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The effect of nanostructuring on magnetostatic interactions in permanent magnets is investigated by
model calculations. Emphasis is on the energy product as a function of packing fraction of the
magnetic phase, of the magnet’s macroscopic shape, and of the nanoscale feature size. The main
difference between nanostructured and macroscopic magnetic bodies, namely, the transition
between coherent and incoherent reversal, has a far-reaching impact on demagnetizing field and
energy product. For small magnet sizes, the energy product is substantially enlarged, up to �0Ms

2 /4
for soft magnetic materials, but this effect is difficult to exploit in real devices. In bulk magnets, the
energy product depends on the packing fraction f of the soft phase and exhibits a maximum
�0Ms

2 /12 for f =2 /3. Nanoscale magnetization processes involve demagnetizing factors different
from the macroscopic ones used to determine the optimum shape of permanent magnets. Confusion
of these two types of demagnetizing fields yields unphysical mechanisms, such as hysteresis-loop
overskewing and the addition of self-interaction fields to the external field. © 2010 American
Institute of Physics. �doi:10.1063/1.3337657�

I. INTRODUCTION

A key consideration in permanent magnetism is the vol-
ume fraction of the magnetic phase. This is because the en-
ergy product �BH�max never exceeds �0Ms

2 /4, where Ms is
the volume-averaged saturation magnetization. The energy
product determines the usable magnetostatic energy, stored
outside the magnet, so that nonmagnetic regions, such as
voids and nonmagnetic grain boundaries, must be included in
the magnet volume. Most permanent-magnet materials of
current interest are nanostructured, but typical devices are
macroscopic and the energy product is realized by adjusting
the magnet’s shape and demagnetizing factor,1,2 which de-
rives from Maxwell’s equations. The packing fraction of the
hard-magnetic phase and other structural features affect the
magnetic field inside and outside the magnet, and question
arises whether there is any interference between nanoscale
and macroscopic features and how they could be used to
improve the performance of permanent magnets.3–6 This also
affects potential applications that use permanent magnets of
reduced size, for example, in micromechanical devices and
elements for spin electronics.

Typically, the energy product of a permanent magnet de-
creases with the volume fraction of the magnetic phase,
which is a well-known challenge in the processing of perma-
nent magnets. For example, the performance of polymer-
bonded permanent magnets is limited by the volume fraction
of the magnetic particles, and sintered high-performance
Nd–Fe–B magnets contain a Nd-rich grain-boundary phase
that surrounds the grains but occupies a relatively small vol-
ume fraction.7,8 The first part of this paper deals with the less
common case that nanoscale magnetostatic interactions

cause the energy product to increase with decreasing volume
fraction. Since shape anisotropy is caused by magnetostatic
self-interactions, high-magnetization materials may be used
to create shape anisotropy. This effect is actually exploited in
alnico magnets, which consist of FeCo needles in an AlNi
matrix,9 and in fine-particle magnets10 produced by elec-
trodeposition into a mercury cathode and intensively inves-
tigated in the mid-20th century.10 Element-strategic consid-
erations addressing the limited availability of rare earths
have lead to renewed interest in alternative materials, and it
is interesting to explore the limitations of the magnetostatic
approach.

II. SIZE DEPENDENCE OF ENERGY PRODUCT

Let us start with the dependence of the energy product
on the size of the device or element. Maxwell’s equations do
not contain a nanomagnetic length scale, but the energy
stored by a permanent magnet depends on the coercivity,
which is a nanoscale phenomenon. If a fictitious motor had a
size of only a few nanometers, then one could exploit the
shape anisotropy of small particles and achieve energy prod-
ucts of the order of 1000 kJ /m3 in soft magnets such as Fe
and FeCo. In more detail, ideal small particles have an en-
ergy product of �BH�max= 1

4�0Ms
2�1−9D2�, meaning that en-

ergy product vanishes for spherical particles �D=1 /3�. Long
needles �D=0� have a very impractical field distribution, but
a prolate aspect ratio of 2:1 is sufficient to realize 73% of the
maximum value 1

4�0Ms
2. Unfortunately, it is not possible to

realize these energy products in macroscopic magnets, be-
cause shape anisotropy decreases as A /R2 with increasing
particle radius R.8 Compaction of a powder consisting of
very small particles would create magnetostatic fields that
destroy the shape anisotropy.a�Electronic mail: rskomski@neb.rr.com.
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The compaction effect also limits the energy product of
alnico permanent magnets, where FeCo needles of volume
fraction f are embedded in an AlNi matrix, as illustrated in
Fig. 1�a�. Assuming coherent rotation with rectangular hys-
teresis loops of coercivity Hc, the energy product is equal to

�BH�max = 1
4 �MrHc − Hc

2� �1a�

for Hc�Mr /2 and

�BH�max = 1
4�0Mr

2 �1b�

for Hc�Mr /2. In these equations, Mr= fMs is the rema-
nence. In the Stoner–Wohlfarth limit, the coercivity of soft-
magnetic materials is equal to 1

2 �1−3D�Ms, and for a com-
pact magnet of the type shown in Fig. 1�a�, we can use, in
fair approximation, D= f /3.4,8 The corresponding coercivity,
Hc= 1

2 �1− f�Ms, linearly interpolates between Ms /2 for f =0
�limit of isolated wires� and zero for f =1 �bulk soft magnet�.

Substituting Hc= 1
2 �1− f�Ms and Mr= fMs into Eq. �1�

yields �BH�max=�0f2Ms
2 /4 for Hc�Mr /2 and �BH�max

=�0�1− f��3f −1�Ms
2 /4 for Hc�Mr /2. Figure 1�b� shows

the energy product predicted by these equations. Very low
packing factions lead to a waste of energy product due to an
unnecessary dilution of the magnetization. For high volume
fractions, the demagnetizing factor is close to that of a dense
thin film, and the preferential magnetization direction turns
into the film plane. The curve exhibits a maximum at the
volume fraction of f =2 /3, and the corresponding maximum
energy product is

�BH�max = 1
12�0Mr

2. �2�

For Fe65Co35, this yields a value of 390 kJ /m3 �49 MG Oe�.
However, this is an upper limit, similar to the difficult-to-
achieve value of more than 1000 kJ /m3 for hard-soft
nanostructures.11 Addition of uniaxial anisotropy with an
easy axis parallel to the wires �K1�0� moves the peak to-
ward higher volume fractions and higher energy-product val-
ues, whereas K1�0 has the opposite effect.

III. SIZE DEPENDENCE OF DEMAGNETIZING FIELD

The model leading to Eq. �2� assumes that the magneti-
zation reversal in the wires is coherent �Stoner–Wohlfarth-
type�. This is reasonable for thin wires, but when the wire
radius exceeds the coherence radius Rcoh, which is of the
order of 10 nm for a broad range of materials, then the
mechanism changes from coherent rotation to curling.8,12–15

The curling reduces the nucleation field �coercivity� of a per-
fect c-axis-aligned uniaxial ellipsoid of revolution from

Hc =
2K1

�0Ms
+ �1 – 3D�Ms �3�

to

Hc =
2K1

�0Ms
− DMs +

c�D�A
�0MsR

2 , �4�

where A is the exchange stiffness and c assumes values of
8.666 �spheres� and 6.6678 �long needles�.8 These equations
include the case of soft wires �K1=0�. The curling mode is
characterized by magnetic flux closure and therefore by a
reduction in the magnetostatic self-energy.14 Compare, for
example, Eqs. �3� and �4� for small and large spherical par-
ticles, respectively. Coherent rotation �Eq. �3�� then yields
Hc=Ha=2K1 /�0Ms, whereas curling �Eq. �4�� leads to Hc

=Ha−Ms /3. This means that the spherical demagnetizing
field −Ms /3 is “missing” in the coherent-rotation limit.

The counterintuitive size dependence of the demagnetiz-
ing field can be traced to the demagnetizing field during
coherent rotation. For example, the demagnetizing field in a
small sphere is −M /3. Since the sphere’s magnetostatic en-
ergy is independent of the magnetization direction, the de-
magnetization field does not enter any micromagnetic re-
sults. A more general argument is that Hd=−M /3 in M ·Hd

yields an energy-density contribution proportional to M2

=Ms
2, which is independent of the magnetization angles and

amounts to a physically unimportant constant shift of the
energy zero. In particular, it is not possible to consider self-
interaction fields as an addition to the external field.

IV. DISCUSSION AND CONCLUSIONS

The term −DMs in Eq. �4� is unrelated to the macro-
scopic demagnetizing factor but reflects the collapse of the
magnetostatic self-interaction due to the curling-type flux
closure. By contrast, the macroscopic demagnetizing factor
describes the influence of the magnet’s macroscopic poles on
the magnetic field outside �and inside� the magnet. In this
case, the argument based on M2=Ms

2 or �M�=Ms no longer
applies because the average magnetization is reduced by do-
main formation. A meaningful definition of a macroscopic
demagnetizing field requires the magnetization to be reason-
ably homogeneous throughout the magnet, that is, the do-
mains and domain walls must be much smaller than the mac-
roscopic size of the magnet. Figure 2 shows a case where this
requirement is not satisfied because the dimensions of the

FIG. 1. Energy product of embedded wires: �a� alnico-type structure and �b�
energy product as a function of packing fraction.

FIG. 2. Thin-film magnets where macroscopic demagnetizing fields cannot
be defined because the micromagnetic length scales interfere with size of the
magnet. If a demagnetizing factor is used to describe such magnets, one
obtains unphysical predictions such as overskewing.
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domains are comparable to the macroscopic size L of the
magnet. In a permanent magnet having the shape of an ellip-
soid of revolution, the demagnetizing field is reasonably ho-
mogeneous. In a thin film, as in Fig. 2, the demagnetizing
field is extremely inhomogeneous, and the use of a demag-
netizing factor is a very poor approximation. The application
of demagnetizing-field corrections may then give to ill-
defined predictions, such as overskewed hysteresis loops
�Fig. 3�. Overskewing tends to occur if uncorrected loops of
films with perpendicular anisotropy are nearly rectangular. In
practice, this amounts to a strongly reduced demagnetizing-
field correction, but further research is necessary to specify
this reduction for specific mechanism of magnetization re-
versal.

Recently, Dobrynin et al.6 advocated the inclusion of
magnetostatic self-interaction fields into micromagnetic
simulations. This affects a number of seemingly well-
understood magnetic properties, such as energy product and
coercivity, and questions a broad range of past theoretical
and experimental works. The unusual treatment of the self-
energy in Ref. 6 is motivated by the claim that magnetization
processes in small particles are “discrete,” that is, the mag-
netization changes directly from −Ms to +Ms or vice versa.

In fact, the Heisenberg exchange is sufficiently strong to en-
sure M2=Ms

2 on an atomic scale, so that magnetization re-
versal is always realized by a rotation of the local magneti-
zation. In other words, the assumption of discrete
magnetization jumps crudely misinterprets the physics of
magnetization reversal and corresponds to unphysical addi-
tion of the self-interaction field to the external field.

In conclusion, we have investigated how magnetostatic
interactions affect energy product and demagnetizing fields
in nanostructured permanent magnets. High energy products
may be created in nanoscale devices, but compaction is gen-
erally a limiting consideration for soft-magnetic phases. In
alnico-type magnets, a maximum energy product of
�0Ms

2 /12 is achieved for a volume fraction of f =2 /3. The
meaning of nanoscale demagnetizing factors qualitatively
differs from that of the macroscopic demagnetizing factors
usually considered in permanent magnetism. This is the rea-
son for unphysical demagnetizing-field effects, such as over-
skewed hysteresis loops.
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FIG. 3. Hysteresis-loop overskewing. The demagnetizing-field correction or
“shearing” of a nearly rectangular uncorrected loop �solid line� yields an
overskewed loop �dashed line� with instabilities �P�. In contrast to ordinary
demagnetizing-field corrections, which leave the coercivity unchanged �Hc�,
the overskewing enhances the coercivity �Hc��.
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