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The Relative Performance of Full
Information Maximum Likelihood

Estimation for Missing Data in Structural
Equation Models

Craig K. Enders
School of Education
University of Miami

Deborah L. Bandalos
Educational Psychology Department

University of Nebraska Lincoln

A Monte Carlo simulation examined the performance of 4 missing data methods in
structural equation models: full information maximum likelihood (FIML), listwise
deletion, pairwise deletion, and similar response pattern imputation. The effects of 3
independent variables were examined (factor loading magnitude, sample size, and
missing data rate) on 4 outcome measures: convergence failures, parameter estimate
bias, parameter estimate efficiency, and model goodness of fit. Results indicated that
FIML estimation was superior across all conditions of the design. Under ignorable
missing data conditions (missing completely at random and missing at random),
FIML estimates were unbiased and more efficient than the other methods. In addition,
FIML yielded the lowest proportion of convergence failures and provided
near-optimal Type 1 error rates across both simulations.

Missing data is a common problem for researchers who utilize structural equation
modeling (SEM) techniques. Applied researchers have traditionally relied on ad
hoc procedures that have no theoretical justification; listwise deletion and pairwise
deletion appear to be most popular (Marsh, 1998; Roth, 1994). Theory-based maxi-

STRUCTURAL EQUATION MODELING, 8(3), 430–457
Copyright © 2001, Lawrence Erlbaum Associates, Inc.

Requests for reprints should be sent to Craig K. Enders, University of Miami, School of Education,
P.O. Box 248065, Coral Gables, FL 33124–2040. E-mail: cenders@miami.edu



mum likelihood (ML) approaches for treating missing data have been known in the
technical literature for some time and have recently begun to appear in statistical
packages. However, the extent to which the theoretical benefits associated with
these methods may be realized in practice is unclear. The goal of this study is to ex-
amine the performance of one such method, full information maximum likelihood
(FIML) estimation.

Before reviewing the extant missing data literature, it is useful to discuss the
mechanisms that lead to missing data, as assumptions about the missing data
mechanism differ among various methods. Rubin (1976) provided a classification
system for missing data mechanisms and argued that missing data can be ignored
(i.e., unbiased estimates can be obtained) under two conditions: missing com-
pletely at random (MCAR) and missing at random (MAR). According to Rubin,
missing data are MCAR when the missing values on a variable Y are independent
of other observed variables as well as the values of Y itself. When this occurs, the
observed values of Y are simply a random subsample of the hypothetically com-
plete data. However, MCAR is a stringent assumption that may not be tenable in
practice (Muthén, Kaplan, & Hollis, 1987). The MAR assumption provides a sec-
ond, less restrictive condition under which missing data can be ignored. Under the
MAR condition, the probability that an observation is missing on variable Y can
depend on another observed variable but not on the values of Y itself. The MAR as-
sumption is less restrictive in the sense that the observed values need not be a sim-
ple random sample of the hypothetically complete data set. For example, suppose
that two exams, X and Y, are administered to a group of examinees. After adminis-
tering exam X, it is found that low-scoring respondents have a tendency to drop out
or refuse to take exam Y. Thus, the propensity to complete exam Y depends only on
scores from exam X and is unrelated to performance on Y for any group of individ-
uals with identical scores on exam X.

MISSING DATA TECHNIQUES

The following discussion is not an exhaustive list of the available missing data tech-
niques and focuses only on those methods examined in this study. Perhaps the most
notable exclusion is mean imputation. Regression and SEM studies have equivo-
cally demonstrated that mean imputation results in biased parameter estimates un-
der both MCAR and MAR (Brown, 1994; Wothke, 2000), so the method was not
examined in this study. Wothke summarized this situation, stating that mean impu-
tation yielded “very precise estimates of exactly the wrong parameter.”

Listwise Deletion

Listwise deletion utilizes only those cases that are complete on all variables; obser-
vations with any missing values are discarded. Although the method has desirable
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qualities such as ease of implementation and comparability of univariate statistics,
it can waste a great deal of complete data, resulting in inefficient parameter esti-
mates. It is important to note that listwise deletion requires MCAR data and can
yield biased parameter estimates when this condition does not hold. To illustrate,
consider the situation described previously involving the administration of two ex-
ams, X and Y. If the missing values on exam Y follow an MCAR pattern, the listwise
deletion of cases would yield a random sample of the hypothetically complete data
set, and only efficiency would be compromised. However, if missing values on
exam Y are dependent on exam X scores, the listwise deletion of cases would trun-
cate the marginal distributions of both X and Y and would likely result in biased pa-
rameter estimates.

Past research on listwise deletion is largely consistent with theoretical expecta-
tions. For example, listwise deletion has been shown to yield unbiased parameter
estimates under MCAR (Arbuckle, 1996; Brown, 1994; Wothke, 2000) and biased
estimates under MAR (Arbuckle, 1996; Muthén et al., 1987; Wothke). Also,
listwise deletion has been shown to yield less efficient parameter estimates than
other methods (Arbuckle, 1996; Wothke).

Pairwise Deletion

Pairwise deletion attempts to utilize all available data by discarding cases on a vari-
able by variable basis; each element within a covariance matrix is calculated sepa-
rately, and only those cases with missing values on a particular bivariate pair are
discarded. Research on pairwise deletion has yielded equivocal findings. For ex-
ample, Brown (1994) found biased parameter estimates under MCAR, whereas
more recent work by Marsh (1998) reported unbiased estimates. In addition, Brown
reported that pairwise deletion rejection rates were below the nominal 5% value,
whereas Kaplan (1995) and Marsh found chi-square values to be positively biased.
Brown’s findings are somewhat puzzling in light of statistical theory. As pointed
out by Bollen (1989) and Kaplan, Wishart distribution assumptions are violated to
some extent when using pairwise deletion, and, as a result, the goodness-of-fit test
statistic may not follow the appropriate central chi-square distribution.

Like listwise deletion, pairwise deletion requires the MCAR assumption and
should yield biased parameter estimates under MAR; empirical research has sug-
gested that this is the case (Arbuckle, 1996; Muthén et al., 1987; Wothke, 2000).
The mechanism that leads to bias under MAR is identical to that described previ-
ously for listwise deletion. However, because the deletion of cases is performed
separately for each variable pair, one might expect the resulting bias to be re-
stricted to only those parameter estimates that involve missing observations,
whereas bias due to listwise deletion might be propagated throughout the model,
particularly when variables are highly correlated.
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Although pairwise deletion and listwise deletion both exhibited bias under
MAR, Muthén et al. (1987) noted differential performance between the two meth-
ods in confirmatory factor analysis (CFA) and full structural models. Pairwise de-
letion outperformed listwise deletion in terms of CFA model bias, whereas the
reverse was true for the full structural model. Finally, the regression literature sug-
gests that pairwise deletion may provide optimal performance when the level of
association among variables is low (Haitovsky, 1968; Kim & Curry, 1977; Little,
1992). However, this has not been systematically explored in the SEM literature.

Similar Response Pattern Imputation

Jöreskog and Sörbom (1993b) recently introduced similar response pattern im-
putation in the PRELIS 2 computer program. Briefly, the method attempts to im-
pute values from another case with similar observed values and does so using a
minimization criterion on a set of matching variables. If no observation exists
that has complete data on the set of matching variables, imputation does not take
place for a case i. However, if such a case is found, the missing value on vari-
able X is imputed with the observed value from the case with the similar re-
sponse pattern. The reader is encouraged to consult Jöreskog and Sörbom for the
computational details. Similar response pattern imputation has no theoretical ra-
tionale, and very little is known about the method and the conditions under
which it might be successfully applied. To date, Brown (1994) is the only study
to investigate the performance of the method. Under MCAR, Brown’s results
were generally favorable toward similar response pattern imputation; little bias
was observed across the structural parameters of the model. However, Type 1
error rates were inflated somewhat.

ML Estimation

Theory-based ML approaches for dealing with missing data have been known in
the technical literature for some time (Anderson, 1957; Dempster, Laird, & Rubin,
1977; Finkbeiner, 1979; Hartley & Hocking, 1971; Wilks, 1932). Because the
methods require the less restrictive MAR assumption, unbiased parameter esti-
mates should result under both MCAR and MAR. In addition, ML methods should
yield more efficient estimates than listwise and pairwise deletion under MCAR.
Despite the theoretical benefits, ML methods have not been widely utilized, per-
haps due to the lack of statistical software integrating the approach (Wothke, 2000).
Both Allison (1987) and Muthén et al. (1987) demonstrated how to implement ML
estimation using the LISREL software package (Jöreskog & Sörbom, 1983), but
the method proved impractical for most applied settings.
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ML approaches for dealing with missing data have recently become available in
a number of SEM programs; this study investigated the FIML approach found in
the AMOS program (Arbuckle, 1995). It should be noted that the expecta-
tion-maximization (EM) algorithm, another ML algorithm, is also available in cur-
rent software packages (e.g., SPSS); see Little and Rubin (1987) and Schafer
(1997) for a thorough discussion of this approach. Briefly, the FIML approach
computes a casewise likelihood function using only those variables that are ob-
served for case i. Assuming multivariate normality, the casewise likelihood of the
observed data is obtained by maximizing the function

where Ki is a constant that depends on the number of complete data points for case i,
xi is the observed data for case i, and µi and Σi contain the parameter estimates of the
mean vector and covariance matrix, respectively, for the variables that are com-
plete for case i. The casewise likelihood functions are accumulated across the entire
sample and maximized as follows.

The reader is encouraged to consult Arbuckle (1996) for further computational
details.

From Equation 1, it should be clear that all available data are utilized during pa-
rameter estimation; a case i contributes to the estimation of all parameters for
which there are complete data. However, it may not be obvious that the inclusion
of data from partially complete cases contributes to the estimation of parameters
that involve the missing portion of the data as well. To illustrate, consider the
bivariate example described previously, where exam Y scores were missing for in-
dividuals who scored poorly on exam X. Clearly, the inclusion of partially com-
plete data (i.e., data from the exam Y attributers) in the previous likelihood
equation contributes to the estimation of X parameters, but it also contributes to the
estimation of Y parameters via the correlation between X and Y. That is, probable
values for the missing Y data points are implied by the observed X values, and the
inclusion of the partially complete data increases the precision and accuracy of Y
parameter estimates. Although it is important to note that the FIML algorithm does
not impute missing values, this borrowing of information from the observed por-
tion of the data is conceptually analogous to replacing missing Y data points with
the conditional expectation of Y given X.

The inclusion of partially recorded cases into the likelihood function has impor-
tant implications for parameter estimation and provides the basis for the theoreti-
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cal advantages of likelihood-based inference. Under MCAR, the partially
observed cases serve to increase the efficiency of ML parameter estimates relative
to listwise deletion; the random nature of missing data implies that accuracy (i.e.,
bias) will be unaffected. However, under MAR, the partially observed cases pro-
vide important information about the underlying marginal distributions of the in-
complete variables and hence may reduce the bias that would result from the
listwise deletion of cases.

Although technical literature has existed on ML methods for some time, little is
known about the performance of these methods relative to popular ad hoc meth-
ods. Four studies are particularly relevant to this investigation. Arbuckle (1996)
examined the performance of FIML using a simple CFA model, whereas Wothke
(in press) did so using a latent growth curve model. It is important to note that these
studies were somewhat limited in their scope; both appeared in book chapters and
were likely intended as demonstrations of the FIML method rather than compre-
hensive Monte Carlo studies. Graham, Hofer, and MacKinnon (1996) examined
the use of ML algorithms (EM, FIML, and the multiple-group approach) under
planned missingness conditions, but did so only for covariance matrix elements
and regression weights, not SEM. Finally, a study by Muthén et al. (1987) exam-
ined the related multiple-group ML approach and did so using both a CFA and full
structural model.

The results of these studies were generally consistent with theoretical expec-
tations. For example, ML parameter estimates were unbiased under both MCAR
and MAR (Arbuckle, 1996; Graham et al., 1996; Muthén et al, 1987; Wothke,
2000), whereas listwise and pairwise estimates were biased under MAR; listwise
deletion was not included in the Graham et al. (1996). In addition, ML parame-
ter estimates were more efficient than those of listwise and pairwise deletion
(Arbuckle, 1996; Graham et al., 1996; Wothke). Although the efficiency of
FIML was far superior to listwise deletion, conflicting results were observed rel-
ative to pairwise deletion; Arbuckle (1996) reported dramatic efficiency gains
relative to pairwise deletion, whereas Graham et al. and Wothke reported mini-
mal gains. Furthermore, the performance of FIML varied substantially across the
six factor loadings in Arbuckle’s (1996) model. Although not examined by pre-
vious research, Arbuckle suggested that the relative efficiency gains realized by
using FIML might, in part, depend on the level of association among the ob-
served variables. Also, Arbuckle’s results might have been affected by the use of
real, rather than simulated, data; he correctly noted that the effects of
nonnormality and model misfit might have influenced results. Finally, previous
studies have not examined the impact of FIML on convergence failures and
model fit. However, Kaplan (1995) examined the chi-square test for the related
multiple-group approach and found that the mean, variance, and rejection rates
of the empirical chi-square distribution closely matched those of the appropriate
central chi-square distribution.
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PURPOSE

The purpose of this study is to investigate the performance of FIML relative to other
widely available missing data techniques for use with structural equation models.
Specifically, FIML was compared to both listwise and pairwise deletion, as well as
Jöreskog and Sörbom’s (1993b) similar response pattern imputation method. A
Monte Carlo study was designed to address four research questions: how do the
four missing data methods differ with respect to

1. Proportion of convergence failures.
2. Parameter estimate bias.
3. Parameter estimate efficiency.
4. Model goodness of fit.

METHOD

Design

The simulation study utilized two 9-variable structural equation models (Figures 1
and 2). In the first, a three-factor CFA model was specified with three indicators per
latent variable, each indicator loading on only a single factor. The correlations
among the three latent variables were set at .40, and factor loadings (λ) were uni-
formly set at one of three values (.40, .60, and .80). Uniqueness terms were equal to
one minus λ2. As seen in Figure 2, this CFA model was also parameterized as an
equivalent full structural model with three latent variables. The choice to examine
two different parameterizations of the same model was influenced primarily by
Muthén et al. (1987), who found that listwise and pairwise deletion yielded differ-
ent amounts of bias under MAR for CFA and full structural models. The study de-
sign consisted of three between-subjects factors and included four levels of sample
size (100, 250, 500, and 750), five levels of missing data (2%, 5%, 10%, 15%, and
25%), and three levels of factor loading magnitude (.40, .60, and .80).

Data Generation

A population covariance matrix was generated from the three-factor CFA model
described previously. Two hundred fifty normally distributed raw data matrices (n
× 9) were generated within each of the 60 between-subjects design cells using the
RANNOR function in the Statistical Analysis Systems IML procedure. These
uncorrelated vectors of random normal variates were linearly transformed to the
desired covariance structure using Cholesky factorization.
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FIGURE 1 Confirmatory factor analysis model used for simulation.

FIGURE 2 Full structural model used for simulation.



Following data generation, missing values were created under the MCAR and
MAR mechanisms. MCAR data were simulated by randomly deleting a specified
percentage of observations from each of the raw data matrices. To accomplish this,
the (n × 9) raw data matrices were paired with corresponding matrices of uniform
random numbers, and these random numbers were used to select observations for
deletion according to the five missing data rates described previously. The deletion
process was performed in such a way that all nine observed variables had exactly
the same proportion of missing observations. In contrast, missing values under
MAR were restricted to three observed variables: X7, X8, and X9. Missingness on
these three variables was dependent on the values of the remaining six observed
variables, but not on the values of X7, X8, and X9 themselves. Using a method sim-
ilar to that of Muthén et al. (1987), a selection variable was calculated as a
weighted composite of the six completely observed variables such that the indica-
tors of the first latent variable were twice as influential as those of the second latent
variable.

s = 2/3 (X1 + X2 + X3) + 1/3 (X4 + X5 + X6) (3)

Under the MAR mechanism, X7, X8, and X9 values were deleted for observations
whose percentile rank on the selection variables was less than or equal to the de-
sired percentage of missing data. This procedure could simulate the situation in
which participants are administered three batteries of tests, and missing values on
the third battery resulted for those examinees who performed poorly on the first two
batteries. As noted previously, the resulting data were fit to both a CFA and full
structural model; the same data were used for both parameterizations.

Following the deletion of observations, the PRELIS 2 computer program
(Jöreskog & Sörbom, 1993b) was used to implement similar response pattern im-
putation. Whereas raw data was required to implement the FIML method, sample
covariance matrices were generated for the other three methods using Statistical
Analysis Systems. It should be noted that the pairwise deletion sample size used in
this study was the minimum n of the covariance terms within each matrix. This is
consistent with Brown (1994). The resulting sample covariance matrices and raw
data matrices (FIML) were used as input into the AMOS 4.0 computer program,
and ML estimates were obtained for all model parameters. This process was auto-
mated using a Visual Basic program that repeatedly called the AmosEngine pro-
gramming interface.

Analysis

Four dependent variables were examined:

1. Proportion of convergence failures.
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2. Parameter estimate bias.
3. Parameter estimate efficiency.
4. Model goodness of fit.

Nonconvergence was assessed by counting the number of models that failed to con-
verge within a number of iterations equal to three times the number of estimated
model parameters (Jöreskog & Sörbom, 1993a). Allowing for comparability with
previous research, bias was expressed as a percentage of sample bias relative to the
true parameter value. This was calculated as

where θi is the true population parameter for the ith element of θand �θ ij is the corre-
sponding parameter estimate taken from the jth iteration. The mean percentage of
bias was subsequently calculated across the 250 replicates within each design cell.

Efficiency was measured using the variance of the empirical sampling distribu-
tion for each parameter estimate taken across the 250 replications in each cell of
the design. Following Arbuckle (1996) and Wothke (2000), a measure of relative
efficiency was calculated by forming a ratio of the sampling variances for each
model parameter. This is simply

where σ2AH is the sampling variance of a specified parameter from one of the
three ad hoc methods and σ2FIML is the corresponding sampling variance of the
FIML estimate.

Finally, the effects of missing data method on model fit were assessed by calcu-
lating the percentage of model rejections (p < .05) for each cell of the design.

RESULTS

Only models that converged within 90 iterations (i.e., three times the number of es-
timated parameters) and had admissible parameter estimates were considered for
the analyses. In screening the parameter estimates from the admissible solutions, it
was noted that a number of iterations produced solutions that would almost cer-
tainly be discarded in practice (e.g., a factor loading of 58.56). For this reason, an
additional screening mechanism was implemented in an attempt to identify unrea-
sonable solutions; any solution that included one or more parameter estimates ex-
ceeding a ±400% bias threshold were discarded. Although the choice of such a
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threshold was clearly arbitrary, it was felt that parameter estimates that exceeded
the ±400% threshold would be identified as problematic in most applied situations.
In most cases this threshold value represented a departure of at least 10 standard de-
viation units from the true parameter value. An additional 1% to 2% of the repli-
cates were screened out based on this threshold value, and roughly the same per-
centage of replicates were deleted from each of the estimation methods.

Simulation 1: MCAR Data

Convergence failures. Collapsed across all cells in the design, the FIML
estimation method resulted in the highest percentage of admissible solutions
(90.3%) followed by pairwise deletion (89.6%), similar response pattern imputa-
tion (83.5%), and listwise deletion (70.7%). The percentage of convergence fail-
ures by loading magnitude, sample size, missing data rate, and estimation method is
shown in Table 1; due to space limitations, only selected design cells are displayed.
Not surprisingly, convergence failures increased as the percentage of missing data
increased. However, factor loading magnitude and sample size moderated this ef-
fect. The majority of convergence problems occurred in cells that crossed the low
factor loading (λ = .40) and low sample size (n = 100) conditions, and the frequency
of inadmissible solutions decreased as factor loading magnitude and sample size
increased. At the high factor loading condition (λ = .80), the missing data rate pri-
marily impacted listwise deletion convergence, and sample size had little effect;
most cells had no convergence failures. Because the vast majority of design cells
had no convergence failures, additional tables for the λ = .80 condition are not pre-
sented.

Parameter estimate bias. As would be expected under MCAR, the vast
majority of cells yielded negligible levels of bias (less than ±1% to 2% of the true
population parameter, on average). This was true across parameters of both the
CFA and full structural models. A small number of bias values exceeded 10%, and
these were primarily found in cells that crossed the low factor loading (λ = .40) and
low sample size (n = 100) conditions; this was particularly true for full structural
model factor loadings. It should be noted that a similar pattern of results was ob-
served when running the simulations on the complete data matrices. The population
covariance matrix at the low loading condition contained several covariance ele-
ments that were quite small in magnitude and was thus subject to high sampling
variability. As such, it would appear that the bias in these cells was not entirely due
to the estimation methods, but was at least in part due to the instability of the
covariance structure in these cells.
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Efficiency. As seen previously in Equation 5, the relative sampling variance
was used as a basis for efficiency comparisons among estimation methods. Because
the sampling variances are inversely related to sample size, the relative efficiency
statistic can provide an indication of the increase in sample size required to reach
the level of efficiency provided by FIML. For example, suppose that the relative ef-
ficiency of a listwise deletion factor loading was calculated at 1.76. This value sug-
gests that the sample size for listwise deletion would have to be increased by ap-
proximately 76% to reach the level of efficiency afforded by FIML. It should be
noted that the previous interpretation is limited to a specific parameter, sample size,
and missing data rate.

Relative efficiency values were fairly consistent across parameters of the CFA
and full structural models. As such, results from two representative parameters are
presented here. Table 2 shows the relative efficiency for a selected factor loading
(X8) and factor correlation (F1 ↔ F3) from the CFA model, whereas Table 3
shows relative efficiency values for the X8 factor loading and F1→ F3 structural
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TABLE 1
Percentage of MCAR Inadmissible Solutions by Factor Loading, Sample Size, and Missing

Data Rate

Condition Estimation Method

Factor Loading Sample Size Missing Data (%) FIML LD PD SRPI

0.40 100 2 73.6 81.6 74.4 72.0
0.40 100 5 73.2 88.4 75.6 80.4
0.40 100 10 78.4 97.6 79.6 85.2
0.40 100 15 81.2 99.2 85.2 90.8
0.40 100 25 89.2 100.0 90.4 99.2
0.40 250 2 17.2 23.2 18.0 18.4
0.40 250 5 16.4 34.4 17.2 20.4
0.40 250 10 26.0 71.2 26.0 44.4
0.40 250 15 28.4 83.2 30.4 62.4
0.40 250 25 47.6 99.6 53.2 94.4
0.60 100 2 4.0 8.8 4.4 4.4
0.60 100 5 2.8 16.4 4.0 5.2
0.60 100 10 4.8 50.8 7.6 16.0
0.60 100 15 9.2 86.4 12.0 26.4
0.60 100 25 16.0 99.6 23.6 79.2
0.60 250 2 0.0 0.0 0.0 0.0
0.60 250 5 0.0 0.0 0.0 0.0
0.60 250 10 0.0 2.0 0.0 0.0
0.60 250 15 0.0 17.2 0.0 0.4
0.60 250 25 0.4 86.8 0.4 21.2

Note. MCAR = missing completely at random; FIML = full information maximum likelihood; LD
= listwise deletion; PD = pairwise deletion; SRPI = similar response pattern imputation.
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TABLE 2
Relative Efficiency of Confirmatory Factor Analysis Parameter Estimates by Factor Loading, Sample Size, and Missing Data Rate

(MCAR)

Factor
Loading

Sample
Size

Missing
Data (%)

Variance Ratio (X8 Loading)a Variance Ratio (F1–F3 Correlation)a

LD/FIML PD/FIML SR/FIML LD/FIML PD/FIML SR/FIML

0.40 500 2 1.15 0.99 0.98 0.96 0.97 1.03
0.40 500 5 1.84 1.03 1.23 1.27 1.03 1.07
0.40 500 10 2.05 1.02 1.23 1.52 0.96 1.29
0.40 500 15 2.11 1.02 1.46 2.05 0.98 1.34
0.40 500 25 7.82 1.00 2.44 2.37 1.02 1.81
0.60 500 2 1.11 1.00 1.01 1.17 1.01 1.03
0.60 500 5 1.63 1.03 1.10 1.43 1.02 1.12
0.60 500 10 2.69 1.04 1.30 1.95 1.01 1.34
0.60 500 15 3.34 1.01 1.67 2.31 1.01 1.57
0.60 500 25 8.13 1.15 2.88 4.42 1.07 2.16
0.80 500 2 1.14 1.02 1.05 1.16 1.00 1.03
0.80 500 5 1.47 1.04 1.15 1.47 1.02 1.14
0.80 500 10 2.23 1.03 1.26 2.64 1.02 1.36
0.80 500 15 3.88 1.16 1.57 3.23 1.08 1.67
0.80 500 25 10.18 1.18 2.48 5.99 1.16 2.99

Note. MCAR = missing completely at random; LD = listwise deletion; FIML = full information maximum likelihood; PD = pairwise deletion; SR =
similar response.

aValues greater than 1.0 indicate that FIML estimates were more efficient.
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TABLE 3
Relative Efficiency of SEM Parameter Estimates by Factor Loading, Sample Size, and Missing Data Rate (MCAR)

Factor
Loading

Sample
Size

Missing
Data (%)

Variance Ratio (X8 Loading)a Variance Ratio (F1–F3 Structural Path)a

LD/FIML PD/FIML SR/FIML LD/FIML PD/FIML SR/FIML

0.40 500 2 1.19 1.06 1.00 1.26 1.00 1.03
0.40 500 5 1.55 1.05 0.91 2.49 1.01 1.25
0.40 500 10 1.61 1.11 1.14 2.04 1.00 1.34
0.40 500 15 1.86 1.03 1.36 1.95 0.99 1.41
0.40 500 25 3.08 0.96 1.94 2.69 1.17 3.16
0.60 500 2 1.21 0.99 1.01 1.18 1.01 1.07
0.60 500 5 1.60 1.02 1.09 1.59 1.04 1.12
0.60 500 10 1.62 1.02 1.02 2.61 1.04 1.27
0.60 500 15 1.94 1.04 1.49 4.17 0.97 1.50
0.60 500 25 4.58 1.11 2.07 12.86 1.15 4.34
0.80 500 2 1.12 1.02 1.05 1.06 1.05 1.07
0.80 500 5 1.46 1.11 1.09 1.35 1.04 1.19
0.80 500 10 2.34 1.11 1.29 2.13 1.11 1.17
0.80 500 15 2.68 1.14 1.61 3.43 1.21 1.41
0.80 500 25 4.92 1.09 2.47 10.24 1.24 2.65

Note. MCAR = missing completely at random; LD = listwise deletion; FIML = full information maximum likelohood; PD = pairwise deletion; SR =
similar response.

aValues greater than 1.0 indicate that FIML estimates were more efficient.



path from the full structural model. Both tables are organized by loading magni-
tude, missing data rate, and estimation method. It should be noted that larger sam-
ple sizes resulted in reduced sampling variability for all estimation methods, but
the resulting relative efficiency values were not impacted by sample size. As such,
only the results for the N = 500 condition are displayed in the tables.

As seen in the tables, FIML consistently yielded small gains in efficiency rela-
tive to pairwise deletion across most conditions, typically about 5%. These differ-
ences are most evident for the parameters of the full structural model; FIML
efficiency gains were slightly less for the CFA model. Although it is difficult to
identify a trend, the efficiency of FIML relative to pairwise deletion is most obvi-
ous at the highest factor loading condition where high rates of missing data are
present. In this case, 10% to 20% efficiency gains were observed. In contrast, large
efficiency gains were observed for FIML relative to listwise deletion and similar
response imputation. For both estimation methods, the relative superiority of
FIML increased as the percentage of missing data increased. This pattern held
across sample size and factor loading conditions and did not appear to interact with
either of these factors. Clearly, the effects of missing data on efficiency were most
pronounced for listwise deletion; at the 25% missing data rate the listwise deletion
sample size would have to be increased by 400% to 900% to reach the level of pre-
cision provided by FIML. However, some caution is warranted in interpreting the
results from the 25% missing data condition, as several of the listwise deletion ef-
ficiency estimates were based on smaller numbers of replicates due to conver-
gence failures in these cells.

Model fit. Using only the admissible solutions for each estimation method,
the percentage of model rejections (p < .05) based on the chi-square statistic was
calculated for each cell of the design. Because data were generated from a popula-
tion model with perfect fit, a 5% value represents the nominal rejection rate. Over-
all, the FIML method yielded near-optimal rejection rates (6.1%), as did listwise
deletion (6.8%). Similar response pattern imputation and pairwise deletion per-
formed considerably worse, with overall rejection rates of 14.8% and 15.2%, re-
spectively. Table 4 displays the percentage of model rejections by loading magni-
tude and missing data rate, collapsed across sample size conditions. As seen in the
table, the missing data rate had no effect on FIML rejection rates. Values were quite
stable and ranged between approximately 3% and 8%. Listwise deletion rejection
rates were also fairly stable but tended to increase slightly as the percentage of
missing data increased. In contrast, the effects of the missing data rate were quite
evident for pairwise deletion and similar response pattern imputation; Type 1 error
rates increased as the percentage of missing data increased. It is also clear that load-
ing magnitude mediates the effects of the missing data rate for pairwise deletion; re-
jection rates increased as factor loading magnitude increased. Pairwise deletion
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provided near-optimal rejection rates at the low factor loading condition (λ = .40),
whereas rejection rates exceeded 50% at the high factor loading condition.

Simulation 2: MAR Data

Convergence failures. Consistent with previous results, FIML produced
the highest percentage of admissible solutions overall (91.6%), followed by
pairwise deletion (91.1%), similar response pattern imputation (89%), and listwise
deletion (78.1%). In general, convergence failures for the MAR simulations were
isolated to cells within the low factor loading condition (λ = .40). Minimal conver-
gence problems occurred at the medium factor loading condition under small sam-
ple sizes (n = 100), and virtually all other cells in the design had 100% convergence.
Table 5 shows the percentage of convergence failures by sample size, missing data
rate, and estimation method; only values for the low loading condition are pre-
sented. Not surprisingly, convergence problems increased as the percentage of
missing data increased. However, the effects of the missing data on convergence
failures diminished as sample size increased. When sample size was 500 or larger,
only listwise deletion resulted in substantial convergence problems.
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TABLE 4
MCAR (Missing Completely at Random) Model Rejection Rates by Factor Loading and

Missing Data Rate

Condition Estimation Method

Factor Loading Missing Data (%) FIML LD PD SRPI

0.40 2 4.8 4.1 4.7 5.7
0.40 5 4.1 3.6 4.4 10.1
0.40 10 3.3 4.0 4.0 12.3
0.40 15 4.7 2.3 5.0 19.2
0.40 25 4.4 0.0 6.1 15.4
0.60 2 5.6 5.7 5.6 7.0
0.60 5 8.3 6.6 9.2 13.3
0.60 10 6.2 6.6 9.7 15.4
0.60 15 6.8 6.1 12.1 20.4
0.60 25 6.2 8.7 16.3 21.8
0.80 2 6.6 8.4 9.0 8.5
0.80 5 6.7 5.9 12.7 12.8
0.80 10 6.9 7.1 23.3 18.1
0.80 15 6.9 9.1 35.9 18.8
0.80 25 7.2 15.6 56.1 24.2

Note. FILM = full information maximum likelihood; LD = listwise deletion; PD = pairwise
deletion; SRPI = similar response pattern imputation.



Parameter estimate bias. Table 6 shows the mean percentage of CFA fac-
tor loading bias by factor loading magnitude, missing data rate, and estimation
method. Effect size estimates for the sample size factor were generally quite small,
so values in the table are collapsed over this factor. Furthermore, bias results were
highly consistent across loadings of a given latent factor, so results for a single rep-
resentative loading from each factor are presented. As seen in the table, CFA model
factor loadings exhibited little or no bias under MAR for three of the estimation
methods: FIML, pairwise deletion, and similar response pattern imputation. How-
ever, listwise deletion resulted in biased parameter estimates for the F1 and F2
loadings; the F3 loadings were generally unbiased. Not surprisingly, the amount of
bias increased as the missing data rate increased. Muthén et al. (1987) suggested
that bias values less than 10% to 15% may not be serious in most SEM contexts, and
it is clear from the table that listwise deletion yielded levels of bias that far exceeded
this heuristic value.

Unlike the CFA model, factor loading estimates from the full structural model
were generally unbiased across the four estimation methods. Table 7 shows the
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TABLE 5
Percentage of MAR Inadmissible Solutions by Sample Size and Missing Data Rate

Condition Estimation Method

Factor Loading Sample Size Missing Data (%) FIML LD PD SRPI

0.40 100 2 73.2 80.8 72.8 76.4
0.40 100 5 68.8 87.6 70.4 74.0
0.40 100 10 70.4 91.6 73.2 76.0
0.40 100 15 75.2 94.0 78.0 79.2
0.40 100 25 82.8 96.8 85.2 89.6
0.40 250 2 18.4 28.4 17.6 18.0
0.40 250 5 15.2 44.4 16.4 20.4
0.40 250 10 19.2 71.2 22.4 32.0
0.40 250 15 19.2 84.0 24.0 33.2
0.40 250 25 31.2 96.0 34.0 54.8
0.40 500 2 1.2 3.2 0.8 1.2
0.40 500 5 1.2 16.0 1.2 2.4
0.40 500 10 0.8 37.2 0.8 3.2
0.40 500 15 0.8 70.4 1.6 5.2
0.40 500 25 3.2 90.8 3.6 22.8
0.40 750 2 0.0 0.0 0.0 0.0
0.40 750 5 0.0 0.0 0.0 0.0
0.40 750 10 0.0 7.6 0.0 0.0
0.40 750 15 0.0 34.0 0.0 2.8
0.40 750 25 0.8 89.2 1.2 40.8

Note. MAR = missing at random; FIML = full information maximum likelihood; LD = listwise
deletion; PD = pairwise deletion; SRPI = similar response patter imputation.



mean percentage of full structural model factor loading bias for a single loading
from each of the latent factors. Tabled values are again collapsed across sample
size conditions and are presented by loading magnitude, missing data rate, and es-
timation method. As explained earlier, a small number of larger bias values were
observed in the low factor loading (λ = .40) and low sample size (n = 100) cells; in
collapsing over the sample size factor this contributed somewhat to the slightly
larger bias values in the λ = .40 cells in Table 7. This was also observed when run-
ning simulations on the complete data matrices and is likely due to the instability
of the covariance structure in these cells. Nevertheless, the larger values in these
cells generally did not reach problematic levels (Muthén et al., 1987). It is also im-
portant to point out that listwise deletion yielded the largest bias values in these
cells.

Table 8 displays the mean percentage of bias for the CFA factor correlation es-
timates by loading magnitude, missing data rate, and estimation method. As be-
fore, results are collapsed across the sample size factor. As would be expected,
FIML yielded unbiased parameter estimates of the factor correlations in the CFA
model. In contrast, listwise deletion yielded biased estimates for all three correla-
tion estimates, whereas pairwise deletion and similar response pattern imputation
yielded biased estimates of the correlations that involved F3 (F1 ↔ F3 and F2 ↔
F3), the factor with missing values on its indicator variables. As seen in the table,
listwise deletion resulted in the highest level of overall bias across the three param-
eters. Of the three biased methods, similar response pattern imputation yielded the
least amount of overall bias. For those parameters that exhibited bias, the amount
of bias increased as the percentage of missing data increased. It should be noted
that CFA uniqueness terms were generally unbiased for all estimation methods.

Results for the structural regression weights from the full structural model fol-
lowed the same pattern as the CFA model factor correlation estimates. The mean
percentage of structural path bias by loading magnitude, missing data rate, and es-
timation method are presented in Table 9; consistent with the previous three tables,
results are collapsed across sample size conditions. As seen in the table, FIML esti-
mates were unbiased, listwise deletion yielded biased estimates of all structural pa-
rameters, and pairwise deletion and similar response pattern imputation yielded
biased estimates of those paths that involved F3 (F1 → F3 and F2 → F3), the fac-
tor with missing values on its indicator variables. As before, listwise deletion
yielded the highest levels of bias, followed by pairwise deletion and similar re-
sponse pattern imputation, respectively.

Efficiency. Under the MAR mechanism it can be argued that efficiency re-
sults were not as substantively interesting as the MCAR simulation due to the large
amount of bias observed in the parameter estimates. Although highly efficient esti-
mators might be desirable to some, even in the presence of some estimation bias,
the magnitude of bias observed in the ad hoc methods is probably unacceptable to
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TABLE 6
Mean Percentage of CFA Model Factor Loading Bias by Factor Loading and Missing Data Rate (MAR)

Estimation Method

Factor
Loading

Missing
Data (%)

FIML LD PD SRPI

X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo

0.40 2 1.8 1.6 1.3 –9.8 –2.4 0.6 1.8 1.8 0.5 2.3 1.9 0.6
0.40 5 0.5 1.4 0.7 –20.3 –6.5 –1.1 1.0 1.2 –0.5 0.8 1.1 –0.2
0.40 10 1.2 0.3 –0.5 –36.4 –10.4 –1.8 1.1 0.0 –1.6 1.5 0.2 –1.8
0.40 15 2.0 1.0 0.5 –47.0 –12.4 –0.6 1.6 1.3 –1.9 0.2 2.0 –2.3
0.40 25 1.0 0.2 1.4 –62.5 –10.5 –4.6 1.0 0.0 –0.8 0.2 0.2 2.1
0.60 2 0.2 –0.7 –0.9 –6.6 –3.6 –1.7 0.3 –0.7 –1.7 0.3 –0.6 –1.5
0.60 5 –0.1 –0.4 0.0 –13.2 –5.9 –1.6 –0.1 –0.4 –1.5 0.1 –0.4 –1.2
0.60 10 –0.1 –0.5 0.9 –21.7 –9.5 –1.7 0.0 –0.6 –1.5 –0.2 –0.6 –0.9
0.60 15 –0.2 0.1 –0.2 –27.3 –10.9 –2.8 –0.3 0.1 –3.0 –0.4 0.2 –2.6
0.60 25 –0.9 –0.3 0.5 –38.1 –15.4 –3.0 –1.0 –0.5 –3.2 –0.7 –0.2 –3.5
0.80 2 –0.1 –0.5 0.0 –5.4 –3.2 –1.0 –0.1 –0.5 –1.0 –0.1 –0.5 –0.5
0.80 5 –0.4 –0.7 –0.7 –10.4 –5.8 –2.5 –0.4 –0.7 –2.5 –0.4 –0.7 –1.7
0.80 10 –0.2 –0.1 –0.3 –16.1 –7.8 –3.2 –0.2 –0.1 –3.2 –0.2 –0.1 –2.6
0.80 15 –0.4 –0.2 0.2 –20.5 –10.0 –3.4 –0.4 –0.2 –3.4 –0.4 –0.2 –2.8
0.80 25 0.1 –0.6 –0.2 –27.2 –13.6 –5.0 0.0 –0.7 –5.0 0.1 –0.6 –5.0

Note. CFA = confirmatory factor analysis; MAR = missing at random; FIML = full information maximum likelihood; LD = listwise deletion; PD = pairwise
deletion; SRPI = similar response pattern imputation.
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TABLE 7
Mean Percentage of SEM Model Factor Loading Bias by Factor Loading and Missing Data Rate (MAR)

Estimation Method

Factor
Loading

Missing
Data (%)

FIML LD PD SRPI

X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo X2 Lo X5 Lo X8 Lo

0.40 2 5.9 8.2 6.6 7.8 8.4 5.8 6.5 9.0 6.7 8.3 8.5 6.2
0.40 5 7.2 8.5 8.5 11.5 9.3 5.5 8.0 8.6 8.5 6.1 8.9 9.7
0.40 10 5.7 6.4 9.4 –2.3 11.6 10.5 4.9 7.4 8.9 6.0 8.6 11.0
0.40 15 7.2 9.0 7.1 –22.2 15.9 13.6 6.3 10.3 6.2 4.9 9.9 10.9
0.40 25 7.1 4.5 10.6 –61.8 10.5 5.6 7.9 5.3 11.0 7.1 5.1 21.3
0.60 2 2.4 2.2 1.6 3.5 2.2 1.6 2.5 2.2 1.6 2.5 2.2 1.8
0.60 5 2.1 2.5 2.1 4.0 3.1 2.2 2.4 2.6 2.1 2.3 2.6 1.7
0.60 10 2.4 0.8 4.6 4.8 2.4 4.2 2.6 0.9 4.3 2.4 0.7 7.0
0.60 15 1.5 1.5 3.2 5.5 3.0 3.2 1.7 1.7 3.3 1.0 1.3 5.5
0.60 25 1.8 1.2 4.2 6.8 2.1 4.8 2.0 1.1 4.2 1.7 1.4 6.9
0.80 2 0.4 0.5 0.4 0.4 0.3 0.4 0.4 0.5 0.4 0.4 0.5 0.5
0.80 5 0.3 0.6 0.2 0.4 0.8 0.2 0.3 0.6 0.2 0.3 0.6 0.3
0.80 10 1.0 0.5 0.1 1.5 0.6 0.1 1.1 0.5 0.1 1.1 0.5 –0.1
0.80 15 0.3 0.6 0.5 0.9 1.1 0.5 0.3 0.7 0.6 0.3 0.6 1.0
0.80 25 0.7 0.4 0.7 1.9 0.7 0.7 0.7 0.4 0.7 0.8 0.4 2.2

Note. MAR = missing at random; FIML = full information maximum likelihood; LD = listwise deletion; PD = pairwise deletion; SRPI = similar response
pattern imputation.
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TABLE 8
Mean Percentage of CFA Model Factor Correlation Bias by Factor Loading and Missing Data Rate (MAR)

Estimation Method

Factor
Loading

Missing
Data (%)

FIML LD PD SRPI

F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3

0.40 2 –1.6 –4.2 –0.8 –22.5 –3.9 –3.1 –1.4 –13.1 –6.4 –1.2 –7.1 –2.7
0.40 5 0.2 –1.5 –0.9 –43.2 5.2 –3.7 0.2 –18.7 –11.7 0.8 –6.4 –5.7
0.40 10 0.3 0.2 –1.6 –95.8 7.3 –8.2 0.5 –26.3 –18.2 0.8 –10.6 –9.9
0.40 15 –1.4 –1.4 0.2 –135.8 1.9 –12.1 –1.0 –35.5 –20.5 –1.3 –17.9 –12.0
0.40 25 –0.5 –0.8 –1.8 –151.8 –67.2 –15.3 –1.4 –46.8 –28.4 –1.7 –26.5 –19.0
0.60 2 –2.1 0.6 –0.7 –16.2 –3.2 –4.4 –2.0 –7.7 –6.4 –2.0 –2.4 –3.1
0.60 5 –1.1 –0.7 –1.1 –29.1 –7.6 –8.3 –1.0 –16.2 –11.6 –1.2 –6.8 –5.0
0.60 10 –0.3 –0.7 –2.8 –50.1 –11.8 –13.8 –0.3 –25.4 –19.8 –0.5 –12.1 –10.4
0.60 15 –1.3 0.1 0.2 –70.3 –14.7 –15.1 –1.3 –31.8 –21.2 –1.5 –15.4 –11.2
0.60 25 –1.1 –0.7 –1.6 –108.8 –17.4 –21.0 –1.2 –43.8 –29.5 –1.5 –25.6 –19.7
0.80 2 0.8 –0.1 –0.6 –10.7 –5.3 –5.1 0.8 –7.2 –6.0 0.8 –2.5 –2.3
0.80 5 0.3 –0.3 –0.5 –22.8 –10.3 –9.1 0.3 –13.9 –10.8 0.3 –5.5 –4.4
0.80 10 0.9 –0.3 0.9 –37.2 –16.5 –12.4 0.9 –22.0 –15.0 0.9 –10.9 –7.1
0.80 15 –0.4 –0.1 –0.6 –52.5 –21.1 –18.0 –0.4 –28.0 –21.3 –0.4 –15.8 –12.0
0.80 25 0.0 0.2 0.2 –75.9 –29.0 –23.4 0.0 –38.1 –27.4 –0.1 –25.6 –20.7

Note. CFA = confirmatory factor analysis; MAR = missing at random; FIML = full information maximum likelihood; LD = listwise deletion; PD = pairwise
deletion; SRPI = similar response pattern imputation.
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TABLE 9
Mean Percentage of SEM Structural Path Bias by Factor Loading and Missing Data Rate (MAR)

Estimation Method

Factor
Loading

Missing
Data (%)

FIML LD PD SRPI

F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3 F1–F2 F1–F3 F2–F3

0.40 2 3.8 –0.2 9.1 –9.9 23.5 16.7 4.4 –10.9 4.1 4.7 –2.8 5.7
0.40 5 6.5 7.9 7.7 –27.9 71.8 26.0 5.9 –18.6 0.9 6.2 –4.2 3.5
0.40 10 5.0 9.9 4.9 –83.6 112.1 56.3 4.1 –26.6 –6.3 3.3 –5.2 –3.2
0.40 15 3.1 6.7 7.9 –131.7 130.6 75.8 3.1 –42.0 –6.6 3.4 –18.3 –2.5
0.40 25 5.6 8.7 4.7 –159.4 72.6 90.8 4.7 –56.2 –10.9 5.1 –27.1 –5.6
0.60 2 –0.5 4.5 1.1 –10.2 12.1 3.9 –0.3 –6.7 –3.7 –0.4 0.1 –1.3
0.60 5 0.3 3.2 1.2 –20.1 20.1 7.7 0.6 –17.4 –7.6 0.1 –5.1 –1.6
0.60 10 2.6 1.1 –2.7 –38.9 32.5 9.7 2.8 –30.9 –16.6 2.5 –15.2 –10.6
0.60 15 0.9 2.3 1.7 –62.6 48.7 18.7 0.9 –39.7 –14.8 0.5 –18.7 –10.2
0.60 25 1.8 3.2 0.6 –112.8 93.1 33.2 2.1 –54.6 –20.1 1.4 –29.1 –17.5
0.80 2 1.1 0.6 –0.3 –7.9 2.7 0.6 1.1 –8.6 –5.5 1.1 –2.7 –2.1
0.80 5 0.3 0.6 –0.2 –18.4 5.1 1.8 0.4 –16.8 –10.1 0.3 –6.4 –4.0
0.80 10 2.1 0.2 2.0 –29.9 8.2 5.4 2.1 –28.0 –12.7 2.1 –13.6 –5.9
0.80 15 –0.1 1.8 0.1 –46.0 13.0 5.6 –0.1 –34.1 –19.1 –0.1 –18.9 –11.0
0.80 25 0.1 1.2 1.2 –71.0 20.0 9.3 0.1 –47.6 –23.5 0.0 –31.3 –20.9

Note. MAR = missing at random; FIML = full information maximum likelihood; LD = listwise deletion; PD = pairwise deletion; SRPI = similar response pattern
imputation.



most applied researchers. Because FIML was the only estimator that yielded unbi-
ased estimates under MAR, an extensive presentation of relative efficiency results
is thus omitted. Consistent with MCAR results, the sampling variability of FIML
parameter estimates was equal to or less than that of listwise deletion and similar re-
sponse pattern imputation. However, the relative efficiency values were generally
not as extreme as those observed under MCAR. For example, the mean relative ef-
ficiency values across the design cells for the three SEM structural parameters were
1.76 (SD = 1.15) and 1.27 (SD = .48) for listwise deletion and similar response pat-
tern imputation, respectively. MCAR means across the same parameters were 3.42
(SD = 3.72) and 1.63 (SD = .91) for listwise deletion and similar response pattern
imputation, respectively. Pairwise deletion results were quite similar to those ob-
served under MCAR; the mean relative efficiency value across the MAR design
cells for the three SEM structural parameters was .97 (SD = .11) compared to 1.04
(SD = .08) under MCAR.

Model fit. Taken across all cells of the design, the FIML estimation
method yielded near-optimal rejection rates (5.6%), as did listwise deletion
(5.9%) and, to a lesser extent, pairwise deletion (6.8%). Similar response pat-
tern imputation performed considerably worse, with rejection rates of 26.1%.
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TABLE 10
Missing at Random (MAR) Model Rejection Rates by Factor Loading and

Missing Data Rate

Condition Estimation Method

Factor Loading Missing Data (%) FIML LD PD SRPI

0.40 2 5.2 4.7 5.4 6.8
0.40 5 4.4 4.5 4.4 7.8
0.40 10 4.1 3.5 3.4 13.5
0.40 15 4.7 3.8 3.6 25.3
0.40 25 2.4 3.8 2.5 55.5
0.60 2 5.0 5.7 5.3 6.7
0.60 5 7.2 6.0 7.7 12.4
0.60 10 5.4 4.9 5.7 20.1
0.60 15 6.4 7.0 6.7 34.1
0.60 25 6.3 5.7 7.4 61.7
0.80 2 6.5 7.0 7.9 8.2
0.80 5 6.9 7.7 8.5 12.4
0.80 10 6.2 6.5 9.4 26.5
0.80 15 5.3 5.7 8.8 39.2
0.80 25 6.3 6.1 10.9 64.5

Note. MAR = missing at random; FIML = full information maximum likelihood; LD = listwise
deletion; PD = pairwise deletion; SRPI = similar response pattern imputation.



Table 10 displays the percentage of model rejections by loading magnitude,
missing data rate, and estimation method; results are collapsed across the sam-
ple size factor. Consistent with MCAR results, FIML rejection rates were unaf-
fected by the missing data rate and were quite close to the nominal 5% level.
Listwise and pairwise deletion rejection rates were also fairly stable and were
not dramatically different from the optimal rate. As seen in the table, pairwise
deletion rejection rates increased slightly as factor loading magnitude in-
creased. Finally, similar response pattern rejection rates were heavily impacted
by the missing data rate; Type 1 errors increased dramatically as the percentage
of missing data increased. At the highest missing data rate (25%), Type 1 error
rates exceeded 60%.

DISCUSSION

The convergence failures observed in this study are not surprising in light of
previous research. Sample sizes of 100 or less have been shown to result in
high rates of nonconvergence (Anderson & Gerbing, 1984; Boomsma, 1985),
and this was the case in this study, even when there was no missing data. The
fact that listwise deletion consistently resulted in convergence failures at high
missing data rates was simply due to the reduction in the overall sample size.
For example, the average listwise deletion sample size was less than 60 cases
in cells that crossed the highest missing data rate (25%) and highest sample
size (n = 750) conditions. Interestingly, Brown (1994) reported no conver-
gence failures with sample sizes of 500, whereas high rates of nonconvergence
occurred in this study under this sample size. These conflicting results can
likely be explained by differences in the study conditions; Brown’s loadings
ranged between .80 and .90, and the highest missing data rate was 16%. No
convergence problems were observed in this study under similar conditions (λ
= .80 and 15% missing data).

Bias results for FIML, listwise, and pairwise deletion were consistent with
theoretical expectations and past research (Arbuckle, 1996; Muthén et al., 1987;
Wothke, 2000); the three methods were unbiased under MCAR, whereas only
FIML was unbiased under the MAR mechanism. Consistent with Muthén et al.
(1987), bias was generally confined to the structural parameters. As the authors
pointed out, these parameters are generally the primary interest in latent variable
models. The Muthén et al. study found that pairwise deletion estimates obtained
from a CFA model were generally less biased than those of listwise deletion.
The reverse was true for the equivalent full structural model; listwise deletion
resulted in less bias than pairwise deletion. Results from this study did not ap-
pear to support this earlier finding, as listwise deletion resulted in greater
amounts of bias than pairwise deletion in both CFA and SEM models. However,
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it should be noted that differences in the MAR simulation procedure might have
contributed to this discrepancy. Consistent with Brown (1994), the similar re-
sponse pattern method yielded unbiased parameter estimates under MCAR.
However, biased parameter estimates were observed under MAR, although the
bias was generally less than that of listwise and pairwise deletion. This finding is
a new contribution to the literature, as no previous studies have examined the
behavior of this method under MAR.

Efficiency results were generally consistent with theoretical expectations. As
would be expected under MCAR, FIML yielded more efficient estimates than
either listwise or pairwise deletion. Although there were no theoretical expecta-
tions regarding the efficiency of similar response pattern imputation, it is proba-
bly not surprising that the method was less efficient than FIML. The
performance of pairwise deletion was somewhat surprising in light of
Arbuckle’s (1996) study, which found FIML estimates to be twice as efficient as
those of pairwise deletion in many cases. Our results suggested that 5% effi-
ciency gains are common, and 10% to 20% gains might be possible in situations
where factor loadings are strong (λ = .80). These results lend some support to
Arbuckle’s suggestion that larger efficiency gains might result when indicators
have a large amount of shared variance, although this certainly does not account
for the discrepancy between the results. In contrast, these efficiency results are
quite consistent with Wothke (in press), who reported modest efficiency gains
relative to pairwise deletion; the magnitude of these gains was quite similar to
those presented here.

Unlike the three ad hoc estimation methods, FIML rejection rates were unaf-
fected by the missing data rate across the two simulations. Based on these results, it
would appear that FIML estimation results in near-optimal and stable model rejec-
tion rates. It should be noted that no previous studies have examined FIML model
fit. Although MCAR rejection rates for pairwise deletion were quite different from
those reported by Brown (1994), these findings are consistent with statistical the-
ory and other past research (Kaplan, 1995; Marsh, 1998). Consistent with
Kaplan’s (1995) conclusions, our results suggested that the chi-square statistic is
sensitive to violations of Wishart distribution assumptions that result from the use
of pairwise deletion. Furthermore, the upward bias of the test statistic appeared to
increase as the magnitude of the factor loadings increased. Rejection rates for
listwise deletion and similar response pattern imputation were generally consistent
with past research, albeit limited (Brown, 1994).

In summary, FIML estimation was superior across all conditions of the design.
FIML estimates were unbiased and more efficient than the other methods across
both the MCAR and MAR simulations. In addition, FIML yielded the lowest rate
of convergence failures and provided near-optimal Type 1 error rates across both
simulations. When data were MCAR, pairwise deletion generally yielded satisfac-
tory performance. Parameter estimates were unbiased, and convergence failures
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and efficiency were only slightly worse than FIML. However, inflated Type 1 er-
ror rates were observed, particularly when the magnitude of factor loadings was
high. However, under MAR pairwise deletion, parameter estimates were substan-
tially biased. Both listwise deletion and similar response pattern imputation per-
formed substantially worse than FIML across most conditions of the study. The
methods yielded high rates of nonconvergence and inefficient parameter estimates
relative to FIML. These efficiency differences became more pronounced as the
missing data rate increased. Under MAR, both methods yielded substantially bi-
ased parameter estimates. Although listwise deletion rejection rates were accept-
able, those of similar response pattern imputation were substantially inflated.

In practice, applied researchers may not have knowledge about the missing data
mechanism. In the absence of such knowledge, these results would suggest that
FIML might be a superior method for dealing with missing data in structural equa-
tion models. Given the current availability and ease of implementing FIML in
computer packages such as AMOS, it is recommended that applied researchers re-
duce their reliance on ad hoc methods for dealing with missing data. Although re-
sults may not be deleteriously impacted by the use of pairwise deletion when data
are MCAR, the potential for biased estimates and, as a result, erroneous conclu-
sions is clear. Based on the results of this simulation, the use of listwise deletion
and similar response pattern should be viewed with caution.

Although a comprehensive set of factors was examined, it is not known
whether these results will generalize to other situations commonly encountered
in applied research. For example, the effects of nonnormal data on FIML estima-
tion are unknown. Like complete-data ML methods, FIML assumes multivariate
normality. The effects of nonnormality on ML estimation are well documented
in the SEM literature, and it is reasonable to expect that nonnormality would
also affect FIML estimates, although the extent of this impact is unknown. Sec-
ond, as with most previous research, this study focused on ignorable patterns of
missing data (MCAR and MAR). Although theory would predict that ML meth-
ods are biased under nonignorable patterns of missing data, the Muthén et al.
(1987) study suggested that ML methods might be less biased than ad hoc meth-
ods. Finally, it is not known whether these results will generalize to other com-
mon analyses such as regression. Missing data literature in the area of regression
is quite limited by today’s standards, and applied researchers outside the field of
SEM could widely benefit from a comprehensive study of FIML applied to re-
gression models.
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