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ABSTRACT: Due to the use of antimicrobials in livestock production,
residual antimicrobials and antimicrobial resistance genes (ARGs) could enter
the environment following the land application of animal wastes and could
further contaminate surface and groundwater. The objective of this study was
to determine the effect of various manure land application methods on the fate
and transport of antimicrobials and ARGs in soil and runoff following land
application of swine manure slurry. Swine manure slurries were obtained from
facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and
were land applied via broadcast, incorporation, and injection methods. Three
rainfall simulation tests were then performed on amended and control plots.
Results show that land application methods had no statistically significant effect
on the aqueous concentrations of antimicrobials in runoff. However, among
the three application methods tested broadcast resulted in the highest total
mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline
and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For
ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the
effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed
in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various
land application methods.

■ INTRODUCTION

Livestock wastes generated from confined animal feeding
operations (CAFOs) represent a major source of antimicrobials
and antimicrobial resistance genes (ARGs) in the environ-
ment.1 Antimicrobials are often administered to livestock in
CAFOs for growth promotion, prophylaxis, and disease
treatment. However, a substantial portion of the antimicrobials
administered to livestock are not absorbed by the animals.2

Antimicrobial residues can cause the emergence of antimicro-
bial resistant bacteria in an animal’s gastrointestinal tract and in
the environment after land application of manure.3,4

There have been limited studies investigating the fate and
transport of antimicrobials in soil and in runoff following land
application of manure. One study detected no statistically
significant differences in antimicrobial concentrations (chlorte-
tracyline, monensin, and tylosin) in infiltration water and
surface runoff when manure was applied using two land
application methods (i.e., chisel plowing vs no-tillage).5 In

contrast, other studies suggest that soil tillage lead to reduced
vertical transport of antimicrobials after broadcast application of
liquid manure,6 and incorporation could lead to reduced
antimicrobial concentrations in runoff.7 Once animal manure is
land applied, the fate of manure-originated antimicrobials in soil
and subsequent transport in runoff will also be affected by the
compounds’ sorption properties to soil particles8−10 and
susceptibility to biotic and abiotic degradation (e.g., photo-
degradation).11−13 To date, there have been few studies that
systematically evaluate multiple land application methods with
respect to their effects on the fate and transport of different
classes of antimicrobials in soil and runoff following land
application of manure.
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Conflicting data exist in the literature on whether ARGs
originating in livestock manure can persist in soil following land
application of manure. Using sulfonamide resistance as an
example, one study reported that the relative abundance of sul
genes dropped by 1 order of magnitude over a 165 day period
following manure incorporation into soil,14 while another study
reported increased antimicrobial resistance in soil 289 days after
land application of manure.15 In addition, antimicrobial
resistant bacteria from manure may be transported to surface
water via runoff. One study determined that heterotrophic plate
count bacteria in runoff from soil amended with poultry litter
decreased steadily with each of five successive rainfall events
and some enterococci isolates demonstrated resistance to
selected antimicrobials.16 Unfortunately, this study only
assessed culturable bacteria and included only one litter
application method. Hence, there is a critical need to quantify
ARGs, which allow for evaluation of the antimicrobial resistant
populations in both culturable and nonculturable bacteria, in
soil and runoff as a function of land application methods.
An understanding of the behavior of antimicrobials and

ARGs in the environment is important in the development of
manure management practices to control the proliferation of
these contaminants from animal agriculture. The objective of
this study was to determine the effect of various manure land
application methods on the fate and transport of antimicrobials
and ARGs in soil and runoff following land application of swine
manure slurry. Two hypotheses were established for this study:
(1) the extent of mixing of manure and soil during land
application will determine the transport of antimicrobials and
ARGs in runoff, and (2) the effect of land application methods
on the fate of antimicrobials and ARGs in soil will be
compound and gene specific. Three land application methods,
broadcast, injection, and incorporation, were employed in this
study, and rainfall events were simulated once a day for three
consecutive days. Chlortetracycline (CTC), tylosin (TYL), and
bacitracin (BAC), as well as their corresponding ARGs, were
quantified in the soil and runoff from triplicate field plots for
each experimental condition.

■ MATERIALS AND METHODS
Manure Generation and Collection. Three groups of

pigs housed in separate barns at the USDA Meat Animal
Research Center (MARC) near Clay Center, NE were each fed
a single antimicrobial. All hogs were fed a corn and soybean-
based diet. Grower pigs received 66.2 mg CTC/kg ration, sows
and gilts 75.0 mg TYL/kg ration and finisher pigs 39.7 mg
BAC/kg ration. Manure from the finisher pigs was collected in
pits under a slotted pen and was drained once a week using a
pull-plug system. After draining, the plug was replaced and fresh
well water was added to refill the pit to approximately a 0.5 m
depth. Slurry was collected from this facility by removing a
grate and dipping a plastic bucket to collect manure. Manure
from grower pigs and manure from sows and gilts were pushed
through slots in the pen floor and was collected in channels
under the pen. Typically, 2000 L of well water was discharged
every hour through the trough to flush the manure slurry to a
treatment lagoon system. Slurries from each of these two
facilities were collected at a point downstream where the two
channels for each side of the building converged. To ensure
sufficient solids content of the slurry, the flush system was
turned off overnight to allow solids to accumulate in the trough
systems. Slurry was collected in early morning using plastic
buckets at the beginning of the first flush. Each week, swine

slurries (defined as CTC-, TYL-, or BAC-manure) were
collected at MARC and transported in 20 L plastic buckets
to the land application site at the UNL Roger’s Memorial Farm
near Lincoln, NE. A subsample of the swine slurry was collected
for solid and nutrient analyses at Ward Laboratories (Kearney,
NE), and the results have been reported in a companion
paper.17 Another subsample was collected in 250 mL amber jars
and transported in a cooler to UNL for antimicrobial and ARG
quantification.

Rainfall Simulation Experiments. Experiments were
designed to test three experimental treatments: land application
methods (i.e., broadcast, incorporation, and injection), manure
amendment (i.e., manure amended plots and control plots),
and rainfall events (i.e., rainfall simulation test 1, 2, and 3). Test
plots (0.75 × 2.0 m) were constructed using 20 cm-wide sheet
metal frames driven approximately 10 cm into the soil. Swine
slurry was weighed at the field site and applied on amended
plots to meet the 1-yr N requirement for corn (i.e., 151 kg N
ha−1 yr−1 for an expected yield of 9.4 Mg ha−1, assuming that
70% of the total N in manure slurry is available to crops). For
amended plots receiving manure (i.e., CTC-, TYL-, or BAC-
manure) and control plots receiving no manure, each land
application method was employed on three replicate plots.
Over 5 weeks, a total of thirty six plots were established across
the slope (5.8%) using a randomized block design (Supporting
Information (SI) Figure S2). For broadcast plots, the slurry was
slowly poured onto the soil surface and care was taken to
ensure uniform distribution. For incorporation plots, a single
pass with a tandem disk was used to mix the manure slurry into
the soil to a depth of approximately 8 cm. For injection plots,
four 13-cm deep trenches for slurry injection were established,
51-cm apart, across plots in a direction perpendicular to
overland flow.
A portable rainfall simulator was designed according to a

published study.18 Rainfall simulation procedures were adopted
from the National Phosphorus Research Project.19 The first
rainfall simulation event was conducted 24 h after land
application of swine slurry, and two additional rainfall
simulation runs were conducted at approximately 24 h intervals.
In each rainfall event, the simulator applied rainfall for a 30 min
duration at an intensity of 70 mm hr−1.
Plot borders channeled runoff into a sheet metal lip that

emptied into a collection trough located across the bottom of
each plot. A galvanized steel trough diverted runoff into plastic
buckets set below the soil surface. A sump pump was used to
transfer runoff from the buckets into larger plastic storage
containers, which were weighed at the completion of each
simulated rainfall event to determine total runoff mass. Runoff
samples were obtained from the storage containers immediately
after agitation, and were collected in 1 L amber glass bottles
with Teflon lined lids within minutes following the completion
of the rainfall simulation tests. Soil cores were collected using
acrylic tubes from the amended and control plots receiving
broadcast and incorporation treatment before the first and after
the third rainfall simulation. No soil samples were collected
from injection plots because the methodology of the injection
process did not yield a homogeneous soil surface. Runoff and
soil samples were transported in a cooler promptly to UNL
where they were stored at −20 °C until analysis.

Antimicrobial Analysis of Runoff, Soil, and Manure
Samples. Sources and properties of the chemicals used in this
study are provided in the text and Table S1 of the SI file.
Within 24−48 h of collection, approximately 500 mL of runoff
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water were vacuum filtered through a precombusted 0.5 μm
Gellman A/E binderless glass fiber filter and then immediately
through a preconditioned 200 mg Oasis HLB solid phase
extaction (SPE) cartridge. SPE cartridges were stored at −20
°C prior to elution and analysis of extracts. SPE cartridges were
eluted into borosilicate test tubes using 3 mL 0.1% formic acid
in methanol, which also contained 16 ng oleandomycin as a
surrogate to monitor analyte recovery. The solvent was reduced
in volume to approximately 200 μL under a stream of dry
nitrogen, and transferred to an autosampler vial with silane-
treated insert and then mixed with 200 μL reagent water.
Roxithromycin (internal standard for tylosin and bacitracin)
and doxycycline (internal standard for chlortetracycline) were
each added at 40 ng during the concentration step. Recovery of
chlortetracycline, bacitracin (i.e., bacitracin A), and tylosin, was
determined from extraction and analysis of fortified reagent
water during the elution stage. Fortified blanks and method
blanks were analyzed at a frequency of 1 in 20 samples (5%).
Method detection limits were determined by extraction and
analysis of eight replicates of reagent water samples fortified
with antimicrobials at 0.005 μg/L. Recoveries determined using
0.004 μg/L fortified water were 137 ± 8% for chlortetracycline,
53 ± 7% for tylosin, and 28 ± 2% for bacitracin (i.e., bacitracin
A). All samples were analyzed using electrospray ionization
liquid chromatography-tandem mass spectrometry.20−23

Antimicrobials were extracted from solid samples (i.e.,
manure and soil) using solvent extraction followed by SPE
cleanup. Well-mixed soil (10 g) or manure (0.2 g mixed with 5
g clean sand) samples were spiked with 16 ng surrogate,
followed by addition of 14 mL of 5 mM ammonium citrate
buffered to pH 6 using ammonium hydroxide and 6 mL
methanol in 50 mL polypropylene centrifuge tubes. Mixtures
were shaken briefly by hand and then on a Burrell Wrist-action
shaker for 30 min. Solids and solvent were separated by
centrifugation, with the supernatant decanted into a glass
evaporation tube (RapidVap, Labconco Corporation). Solids
were extracted a second time with 4 mL of ammonium citrate
and 16 mL methanol, and a third time using 20 mL acetone. All
extracts were combined and fortified with internal standards
(doxycycline and roxithromycin, 40 ng each) and then
concentrated on a Labconco RapidVap N2 sample concentrator
at 30 °C (90% rotation speed) until the volume was reduced in
half. Purified reagent water was added to bring the volume to
100 mL and the resulting primarily aqueous solutions were
extracted using 200 mg Oasis HLB SPE cartridges. Cartridges
were then processed in a manner identical to the water samples
using 130 mM ammonium citrate in methanol for the elution.
Recoveries determined using 16 ng/g fortified soil (collected
on site) were 57 ± 13% for chlortetracycline, 78 ± 6.5% for
tylosin, and 12 ± 46% for bacitracin (i.e., bacitracin A).

All sample extracts were analyzed on a Waters 2695 high
pressure liquid chromatograph (HPLC) interfaced with a
Waters Quattro Micro triple quadrupole mass spectrome-
ter.21,24 Analytes were separated on a reverse phase (HyPurity
C18, 250 × 2.1 mm, 5 μm particle size) column at 50 °C with a
50 μL injection volume. A gradient mobile phase (0.2 mL/min)
was used consisting of A) 1 mM aqueous citric acid and
methanol (97:3, v/v) and B) methanol and 1 mM aqueous
citric acid (97:3, v/v). Initial gradient conditions (95% A) were
held for 2 min, ramped to 5% A and held for 16 min, and then
returned to 95% A for 5 min to equilibrate the column.
Analytes were detected using multiple reaction monitoring
(MRM) mode with positive electrospray ionization (ESI). The
most intense MRM transitions were determined by infusion
and monitored for each analyte (SI Table S2) and linear
calibration curves were generated for all analytes and surrogates
with r2 values > 0.995. Antimicrobial mass loadings in runoff
were calculated by multiplying the volume of runoff from each
plot and the aqueous antimicrobial concentration in runoff.

ARGs in Manure, Runoff, and Soil Samples. For runoff
samples, 500 mL of well-mixed sample was centrifuged for 5
min at 10 000g at 4 °C in sterile 50 mL centrifuge tubes.
Supernatants were decanted and pellets were stored at −20 °C
until DNA extraction. Manure samples were handled in the
same fashion, but only 30 mL of slurry was utilized. Soil cores
(10−25 cm long) were extruded from plastic sleeves and
separated into top, middle, and bottom sections. The top 5 cm
and the bottom 5 cm of soil were separately homogenized and
analyzed for ARGs.
DNA from manure, runoff solids, and soil was extracted

using the MoBio UltraClean Soil DNA Isolation Kit (Solana
Beach, CA) according to manual except that a 40-s bead
beating was used to lyse the cells. DNA extracts were quantified
using a NanoDrop spectrometer. qPCR conditions for
tetracycline resistance genes tet(Q) and tet(X) and for tylosin
resistance genes erm(B) and erm(F) were adopted from
published studies.25−27 Regular PCR or qPCR was also run
on manure samples for bacitracin resistance genes bceA and
bceR28 as well as bcrA, bcrB, and bcrC.29 The detection limit for
each qPCR protocol was determined as the minimum
concentration in the standard curve within the linear range.
Key qPCR parameters and the linear range for each primer set
can be found in SI Table S3. In addition to ARGs, the 16S
rRNA gene in each sample was also quantified using qPCR.30

Statistical Analysis. Repeated measures analysis of variance
(rANOVA) tests were conducted using SAS (Cary, NC) to
determine the effects of three treatment methods, land
application method (broadcast, injection, and incorporation),
manure amendment (control and amended plots), and rainfall
event (nos. 1, 2, and 3), on the concentrations of antimicrobials

Table 1. Antimicrobial and ARG Concentrations (Average ± Standard Error) In the Swine Manure Slurries Used in This Studya

antimicrobialb ARG

manure slurry (mg/kg ww) (mg/kg dw) (copy/mL)

CTC tet(Q) tet(X)
CTC-manure 3.3 ± 1.6 404 ± 138 (2.5 ± 1.3) × 104 (1.3 ± 0.7) × 103

TYL erm(B) erm(F)
TYL-manure 0.29 ± 0.12 32.5 ± 7.2 (1.6 ± 1.1) × 104 (1.4 ± 0.5) × 102

BAC bcrA, bcrB, bcrC bceA, bceR
BAC-manure 0.78 ± 0.75 320 ± 31.5 NDc ND

aThe averages and standard errors were calculated based on weekly fresh manure samples collected over the 5-week field experiment (n = 5). bIn
addition to the primary antimicrobials, other antimicrobials were also detected in each manure type (SI Table S8). cND, not detected.
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and ARGs in runoff. If a treatment method was determined as
significant (p < 0.05), least significant difference (LSD) tests
were conducted to determine the significance of the differences
among the treatment levels.

■ RESULTS
Antimicrobials and ARGs in Manure. The chlortetracy-

cline level in the CTC-manure slurry was 3.3 mg/kg solids on a
wet weight (ww) basis (Table 1). Similarly, tylosin and
bacitracin concentrations were 0.29 and 0.78 mg/kg solids ww
in the TYL- and the BAC-manure slurry, respectively (Table 1).
ARGs were present in the manure slurry, and the absolute
abundance of tet(Q), tet(X), erm(B), and erm(F) was 2.5 × 104,
1.3 × 103, 1.6 × 104, and 1.4 × 102 copies/mL, respectively
(Table 1). The relative abundance of these four ARGs in
manure is reported in SI Table S4. Bacitracin resistance genes
bceA, bceR, bcrA, bcrB, and bcrC were not detected in BAC-
manure slurry samples using PCR-based methods.

Antimicrobials in Runoff. rANOVA tests on the three
treatment factors (application method, manure amendment,
and rainfall event) showed that manure amendment had
significant impacts on the aqueous concentrations of both
chlortetracyline and tylosin in runoff while rainfall event had
significant impacts on tylosin only (Table 2). The chlortetracy-
line and tylosin in the runoff from most of the control plots
were below method detection limits (SI Table S5), resulting in
statistically significant difference between amended and control
plots (p = 0.01 for both antimicrobials, Table 2). For tylosin, its
aqueous concentration in runoff decreased across the three
rainfall events (Figure 1, and p = 0.04 in Table 2). Because no
bacitracin was detected in any runoff samples, this antimicrobial
was not included in the rANOVA test.
The broadcast treatment of swine manure slurry resulted in

higher total mass loading of antimicrobials in runoff than did
the injection and incorporation treatments. After three rainfall
events, a total of 5.8 μg/m2 of chlortetracycline was transported

Table 2. rANOVA Tests on the Effects of Land Application Method, Manure Amendment, And Rainfall Event on the
Concentrations of Antimicrobials and ARGs in Runoff

CTC TYL tet(Q) tet(X) erm(B) erm(F)

(μg/L) (μg/L) (copy/mL runoff) (copy/mL runoff) (copy/mL runoff) (copy/mL runoff)

Application Methoda,b

broadcast 0.009 0.125 4.5 × 102 1.3 × 102 4.2 × 101 a 2.5 × 101 a
incorporation 0.004 0.082 1.8 × 102 4.9 × 101 1.7 × 101 b 9 × 10° b
injection 0.005 0.034 1.3 × 102 3.2 × 101 8 × 10° b 6 × 10° b
Manure Amendment
control plots 0.003 a 0.008 a 5.8 × 101 a 6 × 10° a 5 × 10° a 5 × 10° a
amended plots 0.012 b 0.650 b 8.5 × 102 b 5.6 × 102 b 5.9 × 101 b 2.2 × 101 b
Rainfall Event
1 0.008 0.118 a 3.7 × 102 a 6.5 × 101 3.0 × 101 a 1.5 × 101

2 0.006 0.080 ab 2.1 × 102 ab 6.8 × 101 1.6 × 101 b 1.0 × 101

3 0.004 0.037 b 1.4 × 102 b 4.7 × 101 1.2 × 101 b 8 × 10°
rANOVA values forc

application method 0.26 0.31 0.20 0.28 0.03 0.03
manure amendment 0.01 0.01 0.01 0.01 0.01 0.01
rainfall event 0.09 0.04 0.01 0.50 0.01 0.28
application × amendment 0.04 0.38 0.35 0.50 0.04 0.04
application × rainfall 0.39 0.95 0.45 0.74 0.77 0.90
amendment × rainfall 0.04 0.10 0.01 0.28 0.01 0.14
application × amendment × rainfall 0.09 0.14 0.03 0.09 0.19 0.50

aValues reported under “application method”, “manure amendment”, and “rainfall event” are treatment averages, which were calculated based on all
the data for one particular treatment level. For example, 0.009 μg/L was calculated using CTC concentrations of all runoff samples from broadcasted
plots, regardless whether they were from the control vs amended plots or from which runoff event. bValues followed by different letters are
significantly different at the 0.05 probability level based on LSD tests. crANOVA values are displayed as p values.

Figure 1. Aqueous concentrations of chlortetracycline (CTC) and tylosin (TYL) in runoff from manure-amended plots receiving broadcast,
incorporation, and injection treatments over three rainfall events. Error bars show the standard errors over triplicate field experiments.
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to runoff from the broadcasted plots (Table 3). As a
comparison, a total of 0.43 and 0.66 μg/m2 of chlortetracycline
were transported from the incorporated and injected plots to
runoff, respectively. Furthermore, 78%, 55%, and 45% of the
total chlortetracycline load occurred during the first rainfall
event for the broadcasted, incorporated, and injected plots,
respectively. Similar trends were observed for tylosin (Table 3).
ARGs in Runoff. rANOVA tests showed that manure

amendment had significant effects on the runoff concentrations
of all the ARGs tested (p = 0.01, Table 2). No substantial levels
of ARGs were detected in runoff from the control plots (Table
S6). Land application method had significant impacts on the
concentrations of erm genes in runoff (p = 0.03 for both erm
genes): broadcast treatment caused significantly higher erm
gene levels in runoff than did incorporation and injection
treatments (Table 2). Rainfall events had significant impacts on
the concentrations of tet(Q) and erm(B) in runoff (Figure 2, p
= 0.01 for both ARGs in Table 2). Bacitracin resistance genes
were not measured for runoff samples as they were not
detected in manure samples.
Antimicrobials in Soil. Land applied slurry was the only

source of antimicrobials in the soil of amended plots, as the soil

samples collected from these plots prior to land application
contained no detectable levels of antimicrobials (data not
shown). After the rainfall tests, antimicrobial concentrations in
the top soils of amended plots ranged between 3.7 and 63 ng/g
soil dw (Table 4). Noticeably, broadcast led to higher tylosin
concentrations in top soils in TYL-manure amended plots,
while incorporation led to higher chlortetracycline concen-
trations in top soils in CTC-manure amended plots (Table 4).

Table 3. Mass Loadings of Chlortetracycline and Tylosin Exported in Runoff from the CTC- and TYL-Manure Amended Plots
during Three Rainfall Events (Average ± Standard Error). Averages and Standard Errors Were Calculated Based on Triplicate
Field Experiments

chlortetracyline tylosin

rainfall event no. broadcast (μg/m2) incorporation (μg/m2) injection (μg/m2) broadcast (μg/m2) incorporation (μg/m2) injection (μg/m2)

1 4.54 ± 2.86 0.23 ± 0.20 0.30 ± 0.24 280.51 ± 213.66 33.56 ± 22.45 5.23 ± 2.28
2 1.11 ± 0.86 0.06 ± 0.04 0.27 ± 0.24 89.02 ± 70.28 11.55 ± 1.64 4.59 ± 1.84
3 0.15 ± 0.05 0.14 ± 0.07 0.09 ± 0.06 56.37 ± 34.12 4.50 ± 0.56 1.73 ± 1.25
sum 5.80 0.43 0.66 425.90 49.61 11.55
fraction from #1 0.78 0.55 0.45 0.66 0.68 0.45

Figure 2. The absolute abundance (copy/mL runoff) of four ARGs (tet(Q), tet(X), erm(B), and erm(F)) in runoff from manure-amended plots
receiving broadcast, incorporation, and injection treatments. Error bars represent standard errors from triplicate field experiments.

Table 4. Antimicrobial Concentrations (Average ± Standard
Error) In Top Soils of Amended Plots after Three Rainfall
Eventsa

broadcast (ng/g
soil dw)

incorporation (ng/g
soil dw)

CTC in plots amended with
CTC-manure

3.7 ± 2.7 63 ± 8.7

TYL in plots amended with
TYL-manure

32 ± 6.9 14 ± 13.2

BAC in plots amended with
BAC-manure

0.0 ± 0.0 0.0 ± 0.0

aStandard errors were calculated based on triplicate field experiments.
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Bacitracin was not detected in soil samples from BAC-manure
amended plots.
ARGs in Soil. ARGs concentrations in soil were reported in

absolute abundance (copies/g soil dw, Figure 3) and in relative
abundance (ARG copies per copy of the 16S rRNA gene, SI
Figure S4). Before the rainfall simulation tests, the average
absolute abundances of tet(Q) and tet(X) in top soils were 1−2
orders of magnitude higher than those in bottom soils in
broadcasted plots (Figure 3). After rainfall events, both tet
genes increased in absolute abundance in the top soil of the
broadcasted plots (Figure 3), while no common trend was
observed in the top soil of the incorporated plots. The absolute
abundance of tet genes increased in bottom soil in both
broadcasted plots (p = 0.17 for tet(Q), and p = 0.03 for tet(X))
and in incorporated plots (p = 0.83 for tet(Q), and p = 0.97 for
tet(X)) after the rainfall events, although most increases were
not statistically significant. The erm genes increased in the top
soil in broadcasted plots (Figure 3, p = 0.42 for erm(B), and p =
0.62 for erm(F)) and decreased in the top soils in incorporated
plots (Figure 3, p = 0.34 for erm(B), and p = 0.35 for erm(F))
after the rainfall events. Finally, no appreciable amounts of
ARGs were detected in control plots (SI Table S7), suggesting
the occurrence of ARGs in the amended plot was due to land
application of swine slurry.

■ DISCUSSION
The antimicrobial concentrations in the swine manure slurry
reported in this study are higher than those reported in similar
studies. Chlortetracycline and bacitracin concentrations in
swine manure are reported as high as tens of mg/kg dw31−33

and 3.2−15 mg/kg dw,34 respectively, whereas they were
measured at 404 and 320 mg/kg dw in this study (Table 1).
This is likely because the manure slurry was collected fresh in
the current study. During manure aging, antimicrobials in
manure can be sequestered35 or degraded.36 It is difficult to
compare the ARG levels in our manure slurry samples with the
literature, mainly because researchers often report ARG levels
in the units of copies per gram of manure wet weight or fresh
weight (fw), which could vary substantially in water content. In

some studies, tetracycline resistance genes have been measured
between 104 and 109 copies/g manure ww,1,37 and tylosin
resistance genes were detected between 104 and 109 copies/g of
manure fw.38,39 Although the target antimicrobial was the
dominant compound measured in each manure type, other
antimicrobials were also detected (SI Table S8). The presence
of additional antimicrobials was likely due to contamination
that occurred during the manure collection in the pits beneath
the confinement facilities.
Broadcast generally resulted in higher antimicrobial concen-

trations in runoff than did incorporation and injection (Figure
1). Because swine slurry was spread on the soil surface, the
antimicrobials were readily available for transport to runoff
during rainfall events. In contrast, mixing manure slurry with
surface soil to various extents (i.e., injection and incorporation)
could reduce the loss of antimicrobials to runoff.7,40 However,
the main treatment factor, application method, was not
considered statistically significant according to the rANOVA
tests (p = 0.26 for chlortetracycline and p = 0.31 for tylosin,
Table 2). This is partially due to the large variations among the
triplicate plots, which are not uncommon in field-scale
experiments. The differences in sorption partition coefficients
between chlortetracyline (500−3715 L/kg41) and tylosin (1300
L/kg42) to silty clay loam, which is the soil type at the site of
this study, might account for the differences in runoff
concentrations. Due to the sorptive nature of chlortetracyline,
it was not surprising that the aqueous chlortetracyline
concentrations in the runoff were low (Figure 1). The range
of tylosin concentrations in runoff measured in this study was
0.087−18 μg/L, which are similar to previously reported values
of 0.01 and 6 μg/L.5,8,9

ARGs followed similar trends as the antimicrobials when
being transported from plots to runoff. This is likely because
indigenous soil microbes had not developed substantial levels of
resistance during the field experiments and the resistant
bacteria in the runoff were largely from the original manure
slurry. This observation is supported by the largely similar
relative abundances detected across the three rainfall events (SI
Figure S3). Finally, high levels of ARGs in runoff from the

Figure 3. The absolute abundance of tet(Q), tet(X), erm(B), and erm(F) in top and bottom soil in manure-amended plots before and after three
rainfall events. Error bars represent standard errors from triplicate field experiments.

Environmental Science & Technology Article

dx.doi.org/10.1021/es4026358 | Environ. Sci. Technol. 2013, 47, 12081−1208812086



broadcasted plots suggest greater losses of manure to runoff
from the broadcasted plots than the incorporated and injected
plots.
The effect of land application methods on the fate of

antimicrobials in top soil is compound specific. Broadcast
application led to higher tylosin concentrations in the top soil,
whereas incorporation resulted in higher chlortetracyline
concentrations (Table 4). The trend for tylosin is expected:
tylosin has a reported dissipation half-life of 7−8 days in soil,11

hence during the field experiment (i.e., 4 days) the majority of
the tylosin in manure would persist in top soil. On the other
hand, chlortetracycline is photochemically labile with a
photodegradation rate constant of 0.65 ± 0.30 h−1 on clay
surface.12 A significant portion of the chlortetracyline could be
photodegraded after being broadcasted on soil surface,13

whereas mixing manure into soil (e.g., incorporation) would
limit photodegradation. This hypothesis was supported by a
previous study, which showed that when liquid manure was
spread on soil surface, the concentration of tetracycline was
lower in the top 0−10 cm than at a depth of 20−30 cm.43

Bacitracin (i.e., bacitracin A) was detected in swine slurry
samples (Table 1) but not in any soil or runoff samples,
suggesting it was degraded soon after land application of swine
manure slurry.2,44 Bacitracin F, a common degradation product,
was also detected negative in soil and runoff samples (data not
shown).
In the amended plots, the absolute abundance of ARGs in

top soils was orders of magnitude higher than that in bottom
soils (Figure 3). Before the rainfall events, some level of ARGs
was detected in the bottom soil of manure-amended plots. This
was likely due to the infiltration of the diluted manure slurry
used in the land application in this study. More pronounced
vertical transport of ARGs was expected in incorporated plots
than in broadcasted plots. However, neither the tet genes nor
the erm genes exhibited this trend. The heterogeneity of the
plot may account for the lack of the expected trend.
No clear trend was observed in the ARG levels in soil among

land application methods. Before the rainfall events, tet levels in
the broadcasted plots were lower than in the incorporated
plots, whereas erm levels exhibited the opposite trend. This type
of ARG-specific behavior was also observed in a previous long-
term study.45 The tet genes and erm genes may be carried by
different host cells, and different host cells may respond
differently to the soil environments created by varying land
application methods.46 Quick inactivation or growth of host
cells may account for the ARG-specific behaviors in top soil.
After rainfall, ARG levels in top soil increased in broadcasted
plots but generally decreased in incorporated plots. In addition,
ARGs were absent or at low levels in deep soil in most of the
plots, suggesting that vertical transport of ARGs were not
significant during the period of study.
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MATERIALS AND METHODS 

Swine Manure Slurry 

Manure slurry samples were collected from the sampling locations labeled in Figure S1.  

The wet weight and dry weight of the manure solids in the manure slurries from the finisher 

(BAC-manure), grower (CTC-manure), and sow and gilts (TYL-manure) were measured using 

gravimetric methods. 

 

Field Site 

This field study was conducted in May and June 2011 at the University of Nebraska 

Rogers Memorial Farm located 18 km east of Lincoln, Nebraska.  The study site had been 

cropped using a long-term no-till management system with controlled wheel traffic.  Soybeans 

(Glycine max) were planted during the 2010 season and herbicide (glyphosate) was applied as 

needed to control weed growth.  The soil at the site developed in loess under prairie vegetation, 

and is the Aksarben silty clay loam (fine, smectitic, mesic Typic Argiudoll) containing 15% 

sand, 57% silt, and 28% clay 1. 

Soil samples for site characterization were obtained from the surface down to 2 cm just 

prior to manure application, and were air dried following collection.  The study site had a mean 

slope gradient of 5.8%, an electrical conductivity (EC) of 0.38 dS m-1 and a pH of 6.8.  The 

organic matter and total carbon content of the soil was 4.7% and 2.62%, respectively.  Mean 

measured concentrations of Bray and Kurtz No. 1 P, water-soluble P, NO3-N, and NH4-N were 

43, 5.2, 8, and 4 mg kg-1, respectively.  The initial soil moisture condition prior to swine slurry 

application was not measured. 
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Chemicals 

Standards for roxithromycin, doxycycline, bactracin A, and fenbendazole were purchased 

from Sigma-Aldrich (Fluka Chemicals).  Oleandomycin, tylosin A and chlortetracycline were 

obtained from ThermoFisher Scientific (ICN Biomedicals and MP Biomedicals).  Roxithromycin 

and doxycycline were used as internal standards and oleandomycin was used as a surrogate.  

Analytes were chlortetracycline, bactracin A, tylosin, and fenbendazole.  Because bacitracin A is 

rapidly hydrolyzed in water at near neutral pH, a standard for bacitracin F (one of its degradation 

products) was synthesized and used to quantify this compound in the manure, soil, and runoff 

samples 2.    
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FIGURES AND TABLES 

 

A 
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Figure S1.  Map showing the locations of the barns and sampling points (A) and the lagoon 
systems (B) in the swine research area in the USDA Meat Animal Research Center. 

B 
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Figure S2.  Randomized block design used in the field experiment.  Plots in each row were constructed in the same week.  
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Figure S3.  Relative abundance of tet(Q), tet(X), erm(B), and erm(F) in runoff from control and amended plots receiving broadcast, 
incorporation, or injection treatment.  Error bars represent standard errors from triplicate field experiments.  
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Figure S4.  Relative abundance of tet(Q), tet(X), erm(B), and erm(F) in top and bottom soil in amended plots before and after three 
rainfall simulation tests.  Error bars represent standard errors from triplicate field experiments. 
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Table S1.  Properties of the antimicrobials used in this study. 

Antimicrobial Chemical Structure Properties 
Chlortetracycline 

 

Kd = 501-3715 L/kg  
3 

Solubility = 500 
mg/L 

t1/2 = 21 days 4 

Tylosin 

 

Kd = 1,300 L/kg 5 
Solubility = 6,000 

mg/L 
t1/2 = 6-8 days  4, 6 

Bacitracin  
(Bacitracin A) 

 

Environmental fate 
data for Bacitracin A 
are not available in 

the literature 
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Table S2.  Molecular weight, retention times, and MRM transition of antimicrobials, internal 
standards (IS), and surrogate (S) compound. 

Analyte Molecular weight 
Retention time 

(min) 
MRM Transition 

(m/z) 
Bacitracin A 1422.7 9.82 712.10->86.20 
Bacitracin F 1419.64 10.05 710.19->281.26 

Chlortetracycline 478.88 8.71 478.90->444.00 
Fenbendazole 299.35 10.63 300.20->268.20 

Tylosin 916.10 10.40 916.9->174.2 
Doxycycline (IS) 444.4 8.63 445.05->428.05 
Oleandomycin (S) 687.86 10.51 688.35->544.10 

Roxythromycin (IS) 837.05 11.58 837.55->679.50 
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Table S3.  Relevant information of the qPCR and PCR reactions used in this study. 

Target 
ARG Primer Sequence (5'-3') 

Annealing 
Temp (oC) 

Linear Range 
(copies/20µL) 

R2 Efficiency 
(%) Reference 

tet(Q) TetQ-FW AGAATCTGCTGTTTGCCAGTG 
63 102-109 

  
7 TetQ-RV CGGAGTGTCAATGATATTGCA 0.996 104.4 

tet(X) TetX-FW AGCCTTACCAATGGGTGTAAA 
70 101-109 

  
8 TetX-RV TTCTTACCTTGGACATCCCG 0.997 81.8 

erm(B) ErmB-FW GGTTGCTCTTGCACACTCAAG 
65 101-109 

  
9 ErmB-RV CAGTTGACGATATTCTCGATTG 0.978 111.1 

erm(F) ErmF-FW TCTGGGAGGTTCCATTGTCC 
65 101-109 

  
9 ErmF-RV TTCAGGGACAACTTCCAGC 0.978 89.4 

bceA* BceA-FW GCTACGACAGCACTTAATCA 
55 

 

  
10 BceA-RV CACCTTCAGTTAGTCCATCA   

bceR* BceB-FW TTAACCAACATCAACCTCAG 
55 

 

  
10 BceB-RV CCCCATTTGTATTGCCAT   

bcrA BcrA-FW AAGTGGCAAGGCTTTTGAGA 
60 

 

  
11 BcrA-RV CTCAGGATCAATCGGCAAAT   

bcrB BcrB-FW AAGTGGCAAGGCTTTTGAGA 
60 

 

  
11 BcrB-RV AAATCACCGGGGGAATTAAG   

bcrC BcrC-FW AAGTGGCAAGGCTTTTGAGA 
60 

 

  
11 BcrC-RV CTCAAGTTCCCCAGTTTCCA   

* Regular PCR reactions. 
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Table S4.  Relative abundance (average ± standard error) of ARGs tet(Q), tet(X), erm(B), and 
erm(F) in manure slurry. 

 ARG Relative Abundance 

CTC-Manure tet(Q) 1.33±0.26 
tet(X) 0.078±0.018 

TYL-Manure erm(B) 0.12±0.024 
erm(F) 0.0022±0.0004 
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Table S5.  Aqueous antimicrobial concentrations in runoff from control plots (average ± standard 
error).  MDL was 0.005 ng/µL. 

 Rainfall 
Event 

CTC 
(ng/µL) 

TYL 
(ng/μL) 

BAC 
(ng/μL) 

Broadcast 
1 <MDL 0.006* <MDL 
2 <MDL 0.011*  <MDL 
3 <MDL  <MDL <MDL  

Incorporation 
1 <MDL <MDL  <MDL 
2 <MDL <MDL <MDL 
3 <MDL <MDL  <MDL 

Injection 
1 <MDL  0.007a  <MDL  
2 <MDL <MDL <MDL 
3 <MDL  <MDL  <MDL  

*. Values are from one of the triplicate field experiments.  No antimicrobials were detected in the 
other replicates.  
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Table S6.  Concentrations of ARGs in runoff from control plots (average ± standard error).  
Standard errors were calculated based on triplicate field experiments.  The MDL for each ARG is 
reported in Table S2. 

  
tet(Q) 

(copy/mL) 
tet(X) 

(copy/mL) 
erm(B) 

(copy/mL) 
erm(F) 

(copy/mL) 

Broadcast 
Run 1 < MDL < MDL < MDL < MDL 
Run 2 423 ± 416 233 ± 231 25 ± 25 16 ± 16 
Run 3 < MDL < MDL < MDL < MDL 

Incorporation 
Run 1 < MDL < MDL < MDL < MDL 
Run 2 < MDL < MDL < MDL < MDL 
Run 3 < MDL < MDL < MDL < MDL 

Injection 
Run 1 < MDL < MDL < MDL < MDL 
Run 2 < MDL < MDL < MDL < MDL 
Run 3 < MDL < MDL < MDL < MDL 
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Table S7.  No ARGs were detected in the top and bottom soil of control plots before and after the 
rainfall events in triplicate field experiments. 

  Broadcast Incorporation 
  Before Rainfalls After Rainfalls Before Rainfalls After Rainfalls 

tet(Q) 
Top soil <MDL <MDL <MDL <MDL 

Bottom soil <MDL <MDL <MDL <MDL 

tet(X) 
Top soil <MDL <MDL <MDL <MDL 

Bottom soil <MDL <MDL <MDL <MDL 

erm(B) 
Top soil <MDL <MDL <MDL <MDL 

Bottom soil <MDL <MDL <MDL <MDL 

erm(F) 
Top soil <MDL <MDL <MDL <MDL 

Bottom soil <MDL <MDL <MDL <MDL 
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Table S8.  Antimicrobial concentrations in swine manure slurry (average ± standard error).  
Standard errors were calculated based on five weekly manure slurry samples. 

 Chlortetracyline Tylosin Bacitracin 

 (ng/g solid ww) 
CTC-manure 3,324 ± 1,560 2 ± 1 172 ± 164 
TYL-manure 102 ± 40 287 ± 124 7 ± 7 
BAC-manure 16 ± 9 124 ± 68 777±753 
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