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Since 1999, West Nile virus (WNV) disease has af-
fected the northeastern United States. To describe the spa-
tial epidemiology and identify risk factors for disease inci-
dence, we analyzed 8 years (1999–2006) of county-based 
human WNV disease surveillance data. Among the 56.6 
million residents in 8 northeastern states sharing primary 
enzootic vectors, we found 977 cases. We controlled for 
population density and potential bias from surveillance and 
spatial proximity. Analyses demonstrated signifi cant spatial 
spreading from 1999 through 2004 (p<0.01, r2 = 0.16). A 
signifi cant trend was apparent among increasingly urban 
counties; county quartiles with the least (<38%) forest cover 
had 4.4-fold greater odds (95% confi dence interval [CI] 1.4–
13.2, p = 0.01) of having above-median disease incidence 
(>0.75 cases/100,000 residents) than counties with the most 
(>70%) forest cover. These results quantify urbanization as 
a risk factor for WNV disease incidence and are consistent 
with knowledge of vector species in this area.

West Nile virus (WNV) disease arrived in the United 
States in 1999 in New York City, yet how the disease 

became established and details concerning the nature of the 
transmission cycle in the United States remain unclear. 
Experience in the northeastern United States suggests an 
urban concentration of human WNV disease cases (1,2); 
however, environmental factors, such as urbanization, that 
underlie the patterns of transmission to humans have not 
been explicitly evaluated. We used human surveillance 
data to describe and quantify the spread of WNV cases in 
the northeastern United States and empirically tested the 
hypothesis that human WNV disease is linked to the urban 
environment independent of human population density.

In the northeastern United States, a mainly urban cycle 
of WNV transmission is supported by the role of bird and 
mosquito species. This enzootic cycle occurs in urban bird 
species; human cases occur in late summer (2–7). Culex 
pipiens Linnaeus is the most commonly implicated mos-
quito vector in the maintenance of WNV in birds (1,2,8,9). 
In the northeastern United States, this species feeds on birds 
found in urban areas, such as the American robin (Turdus 
migratorius), house sparrow (Passer domesticus), and Eu-
ropean starling (Sturnus vulgaris) (2,10). The role of Cx. 
pipiens mosquitoes as primary WNV vector is supported 
by consistent isolations of WNV from mosquitoes captured 
in surveillance traps (8,11–14) and by associations between 
virus-infected mosquitoes and dead-bird reports (15).

A more contentious issue is the role of different mos-
quito species in transmitting, or bridging, WNV between 
birds and other vertebrates, including humans. Cx. pipiens 
mosquitoes are known to breed in the organically rich wa-
ter of artifi cial containers frequently found in urban areas 
(16–18). Habitat modeling of potential WNV vectors in 
the northeastern United States indicates an urban focus 
for Cx. pipiens mosquitoes (19). However, its tendencies 
to mostly feed on birds make it an unlikely bridge vec-
tor, although other researchers have suggested that this 
species exhibits late season host switching to humans (5). 
Aedes vexans and Cx. salinarius mosquitoes have been 
implicated as bridge vectors in this region (1–3) because 
of their abundance and more nonspecifi c feeding patterns 
(20). Although both are present in urban areas, other land 
uses have been found to be more predictive of their distri-
bution (19). These other studies do not indicate whether 
human incidence would be linked to the same ecological 
factors driving enzootic transmission.
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In this study, we explicitly tested whether both enzoot-
ic and bridge transmission occur in urban areas by evaluat-
ing human WNV disease and degree of urbanization within 
counties. We estimated the initial spatial spread in time to 
fi rst case in Queens, New York, the site of fi rst WNV de-
tection (21), from 1999 through 2006. We also examined 
the trend for increasing incidence with decreasing forest 
cover while attempting to control for surveillance efforts 
and removing the effect of spatial proximity. The methods 
provide an example of how surveillance data with low spa-
tial resolution can be used to quantify risk.

Methods
The study was focused in 8 northeastern states (Con-

necticut, Delaware, Massachusetts, Maryland, New Jer-
sey, New York, Pennsylvania, and Rhode Island) where 
the same mosquito species are likely to act as primary 
vectors. States to the north of the study area have had lim-
ited numbers of cases and may involve different mosquito 
species. States farther south and west are likely to involve 
different species of mosquitoes; hybridization between 
Cx. pipiens and Cx. quinquefaciatus is more common in 
southern latitudes (16).

Human Incidence Data
We used annual numbers of human WNV cases re-

ported to the Centers for Disease Control and Prevention 
(CDC) from 1999 through 2006. Human case data were 
acquired through multiple sources but met the CDC case 
defi nition, which includes clinical disease with laboratory 
confi rmation. Data for 1999 were extracted from the Mor-
bidity and Mortality Weekly Report (22), and data for 2000 
were downloaded from the National Atlas website (http://
nationalatlas.gov; 23). Human case data for 2001 through 
2006 were downloaded from the US Geological Survey 
maps page (http://nationalatlas.gov/printable/wnv.html; 
24). To protect anonymity, human data from these sources 
are compiled at the county level. All other data were ag-
gregated by county to match this resolution.

Geographic Data
County boundaries for the United States and 2000 cen-

sus data were downloaded from the National Atlas web-
site (http://nationalatlas.gov/boundaries and http://national
atlas.gov/people), and county centroids were identifi ed to 
facilitate the calculation of distances between counties. 
Land-use data were downloaded by state from the US 
Geological Survey National Land Cover Institute (http://
landcover.usgs.gov/natllandcover.php; 24). Percentage of 
land cover class by county was extracted by using Frag-
stats Software (25). Land uses classifi ed as low-intensity 
residential, high-intensity residential, commercial/indus-
trial/transportation, and urban/recreational grasses were 

grouped into a class called urban. Land uses classifi ed as 
deciduous, evergreen, and mixed forest were grouped into 
a class called forest. These 2 land use types were consid-
ered biologically relevant to the study question.

Statistical Analyses
To document evidence for the temporal and spatial 

spread of WNV disease, we generated cumulative inci-
dence curves by state and by year and examined the dis-
tance between counties with cases. Time-to-fi rst-case de-
tection (in years) was used as the outcome predicted by 
distance to the origin, which was Queens, New York. For 
distance calculations, we ignored counties reporting no 
WNV disease cases because the fi rst case is theoretically 
still to be determined. To visualize WNV disease spread, 
we plotted the mean incidence by year, using the spatial 
statistics tools of ArcGIS (26).

Distance measures were then used to adjust for the ef-
fect of spatial proximity in the regression analyses (27). 
Incorporating measures of spatial proximity in a regression 
model removes the effect of spatial structure that might 
otherwise result in overestimation of the strength of the as-
sociation between the outcome, WNV incidence, and the 
explanatory environmental variables (28,29).

Logistic regression modeling was initially used to 
identify the relevant predictors and to quantify their rela-
tive effects by calculation of odds ratios (ORs). Number 
of cases per county was standardized by using the 1990 
US Census population density. Cumulative WNV dis-
ease incidence data from 1999 through 2006 were di-
chotomized at their median to provide 2 categories of 
high and low risk. Predictor variables, percent urban, 
percent forested, county area, and per capita county in-
come were stratifi ed by quartiles. Logistic models were 
tested by using the Hosmer-Lemeshow goodness-of-fi t 
test. The best model was selected based on the Akaike 
information criterion (AIC), which is a measure of fi t 
that accounts for the number of parameters in the model. 
Models within 2 AIC units are considered comparable; 
models within 7 AIC units have less support but are still 
comparable; and models with differences >10 AIC units 
are not comparable (30). The relationship between in-
creasing cases and decreasing percentage of forested 
land was tested by using generalized least-square regres-
sion in STATA (31).

A risk model of total incidence was developed by us-
ing log (count +1) transformed incidence as the response 
variable and the variables identifi ed as important in the lo-
gistic regression analyses as predictors. To obtain a better 
fi t, predictor variables were entered as continuous values 
for this regression. The κ statistic was used to assess agree-
ment greater than chance between the median dichotomized 
original incidence and the predicted incidence, for which 
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<0.21 is considered slight to poor and >0.61 is considered 
substantial to almost perfect (32).

All models were initially run using only the land-use 
predictors; and the Moran I test was used to assess whether 
closer observations were more similar than those farther 
apart. This fi nding of an association based on spatial loca-
tion could indicate that proximity, rather than environmen-
tal factors, explains the distribution of disease incidence. 
Distance variables control for this potential spatial proxim-
ity effect and refl ect the presumed biological relationships 
within the data.

The models were also adjusted for surveillance effort. 
Human disease surveillance data must be interpreted with 
knowledge of the biases inherent to its collection (33). Coun-
ty per capita income was used as a measure of potential in-
vestment in surveillance and laboratory testing, as has been 
used in prior studies of surveillance for animal rabies (34).

Results

The Epidemic
From 1999 through 2006, the 204 counties in the 8 

states reported 977 WNV disease cases (county mean 
4.8, SD 8.7, median 1, range 0–49) (Table 1). The me-
dian county incidence over the 8-year interval was 0.75 
cases/100,000 residents (mean 1.77, SD 3.0, range 
0–20.2/100,000). The median incidence, excluding 
counties with no reported cases, was 1.70/100,000 resi-
dents (mean 2.94, SD 3.45, range 0.22–20.2/100,000) 
(Figure 1). The highest incidence occurred in Forest 
County, (20.2/100,000), followed by Cameron County 
(16.8/100,000) and Adams County (15.3/100,000), all ru-
ral counties in central Pennsylvania with very few cases 
(Forest County n = 1, Cameron County n = 1, and Adams 
County n = 14 [13 in 2003, 1 in 2004]), and small popula-
tions, probably representing data outliers.

Associations Based on Spatial Proximity
A cursory examination of the epidemic curve of WNV 

cases reported from each state during the 8-year study in-
dicated that peak incidence was broadly overlapping in all 

states (Figure 2, panel A). However, cumulative distribu-
tion functions of total WNV cases (Figure 2, panel B) by 
year indicated that New York experienced its median case 
earlier in the regional epidemic than did other states (Mas-
sachusetts, New Jersey, and Connecticut), which suggests 
a spatiotemporal spread of WNV. Because a spatial compo-
nent to spread was evident, we evaluated distance between 
counties to assess the spatial relationship between coun-
ties and to control for the effect of spatial proximity. The 
spatial component alone explained 15% of the variance in 
time to fi rst case when Queens, New York, was used as the 
origin (n = 123 counties with cases reported, p = 0.001). 
After 2004, no new counties reported WNV cases, and the 
incidence centroids of cases in 2005 and 2006 were close to 
one another and had shifted back toward the origin, which 
suggests that the disease may have reached endemicity in 
the region (Figure 3).
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Table 1. Incidence (per 100,000 persons) of West Nile virus disease in humans, northeastern United States, 1999–2006*  
State 1999 2000 2001 2002 2003 2004 2005 2006 Mean Median 25% IQR 75% IQR 
CT  0 0.11 0.70 1.97 5.15 0.11 0.7 1.06
DE 0 0 0 0.79 8.55 0 0.99 0 3.44 1.80 0.64 7.90
MA 0 0 0.44 2.57 2.19 0 0.61 0.27 0.43 0.11 0 0.93
MD 0 0 0.8 9.52 32.01 11.88 1.32 1.69 2.38 1.47 0 3.90
NJ 0 1.02 2.04 7.31 10.04 0.2 0.85 0.68 1.05 0.99 0.43 1.56
NY 3.18 2.45 1.19 21.03 18.78 2.44 2.95 2.03 0.87 0 0 1.25
PA 0 0 0.81 15.87 163.75 7.23 8.36 3.63 2.98 1.59 0 3.09
RI  0 0 0 0.16 2.57 0 0.16 0 0.58 0.60 0 1.13
Total 3.18 3.58 6.01 59.22 243.04 21.76 15.93 9.37 1.77 0.75 0 2.06
*IQR, interquartile range; CT, Connecticut; DE, Delaware; MA, Massachusetts; MD, Maryland; NJ, New Jersey; NY, New York; PA, Pennsylvania; RI, 
Rhode Island. 
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Figure 1. Box plot of total incidence of West Nile virus disease 
in humans, by county, for the 8 northeastern states in the study 
area (CT, Connecticut; DE, Delaware; MA, Massachusetts; MD, 
Maryland; NJ, New Jersey; NY, New York; PA, Pennsylvania; RI, 
Rhode Island). The box plot provides the median, lower, and upper 
quartiles; the standard deviation; and any data outliers. This plot 
excludes those counties that did not report cases. The outliers tend 
to be the few cases that occurred in areas with low populations.
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Environmental Risk Factors
Risk (high or low) for WNV cases was signifi cantly 

associated (by county quartile) with measures of urbaniza-
tion and with percentage of forested or urban land. Because 
these 2 measures were highly correlated, we used only a 
single measure in the fi nal analysis (Table 2). Total county 
area and other demographic indices (age) were not signifi -
cant predictors and are not shown.

A logistic regression of the median split for total in-
cidence with categorical predictor variables of percent-
age forested area and county-based per capita income 
showed that percentage of forested land (χ2 = 26.13, df = 
6, p<0.001) and percentage of urban land (χ2 = 5.62, df = 6, 

p = 0.02) were both signifi cant predictors of incidence (Ta-
ble 2). Both models provided a good fi t (forested: Pearson 
χ2 = 7.82, df = 9, p = 0.55; urban: Pearson χ2 = 3.26, df = 8, 
p = 0.92). No effect of spatial proximity was found among 
the residuals for either model (forested: Moran I = –0.008, 
Z = –0.49, p = 0.31; urban: Moran I = –0.002, Z = 0.40, 
p = 0.34).

To adjust for surveillance bias and the spatial rela-
tionship among proximal counties, we included the vari-
ables of county-based per capita income and distance from 
Queens, New York, respectively (Table 2). Both forested 
(χ2 = 36.67, df = 11, p<0.001) and urban (χ2 = 33.55, df = 
11, p<0.001) predictors were signifi cantly associated with 
WNV incidence and provided a good fi t (forested: Pearson 
χ2 = 209.27, df = 192, p = 0.19; urban: Pearson χ2 = 202.78, 
df = 192, p = 0.28). As before, no effect of spatial proxim-
ity was found in the residuals (forested: Moran I = –0.007, 
Z = –0.38, p = 0.35; urban: Moran I = 0.001, Z = 0.93, 
p = 0.18). Although all models were signifi cant and fi t the 
data, the latter model was preferred on the basis of AIC (not 
controlling for spatial proximity AICforested = 270.7, AICurban 
= 281.2; controlling for spatial proximity AICforested = 264.1, 
AICurban = 267.3) and included biologically relevant con-
trols for the effect that spatial proximity might have in es-
timating the association between the outcome, disease inci-
dence, and environmental variables of interest. A general, 
dose-dependent trend indicated increasing incidence as 
measures of urbanization increased (higher incidence with 
decreasing percentage of pixels classifi ed as forest in each 
county: χ2 = 9.47, df = 1, p<0.01; goodness of fi t χ2 = 3.50, 
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Figure 2. A) Epidemic curve of mean incidence (log+1 transformed) 
of West Nile virus disease in humans, by state, 1999–2006. The 
4 states depicted are representative of the variation among the 
8 states in the study area. CT, Connecticut; DE, Delaware; MD, 
Maryland; NY, New York. This graph shows the trend toward 
increasing incidence and a regional peak in 2003. NY seems to 
show a 2-year plateau with similar values for 2002 and 2003. B) 
Cumulative proportion of total cases for the 8 years also highlighting 
the 2003 regional peak but suggesting a spatial spread where 
cases started to rise earlier in NY than in states such as DE that 
were more distant from the epicenter.

Figure 3. Incidence of human West Nile virus disease cases in 
8 northeastern states, 1999–2006. Deviation ellipses indicate 
1 SD of the geographic mean yearly incidence calculated as the 
incidence weighted average in space for each county. Incidence 
is attributed to the county centroid. This graph shows the urban 
concentration along the Eastern Seaboard as well as the outliers 
in western Pennsylvania (1 case in counties with low populations). 
The 2005 and 2006 regression of the geographic mean incidence 
is also depicted.
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df = 2, p = 0.17; higher incidence with increasing percent-
age urban land: χ2 = 7.13, df = 1, p<0.01; goodness of fi t χ2 
= 1.98, df = 2, p = 0.37).

The logistic regression model of dichotomized total 
incidence for the 8 years of the study, controlling for in-
come (categorical variable by quartile) and for the effect of 
spatial proximity (distance variables), also showed a dis-
tinct trend of increasing incidence with percentage of for-
est cover; counties with <38% forest cover were 4.4× more 
likely (95% confi dence interval 1.4–13.2, p = 0.01) to have 
high WNV incidence than were counties with >70% forest 
cover (Table 2).

Predictive Model
We used the predictors identifi ed in the logistic regres-

sion analysis to develop a linear regression model to pre-
dict total incidence (log count + 1 transformed for a normal 
distribution), using the quartile percent forested land by 
county. Per capita income (as a continuous variable) was 
used to control for surveillance effort. This model explains 
9.7% of the variance in the total incidence (log count + 1) 
(p<0.001); however, the residuals indicated an effect due to 
spatial proximity (Moran I = 0.0349, Z = 5.925, p<0.001). 
Controlling for this spatial effect and surveillance effort 
resulted in a better model (r2 = 0.20, p<0.001; Moran I = 
–0.003, Z = 0.26, p = 0.40). The κ statistic indicated good 
agreement (κ = 0.343, SE = 0.066, Z = 5.22, p<0.001, 
agreement = 67.16%) between the predicted and the ob-
served outcomes when the binomial categorization of inci-
dence was used and resulted in 51 county incidence entries 
being correctly identifi ed as being below the median and 86 
being correctly identifi ed as being above the median. Errors 
were primarily in the direction of predicting the incidence 
above the median. When surveillance and spatial proximity 
were controlled for, the risk for WNV disease increased by 
0.25% for every 1% decrease in forest cover. For more di-
rect comparison with the logistic regression outcome, mov-

ing from the highest category of forest cover (>69.59%) to 
the lowest (<38.29%), resulted in a 6.16% increased risk 
for WNV disease.

Discussion
This study documents the concentration of WNV cases 

within urban areas of the northeastern United States and 
provides a quantitative estimate of the effect of varying 
degrees of urbanization on the risk for WNV infection at 
the county level. Land-use data were used to ascribe de-
gree of urbanization as a predictor for WNV disease risk; 
incidence models were generated, controlling for human 
population density, environment-based spatial associations 
in the predictors, and potential biases in WNV incidence 
reporting resulting from the unequal resource bases among 
counties.

Beginning in 1999, human WNV cases were reported 
in counties distant from Queens, New York, the presumed 
origin of infection. Although the epidemic initially ap-
peared to spread in a west/southwesterly direction in the 
8-state region examined, by 2005 the initial epidemic ap-
peared to wane, and reports of disease among newly affect-
ed counties dropped to zero. The resulting incidence maps 
suggest a WNV disease–endemic situation in the northeast-
ern United States. The initial spread was not continuous 
along neighboring counties; rather, greater incidence was 
seen in urban counties after controlling for human popu-
lation density, surveillance bias, and the effect of spatial 
proximity. The best model indicates 4× the risk for disease 
in the counties that fall in the lowest incidence quartile of 
forested land compared with the highest. The predictive 
nature of the data is also explored with the caveat that ad-
ditional predictor variables are needed; nonetheless, it in-
dicates increasing risk for WNV disease with decreasing 
forested lands.

The association between urban land use and human 
cases indicates that urban/suburban land use enhances en-
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Table 2. Odds ratios for median split incidence of West Nile virus diseases in humans, for significant variables*  
Adjusted Unadjusted 

Predictor OR (95% CI) Significance OR (95% CI) Significance 
% Forest land use, per quartile     

1st (<38.29) 4.40 (1.91–10.11) 0.000 4.36 (1.44–13.25) 0.009 
2nd (38.29–56.56) 3.09 (1.38–6.92) 0.006 2.86 (1.01–8.06) 0.047 
3rd (56.56–69.59) 0.84 (0.37–1.91) 0.675 0.81 (0.33–2.00) 0.644 
4th (>69.59) 1 NA 1 NA 

% Urban land use, per quartile     
1st (<1.68) 1 NA 1 NA 
2nd (1.68–4.66)  1.52 (0.68–3.39) 0.309 1.42 (0.54–3.76) 0.478 
3rd (4.66–15.13) 2.44 (1.09–5.43) 0.030 3.08 (0.94–10.12) 0.064 
4th (>15.13) 4.38 (1.91–10.03) 0.000 7.02 (1.78–27.71) 0.031 

*Variables categorized by percent of county classified as forested and percent of county classified as urban. Outcome categorized by median split to 
counties with low risk (incidence <0.75 cases/100,000 residents) and high risk (incidence >0.75 cases/100,000 residents). Overall trend is for increasing 
incidence with increasing measures of urbanization (for decreasing percentage forested land: 2 = 9.47, df = 1, p< 0.01, goodness of fit 2 = 3.50, df = 2, 
p = 0.17; for increasing percentage urban land: 2 = 7.13, df = 1, p< 0.01, goodness of fit 2 = 1.98, df = 2, p = 0.37). Both unadjusted and surveillance 
bias and spatial relationship adjusted ORs are provided. OR, odds ratio; CI, confidence interval; NA, not applicable. 
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vironmental conditions for both enzootic and bridge trans-
mission, at least at the county level. The spatial resolution 
of human surveillance data did not allow for fi ner evalua-
tion of within-urban associations. Brownstein et al. linked 
human WNV cases to greenness indices in urban areas and 
found an optimal vegetation index associated with higher 
human cases (35). Brown et al. found an environmental 
separation of bridge and enzootic vectors; bridge vectors 
occurred in areas with vegetation that might be associated 
with residential areas within a city (36). Finer spatial reso-
lution human data would allow for within-county analyses 
that might provide better estimations of where the cases 
(urban, periurban) are occurring. This would improve the 
predictive power of land use in the models, and the better 
association between land use and cases might help further 
elucidate which mosquito species are involved as bridge 
vectors.

Because of the type and resolution of the data, a sam-
ple predictive model, and not a predictive map, is provided. 
Nonetheless, the data and analysis provided are insightful 
as potentially predictive models. Additional data, such as 
bird abundance and perhaps also mammal abundance, are 
needed (37). Because of the often strict host and habitat 
preferences of mosquito species, mosquito surveillance 
data could also improve the predictive power and validity 
of the model. Our best predictive model explains only 20% 
of the variance; additional variables such as these might 
improve the model because the abundance of hosts and 
mosquito species will have a considerable effect on WNV 
transmission.

Despite the reluctance to use human surveillance data 
for models of disease transmission (33), such data can pro-
vide information about spatial associations in vector-borne 
disease as shown here and by others (34,38,39). This type 
of human surveillance modeling provides some useful in-
sight into the distribution of human WNV cases and sup-
ports the current understanding of the transmission cycle.

To predict WNV disease requires understanding of the 
factors driving both enzootic transmission and bridging to 
humans. Different data availability and scales are involved 
in studying these 2 processes. We took advantage of the 
national coverage of the human incidence dataset to exam-
ine the spatiotemporal spread of WNV in this region and to 
generate a risk model based on land use, adjusted for the 
effect from spatial proximity. We show that human surveil-
lance data at the county level are consistent with the urban 
nature of this disease system, as has been found in studies 
of enzootic transmission, indicating that the 2 processes oc-
cur in or near urban areas. 

This work was supported by the US Department of Agri-
culture, Agricultural Research Service (1USDA-58-0790-5-068). 

H.E.B. was supported through the CDC Fellowship Training Pro-
gram in Vector-Borne Disease at Yale University.

Dr Brown graduated from the Vector Ecology Laboratory at 
Yale University and is a researcher with the Spatial Ecology and 
Epidemiology Group, University of Oxford, Oxford, UK. In her 
research she seeks a better understanding of vector-borne disease 
transmission through the investigation of the relationship between 
vectors and the environment in which they persist.
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