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Mirroring behavior of partial photodetachment and photoionization cross sections
in the neighborhood of a resonance

Chien-Nan Liu and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 13 October 1998!

Partial photodetachment and photoionization cross sections corresponding to highly excited residual atoms
or ions are shown analytically to mirror one another in the neighborhood of a resonance. More precisely, any
two groupings of partial cross sections are shown here to have components whose variations with energy near
a resonance are equal in magnitude and opposite in direction. This work extends an analysis of Starace@Phys.
Rev. A 16, 231 ~1977!# for the behavior of partial cross sections near a resonance to the case when ther2

parameter of Fano and Cooper@Phys. Rev.137, A1364 ~1965!# tends to zero.@S1050-2947~99!50403-4#

PACS number~s!: 32.80.Dz, 32.80.Fb, 32.80.Gc

In the early days of vacuum UV spectroscopy, the obser-
vation of mirrorlike behavior in partial cross sections in the
neighborhood of a resonance was an occasional curiosity.
For example, Samson and Cairns@1#, in their measurement
of the partial cross sections for photoionization of the 5p
subshell of Xe@i.e., Xe5p61g→Xe15p5(2PJ)1e2, where
J53/2 or 1/2#, note that ‘‘. . . at the 543 Å resonance thes3/2
cross section decreased while thes1/2 cross sections in-
creased by almost the same magnitude. The net result was
that the two large resonances@i.e., in each partial cross sec-
tion# practically annulled each other such that only a weak
resonance could be observed in the total cross section
curve.’’ At the present time, more than 30 years later, ad-
vances in computer power on the one hand and in the inten-
sity and resolution of experimental light sources as well as in
both target preparation and interaction product detection
techniques on the other hand have permitted theorists and
experimentalists to study partial cross sections for photode-
tachment and photoionization accompanied by high levels of
excitation of the residual atom or ion. In these recent studies,
the observation of mirroring behavior among different partial
cross sections is common; see, e.g., Refs.@2# and @3#.

We present here an analytic proof that such mirroring
behavior among partial photodetachment or photoionization
cross sections is to be expected in the neighborhood of reso-
nances when these partial cross sections correspond to high
levels of excitation of the residual atom or ion. Our analysis
is based on the work of one of us@4# concerning the general
form of electric dipole transition amplitudes in the vicinity of
an isolated resonance. This work@4# generalized the earlier
analyses of Fano and Cooper@5–7# on the behavior of total
cross sections in the vicinity of an isolated resonance. Our
analysis is based on a key feature of partial photodetachment
and photoionization cross sections for high excitations of the
residual atom or ion. That is, the doubly-excited states that
produce the most dramatic effects on these highly excited
partial cross sections generally have only a small effect on
the total cross section, which has the following general form
@7#:

sTOT5sTOT
0 S r2

~q1e!2

11e2 112r2D . ~1!

In Eq. ~1! sTOT
0 is the total cross section in the absence of the

resonance andr2 is the maximum fractional depth of the
minimum of the total cross section in the vicinity of a reso-
nance@7#. Thus, the simplest way to describe mathematically
the observed features of resonance behavior on total cross
sections in recent calculations and measurements~for photo-
detachment or photoionization accompanied by high excita-
tion of the residual atom or ion! is to state that the Fano and
Cooper parameterr2 @6,7# is small. Therefore, in order to
explore the origin of the observed mirroring behavior in the
corresponding partial cross sections, we examine here the
effect of an isolated resonance on partial cross sections for
the case in whichr2→0.

Our analysis is based upon a few key formulas from Ref.
@4#. The main one is for the ratio of two partial cross sections
in the vicinity of an isolated resonance, given by Eq.~28! of
Ref. @4#. We write that result here in the form of the indi-
vidual partial cross sections, denoted byP andQ,

sP5
sP

0

11e2 $e212e~q Rê a&P2Im^a&P!

1@122q Im^a&P22 Rê a&P1~q211!^uau2&P#%.

~2!

sQ has an identical form to that in Eq.~2!, but with P re-
placed byQ. In Eq. ~2!, sP

0 is the partial cross section in the
absence of the resonance,e andq are the well-known Fano
profile variables@5#, which come from his analysis of the
effects of the resonance on the total cross section,sTOT
5sP1sQ , and^a&P and^uau2&P are parameters introduced
by Starace@4# to describe the effects of a resonance on a
partial cross section. Now, as shown in Eqs.~36! and~40! of
Ref. @4#, the a parameters for theP and Q partial cross
sections are related to one another by means of the correla-
tion indexr2 of Fano and Cooper@6,7#:

sP
0 ^uau2&P1sQ

0 ^uau2&Q5r2sTOT
0 , ~3!

sP
0 ^a&P1sQ

0 ^a&Q5r2sTOT
0 . ~4!

Before proceeding further, we note that, in photodetach-
ment or photoionization accompanied by excitation of the
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atom or ion, there are in general many more than just two
partial cross sections. Nevertheless, our analysis is applicable
since one may always group however many partial cross sec-
tions there are into two groups. The more partial cross sec-
tions there are, the more ways there are of forming two
groups of partial cross sections, denoted byP and Q. Our
results below imply that any such grouping will exhibit mir-
roring behavior in the vicinity of an isolated resonance.

The squared correlation indexr2 measures the fraction of
the total cross section that interacts with the resonance. The
theoretical expression ofr2 is given in Eq.~A2!. Fano and
Cooper have interpreted this expression forr2 as the square
of an overlap of two continuum states, one of which is gen-
erated by autoionization of the doubly-excited statef and
the other of which is generated by direct photoabsorption
from the initial statec0 @7#. Therefore,r2 indicates the
strength of the interaction between the autoionization state
and the continuum. For doubly-excited states near highly ex-
cited thresholds, the overlap with the continuum states asso-
ciated with lower levels of excitation of the residual atom or
ion is small, and thusr2 is small. We therefore examine Eq.
~2! in the limit whenr2→0. Equation~3! combined with the
definitions of^a&P and^uau2&P in Eqs.~30! and~31! of Ref.
@4# imply that ^uau2&P5^uau2&Q50 for r2→0, and that
^a&P5^a&Q50. Thus Eq.~2! seems to take the limitsP

→sP
0 when r2→0. However, this simple analysis is incor-

rect since it ignores the behavior ofq asr2→0.
As shown in the Appendix,qr2→0 in the limit when

r2→0, butq2r2 remains finite. In fact, as implied by Eq.~1!,
q2r2 measures the fractional rise of the cross section in the
vicinity of a resonance above that which would be the case in
the absence of the resonance@7#. Taking the behaviors of
qr2 and q2r2 into account, Eqs.~3! and ~4! imply that, as
r2→0, we have

lim
r→0

sQ
0 q2^uau2&Q5r2q2sTOT

0 2sP
0q2^uau2&P , ~5!

lim
r→0

qsQ
0 ^a&Q52qsP

0 ^a&P . ~6!

In the limit whenr2→0, the partial cross sections can now
be written as

lim
r→0

sP5sP
0 1

sP
0

11e2 $2q@e Rê a&P2Im^a&P#

1q2^uau2&P%, ~7!

lim
r→0

sQ5sQ
0 1

sP
0

11e2 H 22q@e Rê a&P2Im^a&P#

2q2^uau2&P1r2q2S sTOT

sP
0 D J , ~8!

where in Eq.~8! we have used Eqs.~5! and~6! and have set
terms involvinga parameters that are not multiplied byq or
q2 equal to zero. Summing Eqs.~7! and ~8!, we find

lim
r→0

sTOT5 lim
r→0

~sP1sQ!5sTOT
0 H 11

r2q2

11e2J . ~9!

We point out here certain features of the last three equa-
tions. First, note that, unlike Eq.~1!, Eq.~9! does not have an
interference term proportional toe/(11e2). The term pro-
portional tor2q2 represents a Lorentzian autoionization pro-
file. Nevertheless, although there are no interference effects
in the total cross section, Eqs.~7! and ~8! indicate interfer-
ence behavior in the partial cross sections. Second, Eq.~9!
implies that the total cross section cannot be zero, but Eqs.
~7! and~8! allow the possibility that the partial cross sections
may have a zero minimum. Third, and most important, we
see that the energy-dependent parts ofsP in Eq. ~7! andsQ
in Eq. ~8! are equal in magnitude and opposite in sign except
for the termr2q2sTOT /(11e2) in Eq. ~8!. Thus, we have
shown analytically that the two cross sections mirror each
other’s behavior. This mirroring will be more pronounced
the smaller the term involvingr2q2 in Eq. ~8! is, or, alterna-
tively, the smaller the effect of the resonance on the total
cross section is.

In Fig. 1, we illustrate the mirroring behavior that Eqs.~7!
and~8! can interpret for the specific case of Li2 photodetach-
ment for photon energies between the Li(4s) and Li(4p)
thresholds. These results are obtained using the same eigen-
channelR-matrix methods described in Refs.@2,3#. If one
indicates bysnl the partial cross section for the process,

Li21g→Li ~nl !1e2, ~10!

then the total cross section is given bysTotal5(nlsnl ,
where the sum extends over all excited atomic states of Li
allowed in the photon-energy range shown, i.e., 2s<nl
<4s. For simplicity of notation, we consider the partial
cross sectionssn5( lsnl , where the sum overl is over all
allowed excitations Li(nl) below the Li(4p) threshold. In
the P, Q notation of this paper, we divide the total cross
section into two groups,

sP5sn521sn53 , ~11!

sQ5sn54 . ~12!

FIG. 1. Cross sections for the process Li21g→Li( n)1e2 cal-
culated using the eigenchannelR-matrix approach of Refs.@2,3#.
Solid ~dotted! curves indicate dipole velocity~length! results.~a!
Total cross section.~b! Sum of the partial cross sections forn52
andn53. ~c! Partial cross section forn54.
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As shown in Fig. 1~a!, sTotal5sP1sQ shows significant
resonance structure just below the Li(4p) threshold. There
are actually four resonances in the energy region between the
Li(4s) and Li(4p) thresholds, which while not isolated are
clearly well separated.~Our calculations locate these reso-
nances at\v55.024, 5.112, 5.119, and 5.138 eV.! Also,
while r2 is clearly far from zero for each of these reso-
nances, it is nevertheless small, i.e., far less than unity. Fig-
ure 1~b! shows thatsP is almost equal in magnitude to
sTotal . However, the resonance window features just below
the Li(4p) threshold are more pronounced, i.e., they have
lower minima than insTotal . Even the broad cross-section
trough insP in the vicinity of the\v55.024 eV resonance
is lower than that insTotal . In fact, as shown by a compari-
son of Figs. 1~b! and 1~c!, the lower window minima insP
are precisely mirrored by peak structures insQ and the
trough feature insP is mirrored by a shoulder feature insQ .
Finally we note the near zero minima insQ . All of these
behaviors are fully in accord with our analytic predictions in
Eqs.~7! and ~8!.

This work has been supported in part by the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences, under
Grant No. DE-FG03-96ER14646.

APPENDIX

Equations~22! and ~32! of Ref. @4# define theq and r2

parameters of Fano and Cooper@5–7# as follows:

^c0ur uF&5pq(
i 51

N

^c0ur u iE&^ iEuVuf&, ~A1!

S (
i 51

N

^c0ur u iE&^ iEuVuf& D 2

5r2
G~E!

2p (
m51

N

z^c0ur umE2& z2.

~A2!

In these equations,^c0ur uF& is the electric dipole transition
matrix element from the initial statec0 to the modified reso-
nance stateF ~i.e., modified by its interaction with the con-
tinuum!, ^c0ur u iE& is the electric dipole transition matrix
element from the initial statec0 to the i th continuum chan-
nel with total energyE, ^ iEuVuf& describes the autoioniza-
tion matrix element between the bare resonance statef and
the continuum channeli at energyE, andG(E) is the width
of the resonance. See Refs.@4–7# for a more detailed de-
scription. Normally, bothG(E) and(m51

N z^c0ur umE2& z2 are
finite, so thatr2→0 implies ( i 51

N ^c0ur u iE&^ iEuVuf&→0.
Therefore, assuminĝc0ur uF& is not equal to 0,q in Eq.
~A1! is not well defined. Since Eq.~2! for the partial cross
sectionssP or sQ has terms involving, respectively,q^a&P

or q^a&Q and q2^uau2&P or q2^uau2&Q , we must consider
their behaviors asr→0. Consider first the terms involving
q2^uau2&. Multiplying Eq. ~3! by q2 and substituting Eqs.
~A1! and ~A2! for q and forr2, we have that

q2~sP
0 ^uau2&P1sQ

0 ^uau2&Q!

5q2r2sTOT
0

5S 2

pG~E! D S u^c0ur uF&u2

(m51
N u^c0ur umE2&0u2DsTOT

0

>0. ~A3!

Similarly, multiplying Eq. ~4! by q and substituting Eqs.
~A1! and ~A2!, we find that

q~sP
0 ^a&P1sQ

0 ^a&Q!5qr2sTOT
0

}(
i 51

N

^c0ur u iE&^ iEuVuf&→0.

~A4!

Equations~A3! and~A4! prove ther→0 limits given in Eqs.
~5! and ~6! above.
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