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Static-Electric-Field-Induced, High-Energy Plateau for Scattered X-Ray Photons
in Laser-Assisted, X-Ray—Atom Scattering

Dejan B. Milcsevicr and Anthony F. Starace

Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-0111
(Received 25 August 1998

We consider scattering of x rays by H atoms in the presence of both a linearly polarized laser field
and a static electric field. Results for the differential cross section as a function of the number of
photonsn exchanged with the laser field are presented. For x-ray—atom scattering in the presence of
a 10" W/cn? laser field the differential cross section has a plateau only for emitted photors0j.

Adding a static electric field gives rise to an extended plateau for absorbed pheton8)( indicating
a substantial increase of the scattered x-ray energies. We present a quasiclassical explanation of these
results. [S0031-9007(98)07847-8]

PACS numbers: 32.80.Qk, 32.80.—t, 32.30.Rj, 34.80.Qb

Laser-field induced or assisted atomic processes have dtere wx and wx, = wg + nw are the energies of the
tracted much interest in recent years [1,2]. Using strongncident and scattered x-ray photons, respectively. The
laser fields, itis possible to generate harmonic photons withr_matrix eIementfl(fl)(, (n) are the Fourier components of
an energy of almost 500 eV [3]. Coherent x-ray source$he matrix eIements’[S]
with energies in the “water window” [between tikeshell .
absorption edges of C (284 eV) and O (532 eV)] would (=) _ . .
have important applications to imaging living biological Tk le) = /0 de dqexp=ilS(g; 1, 7) = wxr]}
structures by means of x-ray holography [4]. However,
the efficiency of generation of such high-energy photons X (¥olr - €éxlq + A(1)(q + A(r — 7)r - éx/|io),
is low. We propose here a means of obtaining such high- )
energy photons by laser-assisted, soft x-ray—atom scatter-
ing in the presence of a relatively weak static electric fieldwhere|yy) is the atomic ground-state ket vectdy) is a
(i.e., having a field strength of only a few percent of thatplane-wave ket vector for the electrop,= wt, andéx
of the laser electric field). X-ray—atom scattering in theand éx: are the unit polarization vectors of the incident
presence of a laser field was recently considered theore#@nd scattered photons, respectively(r) andS(q; ¢, 7) =
cally [5]. Plateaulike structures in the differential cross [;_, d'{3[q + A(t)}* + Iy}, wherel, = 0.5 a.u. is the
section (DCS) as a function of the number of photons exionization potential of the hydrogen atom, are, respec-
changed with the laser field were observed, but primarilytively, the vector potential and the electron’s quasiclassi-
for scattered x-rays having lower energy. It was also recal action in the presence of both a laser field and a static
cently shown that the presence of a static electric field modelectric field. The matrix eIememIg,)K(n) corresponds to
ifies the intensities of harmonics generated in a laser fielthe process in which an x-ray photon having wave vector
[6]. We present here the theory of laser-assisted, x-rayK and energywk is absorbed first. The ionized electron
atom scattering in the presence of a static electric field. Weropagates under the influence of both the laser and static
show that for initial soft-x-ray photons having an energy ofelectric fields during the time interval from— 7 to ¢, at
50 eV, which may be obtained with high efficiency in the which time it comes back to the atomic core (i.e., the return
harmonic generation process [1,2], the energy of the scatime is7). The electron then recombines with the atomic
tered x rays may be increased by an order of magnitude.core, exchanging photons with the laser field and emit-

A detailed derivation of the main expressions for theting an x-ray photon having wave vect8’ and energy
DCS for laser-assisted x-ray—atom scattering (including, . The matrix element’y x(n) describes the process
discussion of the approximations used) is presented ify which the x-ray photon having wave vect§f and en-
Ref. [5]. We therefore focus here on the effects of a statig gy «y, is emitted first. Reference [5] shows that the

electric field. The DCS for laser-assisted x-ray—atom —_— (+) :
scattering with absorptiom(> 0) or emission £ < 0) of contribution of T /(n) to the DCS can be neglected in

. I (-)
n laser photons having frequenay s [in SI plus atomic ~ comparison to the contribution df x (n) (for |n| > 5).

units ¢ = i = m = 1)] The three-dimensional integral over the intermediate elec-
do(n) tron momenta in Eq. (2) can be carried out using the time-
d‘;}” - cf4wKwiz</|T1(<+,1)<f(n) + T ()%, dependent WKB approximation [5]. The integral over the
K/ return timer is computed numerically, and, finally, tie
) (n) = 2w de ) () expling) (1) matrices,_ which appear in Eq. (1), are obtained using the
KK/ o 2w ~EKP mne). fast Fourier transform method.
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The explicit analytical forms of the matrix elements static field having strength; = 0.02E, [8]. We note the
in Eq. (2) are given in Ref. [5] in terms of the vector following effects of the static electric field. First, the num-
potential A(z), the stationary momentump, = q,(¢,7) =  ber of absorbed or emitted laser photons can now be not
—$ fﬁ_f dt' A(¢'), and the actionS; = S(q,;¢,7). The only even but also odd. Second, there is little effect on
vector potentialA(r) corresponds to a linearly polar- the DCS for either small values bf|, for which there is a
ized electric field vectorE(t) = (EpSinwt + E,)é, maximum, or negative values af, for which there is a
where é is the unit polarization vector. E, and plateau. Third, for values ot between the plateau for
E, are the amplitudes of the laser and static elecnegativen and the maximum for small|, the DCS is
tric field vectors, respectively. It follows that much larger. Fourth, and most significant, is the appear-
A(r) = — f’E(t’) dt' = (Agcoswt — E,t)é anda(t) = ance of an extended plateau for positive values.ofThe
[fdt’ A(t') = (apsinwt — %Estz)é, whereAy = Eg/w  cutoff for this plateau is az = 162, i.e., the energy of
and ay = Ap/w. The stationary momentum can be the scattered xraysisg: = 205w = 4.79wk = 240 eV.
written as q,(t,7) = [a(t — 7) — a(?)]/7, while the Therefore, the addition of a static field having strength 2%
stationary action is given by,(s,7) = (Ip + U,)r —  ofthelaser electric field strength enables one to obtain scat-
17 + Uy(wt) — U(w(t — 7)), where U,(¢) = tered x-ray photons having energies up to almost 5 times
U,sin2e /20 + [%E3¢3 — E,Eo(cose + ¢ sing)]/ w3, higher_than the incident energy. N
and U, = A}/4 is the ponderomotive potential of the N Fig. 2 we analyze how the plateau for positive

laser field. One may easily verify that the functions €hanges as a function of the ratio of the static and laser
q,(t,7) + A(t), q,(t,7) + A(t — 7), andS,(r, 7), which  €lectric field strengths. As this ratio increases from zero

appear in the final result fcﬂJK’iK/(go), are2w/ w-periodic
functions of ¢, thereby justifying the use of Fourier
expansion methods. This periodicity follows also from
consideration of the Volkov Green'’s function for the case \ ' ""-'"y‘\f-p“,\.- . @
of both a laser field and a static electric field [7]. 107 1 \
We present our numerical results for a laser field in- : ,.,!g f i
tensity/ = 10' W/cn?, and for different values of the L i"-.l-‘,-“"’\. sy b
static electric field strength. For simplicity, the polariza- é "\ﬂlu' ﬁi'i.-i'{,f.i.‘ Fuls
tion vectors of the incident and scattered x-ray photons ' fi‘!’ ¥ i ‘\,’ i
are taken parallel to that of the linearly polarized laser §
field. The energy of the incident x rays is chosen to be
wg = 50 eV. Figure 1 shows the DCS as a functiomof 10713 } :
for laser-assisted x-ray—hydrogen atom scattering in the EfEo=0 1§
absence (dashed curve) and presence (solid curve) of . b : S\
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FIG. 1. The DCS for x-ray—hydrogen atom scattering in units

of r? (where r, = 2.8 X 107> m is the classical electron FIG. 2. The DCS for x-ray—hydrogen atom scattering as a
radius) as a function of the number of photonsexchanged function of the number of exchanged photondor the same
with the laser field of frequencyw = 1.17 eV and intensity laser field parameters as in Fig. 1, but for different values of the
10" W/cn? (dashed curve). The results including a staticstatic electric field strength (chosen in each figure to minimize
electric fieldE;, = 0.02E, are shown by a solid line.wx for overlap): (a)E;/E, = 0, 0.006, 0.05, and0.5; (b) E;/E; = 0,

the incident x-ray photons is 50 eV. 0.003, 0.03, and0.2.
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to 0.05 the DCS increases, while the position of the cutoff 180
is unchanged. A%/E, increases further, the position of

the cutoff shifts to lower and the DCS increases further.

In the following we explain these results.

It was shown in Ref. [5] that a simple quasiclassical
analysis of the x-ray spectra can be carried out by applying _ 140
the saddle-point method to the integral over the return £
time 7 in Eq. (2) and to the integral ovep(= wt) in
the matrix eIemenTI({’)K(n) in Eq. (1). For the integral
over 7, the saddle-point method implies the condition
d[S(q;t,7) — wg7]/d7 = 0, giving %[q + At — )P
= wg — Ip. According to this equation the atom is
ionized by absorbing one x-ray photon of energx, 80
and the electron is born at some time=t — 7. The
initial momentum of this electron is denoted py = poé€,
where pi = 2(wk — Ip). Assuming thatA(r) = A(r)é,

160 |

120

100

a(t) = a(t)é, andq = q,(t1,1; — to) = g€, we obtain 10000
alt)) — a(ti) = [po — Al (1 — 1).  (3)
This equation is equivalent to the solution of the classi- 1000

cal Newton’s equation of motion of an electron in a laser
field and a static electric field, under the condition that
this electron is born at the nucleus(z,) = 0, with the E 100 b
initial momentump, = poé€, and that at the time, it re-

turns to the nucleus, i.er(t;) = 0. The application of
the saddle-point method to the integral over the tinme- 10 b
plies thatd[S(q;t,7) — nwt]/dt = 0, so that we obtain
the conditioni[q + A(N — i[q + A(r — 7 = no,

from which it follows that the energy exchanged with the 1 . . . .
laser field at time; is [with q — q,(¢;, 7)] 0 0.1 02 03 04 05
1
nw = 5[%01,7) + AP —wk + 1. (4) E/Eo

1G. 3. Maximum value of the number (a) and the corre-

We determine the maximum of this energy by the conditio sponding return timer (b), obtained using the quasiclassical

d(nw)/dty = (_)’ i.e., by the condition that the eIectron_ is method, as functions of the ratio of the static and the laser elec-
born at such time, for whichnw has an extremum. This tric field strengths. The laser field parameters are the same as
condition gives in Fig. 1.

E(to) [A(t1) — A(ro) + (81 — t9)E(2
(o) [A®) (to) + (& 0E®)] ourresultsin Fig. 2, i.e., that the plateau for positive values
= polE(t1) — E(to)]. (5) of nincreases ag; increases.

We find the extrema ofiw by solving the pair of In order to _explain why the plateau f_or positive values
equations (3) and (5) fag andt,, 1 > 1, and introducing of n appears in the presence of a static fleld_, we analyze
these solutions into Eq. (4). In Fig. 3(a) we present thé=d- (3) in more detail. Introducing new variables=
results for the maximum value of as a function of the @7/2a@nde = w1y, the condition that the electron returns
ratio E,/Ey. The global maximum value of for any to the nucleus at timg, Eq. (3), can be written as
value of E| is_ slightly above 1GQ and, aB; incr_eases, a(a)sin(g — o) + b(o)code — o) = c(o), (6)
nmax fOr a particular value of; oscillates below this value
with increasing amplitude. The optimal values@fare  where a(o) = sino, b(o) = coso — sincg/o, and
those for whichnna, equals the global maximum value. c(o) = (po/Ag) — TE,/Ey. Equation (6) can be
In Fig. 3(b) we present the return time which correspondsewritten as a quadratic equation in the variable
to nmax, i-€., to the cutoff of the plateau in the DCS, as ax = sin(¢ — o), and, therefore, for each we have two
function of the ratioE;/E,. One sees that the return time solutions forx. Introducing these solutions into Eq. (4),
increases exponentially with decreasiig Because th&  one obtains the numberas a function of the return time
matrices contain the factar /2 [5], which correspondsto 7. For E; = 0 there are no solutions of Eq. (6) because,
the spreading of the electron’s wave packet, the probabilityn order thatx is real, one must have? + b? = 2.
of the electron’s recombination is low for smdil, and, But in our examplec? = (po/Ao)> = 1.734, while the
therefore, the DCS is small for smdl|. This agrees with maximum of the functiom?(o) + b%*(o) is only 1.5866.
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FIG. 4. The numbern, Eq. (4), which corresponds to the
solutions of Eg. (6), as a function abr, for two different
values of the static electric field strength: @) = 0.02Ey; (b)

long, while for largerE, the return time is shorter. The
kinetic energy which the electron acquires from the static
field increases with the increase of the return time, and
for 7 > 7, the electron is no longer able to return to
the nucleus [where in Fig. 47, = 232 (a) and 23.6
(b); for = > 7, there are no solutions of Eq. (6)]. For
E; = 0, in the case when the laser field is strong enough
that the conditioru® + b2 = ¢2 is fulfilled, solutions of

Eqg. (6) exist. An example foF = 2.5 X 10'* W/cn? is
presented in Fig. 4(b) by a dashed line. One sees that the
numbern, which determines the position of the plateau
in the DCS, is smaller foE; = 0 even though the laser
field intensity is higher by a factor of 2.5. This is because
the energy which the electron accumulates from the static
field increases withr.

We considered laser-assisted x-ray—atom scattering in
the presence of a static electric field. The number of
photonsn exchanged with the laser field can be either
even or odd. Our results show that the DCS as a function
of n can have an extended plateau for positive values of
n, indicating an increase of the energy of scattered x-ray
photons by up to an order of magnitude. A quasiclassical
explanation of these effects has also been presented.

We thank H.C. Bryant for a useful discussion. This
work has been supported in part by the National Science
Foundation under Grant No. PHY-9722110.
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