H3
This implies that the cross correlations are zelRy,(=R,,, R-T(x)= 221+ X2t = X k)2 (79
:ﬁp)\:O). L T LAT,
In this case, the attenuations become =TT H3 76
2.4 i1 (X)_ﬂ'z(l+2x2(l—x))2' (78
=g f (xR () +(1-2B*)°Rix(x) :
L oelt ) pp M The attenuations may then be written in dimensionless form
as
+4BX 'R0 dx, (66)
) +f“ y Xt erl A§X2+A§(1—2BZ)2+4B4AiX4d
T W - ~ a A= 201 _ 2 X
—f (1= xR, () +4B* xR}, (x)}dx, 2 ) (1+2x(1=X)

a =
LT 2c3c,

1 (77

(67)
4 2 2 2p2.2
X +1(1—x9)(A+4A%Bx9)
and H= —LJ' £ x d 78
Lon LA T-X 2 B (14 X2+ x5— 2%, X1x)? x. (78
ar =3B%aT, (68) , , , , , \
1A%(1+ x9)+A%(1-3x“+4
Tl (41 2BTT 2 4 artH= X[ A 2#( Xz X X-
T (79
Xﬁ;;(x)}dx- (69) The integrals for the final form of the attenuations, both non-

primed and primed, can be calculated in closed-forail

The forward-weighted attenuatiché are defined as ' \
integrations are of the form

these with an extra factor gf=cos® within the integrand.

These attenuations are denoted with a prime. +1 "
Next, it is assumed that all autocorrelation functions f md)« (80)

have the same spatial dependence. They are assumed to have

the form with n ranging from 0 to 5. The integrals were evaluated
R, = AiR (), (70) using numerical integration. Recursive adaptive Lobatto

quadrature is available through the Matlab function
where the subscripy refers to the material parametersgf ~ “quadl.” *’
\, andu. The magnitude of the fluctuations for each material ~ Figure 1 is a plot of the dimensionless longitudinal and
parameter is given bj, . transverse attenuationg, H and atH, respectively, as a
Finally, a form for the functionR(r) is assumed. As function of dimensionless frequency,, for density fluctua-
discussed by Stank& an exponential function describes the tions only A\=A,=0). A wave speed ratio oty/c_
correlation of continuous and discrete materials reasonably 1/3 has been used for these results and those that follow.
well. Thus, it is assumed that The attenuations are seen to increase with the fourth power
R(r)=e "M (71) of f_requency in the .Iow—f_requency limit. After a transition
' region, the attenuations increase as the frequency squared.
where H is the correlation length. Such a model, with a The high-frequency geometric optics limit, in which the at-
single length scale, is perhaps oversimplified for materialdenuations are constant, is not predicted due to the
with polydispersed scatterer sizes. However, for many matefrequency-limiting assumption used above. The transverse

-1
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*

Attenuation, o H (solid), o H (dashed)

Longitudinal transport mean free path,

10 ‘ '

2 -1 Q 1

10 10 10 10
Dimensionless frequency, x, Dimensionless frequency, x,

FIG. 1. Dimensionless longitudinal and transverse attenuatiend, and

atH, as a function of dimensionless frequengy, for density fluctuations
only.

FIG. 3. Dimensionless longitudinal transport mean free pHthd, as a
function of dimensionless frequency, , for different material fluctuation
levels.

attenuation is larger than the longitudinal as expected. Thgifferent combinations of fluctuation levels have been chosen
difference between the two attenuations increases with frep highlight the range of these quantities. The ratio of the
quency, but is a constant in each frequency regime. The agransport mean free paths is of interest since it appears in the
tual ratio of the attenuations is a function of the fluctuations definition of the diffusivity. It can be seen in Figs. 3 and 4
Figure 2 is a plot of the dimensionless longitudinal andihat the ratioL:|’L‘/|* , comes very near unity at the higher
transverse attenuationgy H and atH, respectively, as a frequencies for many of the combinations of material fluc-
function of dimensionless frequency, , for modulus fluc-  tyations shown.
tuations only A,=0). The results have a similar form as Finally, the dimensionless elastic diffusivitp/Hcy, is
those in Fig. 1. Combinations of both density and modulusshown in Fig. 5 for various combinations of material fluctua-
fluctuations are simply the sum of the results from these twajons. Again, the low-frequency limit has the expected form,
figures. The component of the attenuation attributed to derUecreasing with the inverse fourth power of frequency. At
sity fluctuations(Fig. 1) is seen to be much larger than the higher frequencies, the diffusivity becomes nearly frequency
component of attenuation attributable to modulus fluctuaindependent as in the polycrystalline cdse.
tions for the same level of fluctuations. The importance of
the density fluctgations has not been discussed previously.v_ DISCUSSION
The dimensionless transport mean free path&1 and
|%/H, are shown in Figs. 3 and 4. The complex forms of The propagation and scattering of elastic waves in het-
these terms, Eq$64)—(65), do not allow simple addition of erogeneous media has been examined. Appropriate ensemble
factors from the different parameter fluctuations. Thus, a fewaveraging of the elastic wave equation resulted in the Dyson
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FIG. 2. Dimensionless longitudinal and transverse attenuatiepid, and FIG. 4. Dimensionless transverse transport mean free §atH, as a func-
atH, as a function of dimensionless frequengy,, for modulus fluctua-  tion of dimensionless frequency, , for different material fluctuation
tions only. levels.
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