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Convolutional interleaver for unequal error protection of
turbo codes

Sina Vafi, Tadeusz Wysocki, Ian Burnett

University of Wollongong, NSW 2522, Australia
E-mail:{sv39,wysocki,ian_burnett}@uow.edu.au

Abstract: This paper describes
construction of a convolutional interleaver as a
block interleaver and discusses its application to
turbo codes with equal and unequal error protection
techniques. Based on simulations, different
convolutional interleaver structures suitable for
turbo codes with unequal error protection capability
are suggested. Finally, based on conducted
simulations the best method is selected.

Keywords: Convolutional interleaver, Unequal error
protection, turbo codes.

1. INTRODUCTION

Compression has become the norm in mobile
communications; currently speech dominates but
video and general multimedia compression is fast
becoming important. A vital characteristic of a
compressed data stream is the unequal perceptual
importance of the compressed parameters. In turn,
this leads to unequal effects of errors during
transmission. Thus Unequal Error Protection (UEP)
has become an important part of design of channel
encoders for multimedia content.
Amongst the known channel codes, turbo codes
have the highest performance in direct bit error rate
reduction terms. Turbo codes are produced by the
parallel concatenation of two or more convolutional
code generators separated by one or more
interleavers [1]. The reduction in BER resulting
from such codes is directly dependent on the design
of a suitable interleaver. In the literature, several
techniques for implementing UEP using turbo codes
have been proposed. In [2], single interleaver for all
levels and, in [3], one interleaver for each level are
suggested, while [4] discusses optimization of the
single interleaver solution.

The interleavers suggested in [2-4] are from the
block interleaver family. In a block interleaver, data
bits are written into the memory column-wise and
read row-wise (or vice versa). Another type of the
block interleaver is a semi random interleaver,
where after filling the whole interleaver memories
the bits are read in a semi random manner, not row-
or column-wise. Both types of interleavers are used
with turbo codes and the total delay at the end of
interleaving process is twice of the input data length.
The non-block interleavers (such as the

convolutional interleavers [5]) have better
performance in terms of BER reduction during turbo
decoding process. Additionally, they introduce a
shorter delay, which simplifies the de-interleaving
procedure. It is also important to note that
convolutional interleaver performance is data
dependent and that they allow for a continuous
operation, which is a vital consideration for turbo
codes.

In this paper, we introduce method that returns
the memories of applied convolutional interleaver to
the known state at the end of each data block,
resulting in the convolutional interleaver performing
effectively as a block interleaver. Therefore, the
interleaved block-by-block data are independent
from each other, which enable to use the
conventional iterative decoding methods in the
decoder.
The organization of the paper is as follows:
In Section 2, the structure of turbo codes and the
position of the interleaver are described. In Section
3, the performance of a new convolutional
interleaver with the calculation of free distance
parameter of turbo codes is presented. In Section 4,
some structures of interleaver suitable for UEP in
turbo codes are described. Section 5 concludes the
paper.

2. TURBO CODES STRUCTURE

Turbo encoders consist of two or more
Recursive Systematic Convolutional (RSC) encoders
separated by one or more interleavers. Figure 1
shows a turbo encoder (rate 1/3) structure with two
RSC encoders.

Figure 1: Turbo encoder structure
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The input and RSC coded data are referred to as
systematic and parity data, respectively (see Figure
1). The interleaver permutes the input data prior to
the second RSC encoder to generate differently
encoded data compared with the codeword of the
first RSC encoder [6]. If a trellis termination or
truncation is performed on RSC encoders and block
interleaver is used, the turbo code performance can
be evaluated as that of one block code (L(n+m), kL)
where L, m and k/n represent the interleaver length,
the number of RSC encoder memories or encoder
states, and  the code rate, respectively [6].

In this paper, the trellis termination is performed
on the first RSC encoder, which returns its memory
contents to zero state, while trellis truncation is
performed on the second RSC encoder that leaves its
memory states open.

As it has been shown in [7] with an employment
of convolutional interleavers, which create less delay
than block interleavers and maintain synchronization
between the interleaver and deinterleaver, turbo
codes performance improves. Moreover, utilization
of the continuous behaviour in the stream-oriented
turbo codes is suitable for long data length with RSC
encoders having high number of states [8-9]. In
order to use the convolutional interleaver in turbo
codes equivalent to a block code, the interleaver
memories should be reset at the end of each block to
the specific value to create segmented interleaved
data for the second RSC encoder. The new scheme
can be used in turbo codes with unequal error
protection property and the proposed technique is
described in the next sections.

3. CONVOLUTIONAL
INTERLEAVER STRUCTURE

A convolutional interleaver consists of T
parallel lines, with different delay in each line that
represents interleaver period [5]. In general, each
successive line has a delay which is M symbols
durations higher than the previous line. The structure
for M=1 and T=3 is illustrated in Figure 2.

Figure 2: Convolutional interleaver
structure with T=3 and M=1.

In a similar manner to the trellis termination
technique (which emits stored data from memories),
an insertion of a certain number of zeros at the end
of a data block can isolate the interleaved data block.
This guarantees a data block of a specific length and
generates independent blocks of data for the RSC
encoder.

For the data length L=6 and the convolutional
interleaver with M=1 and T=3, the interleaved data
would be X1 0 0 X4 X2 0 0 X5 X3 0 0 X6.

Since the application of convolutional
interleaver in turbo codes requires an insertion of
stuff bits that reduces channel bandwidth usage, an
optimisation should be performed on the interleaver
to control the number of those bits, which can be
equal to the number of applied memories. For this
purpose one block is added after the interleaver to
control the data at the interleaver output deleting
extra zero stuff bits that are inserted at the end of
each block.

In this case, the memory contents at the end of
each block have zero value that stays till the
beginning of the next block. Figure 3 shows the
structure of the optimised convolutional interleaver.
Following the previous example, the optimised
interleaver output is:    X1 0 0 X4 X2 0 X5 X3 X6.

Figure 3- Optimised Convolutional Interleaver.

The same procedure can be repeated to obtain a
second set of suitably interleaved data for the second
RSC encoder. More optimisation can be done to the
zero stuff bits insertion for the systematic and the
first parity data after the trellis termination
procedure of the first RSC encoder, as it is not
necessary to transmit zero stuff bits in the mentioned
data parts. However, these bits need to be considered
for the second RSC because of their influence on the
performance of the interleaver.

 To verify performance of the new
convolutional interleaver and compare it to
conventionally employed interleaver such as row-
column interleavers, the free distance parameter
( freed ) of the turbo encoder of Figure 1 was
calculated. Based on this parameter, the Bit Error
Rate (BER) for additive white Gaussian noise
(AWGN) can be expressed as: [10]

)
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0
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≈     (1)

where freeN  is the number of codeword with weight
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 is the signal to noise ratio per bit and R

is the code rate. In [11] and [12] two different

algorithms for free distance computation of turbo
codes with different RSC encoder structures have

Convolutional
Interleaver

Zero
deletion

Input

data data

Interleaved

Vafi, Wysocki & Burnett in the Proceedings of the 2nd Workshop on the Inetrnet, Telecommunications and Signal Processing (2003)

Tad
    486



been proposed, which are  mainly useful for large
interleaver size.

Figure 4: Free distance computation algorithm

Since in UEP turbo codes technique input data is
segmented to shorter lengths, we can compute  freed
from the definition. This involves finding a
codeword with minimum weight among L2 possible
codewords of length L. Among all L2  cases, only
codewords that create low weights have been
considered. Since input data are transferred directly
to the encoder output as systematic bits and
puncturing is not performed on them, weight of the
input data corresponds to the weight information
part of codeword. It should be noted that the tail bits
due to trellis termination of the first RSC are
considered as a part of the systematic data, which
affects the codeword weight.

Algorithm starts freed calculation for all possible
data streams of length L and minimum weight, i.e.
one. Then, the corresponding codeword weights are
calculated. The obtained minimum weight from the
first codeword set is considered as free distance at
the first step. In the next step, input stream weight is
increased by one unit, i.e. stream with weight of 2 at
the second step, and their free distance is computed.
The minimum freed  value among two relevant

computed values is considered as freed  at the end of

second step. Again, freed for the stream with one unit

higher weight, i.e. weight 3 is computed and the
minimum freed between previous and current
calculation is selected.

 This procedure is continued till the computed
free distance in the related step is less or equal to the
weight of the current input stream. The obtained

freed  at the end of the procedure is considered as

freed  of the turbo code. Figure 4 shows the applied

freed computation algorithm.

Based on the described procedure, freed  has
been calculated for the turbo codes implemented by
the structure presented in Figure 1 with the row-
column and convolutional interleavers of the length
of 16 and 64 and the rate of 1/3. The plot of the

calculated BER versus 
0

b

N
E

for the mentioned

interleavers is presented in Figure 5.
For the low signal-to-noise ratio (SNR) the
convolutional interleavers have better performance
than the block ones. In order to improve the
performance for high SNRs, interleaver structure
with longer period is suggested and discussed in
details in the next section. It should be noted that
increasing the period and data separation increases
the number of stuff bits which can potentially reduce
usage of the channel bandwidth. Data separation into
shorter blocks has the same disadvantage, too. Thus,
increasing the period and data separation should be
done in a reasonable way minimising the overhead
but maintaining the advantages.

Figure 5: BER for convolutional and block
interleaver sizes of 16 and 64 with rate: 1/3.

4. INTERLEAVER FOR
UNEQUAL ERROR

PROTECTION

For turbo codes with unequal error protection, the
fixed interleaver period is considered for all levels,
and, depending on the required protection level, the
length of the data block at each level is altered. As
an example, we consider three protection levels for
data with length of 2048 bits. Specifications of these
levels have been presented in Table 1. We assume
that 2048 bits are split into 5 groups.
At the beginning of each group, 64 bits of data are
allocated the protection level 1. Then, there are some
blocks of length L=42 with the protection level 2,
and the remaining blocks of length L=32 are
allocated the protection level 3.

i=0, d_free[0]=3× L

i=i+1

Compute d_free (d_free[i]) for
all possible codewords with
weight of i (W[i])

d_free[i]=min { d_free[i], d_free[i-1] }

d_free[i]
<  W[i]

d_free=d_free[i]

Yes No
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Unequal error protection is obtained by puncturing
encoded stream differently at different protection
levels.

Part Lev. 1
(L=64)

Lev.2
(L=42)

Lev.3
(L=32)

1 1 3 6
2 1 3 6
3 1 3 7
4 1 3 7
5 1 4 7

Table 1: Distribution of 2048 bits into three
protection levels.

The insertion of stuff bits to clear the interleaver
memories affects the effective code rates, of course.
Therefore, the effective code rate at each level can
be calculated as:

( ) i
ii

i
ieff R

SL
L

R
+

=     (2)

Where iL , iS  denote lengths of data block and the

number of stuff bits, respectively, while
i

i
i n

k
R = ,

i=1, 2, 3 is the code rate after puncturing at the
relevant protection level. Hence, for the code rates
of 1/3,1/2, and 2/3, because of bit stuffing, we get
the effective code rates of 0.32,0.47, and 0.61, in the
considered example (see Table 1) . In order to verify
UEP turbo codes performance, an average rate for
the mentioned example is calculated. With
employment of puncturing at each level, the average
code rate can be calculated as [13]:

∑

∑

=
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c
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Where, c represents the number of levels. Based on
the data in Table 2 the effective aggregate rate is

determined as:   49.53.0
1622048

2048R
aveff ≈×

+
=

Level Length
(bits)

Code rate Effective
Code rate

1 320 1/3 .32
2 672 1/2 .47
3 1056 2/3 .61

Average 2048 .53 .49

Table2:  Specification of three protection levels.

A similar calculation can then be performed to
obtain the specification for average block length of

the interleaver. Taking into account the number of
blocks and block lengths at each level, the average
length is given by:

∑

∑

=

==
c

1i
i

c

1i
ii

N

NL

L     (4)

Where iL  and iN  ; i=1, 2, 3 are the length of data
block and the number of blocks at each level,
respectively. Hence, the average length of turbo
encoder is 41L ≈ bits. Since an interleaver with 3
lines and 3 stuff bits has been considered, the length
of the average data per block is approximately:

38341L data =−≈  bits.

Based on the presented freed in Table 3 for data
distribution of Table 1, Fig.6 gives the BER
performance of the turbo codes at different levels of
protection. At level 1 with the lowest number of data
bits, we expect that the protection is better than at
other levels. This happens for low SNRs but at high
SNRs it is similar to that of level 2. The level 2
protection at low SNRs has weaker performance
than the overall performance of the code.  This is
caused by the multiplicity of free distance in level 2
due to its data length and the puncturing.

Lev.1 Lev.2 Lev.3 Overall

freed 6 5 2 3

freeN 1 18 2 1

freeω 3 3 2 3

Table 3- Free distance specifications with insertion
of stuff bits after tail bits to the interleaver.

Figure 6: BER for UEP turbo codes with the
interleaver of Figure 2 and insertion of stuff bits

after the tail bits.

In order to remove degradations in the
mentioned parts of level 1 and 2, their free distances
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should be increased.  One solution is to consider the
effect of stuff bits in the systematic and the first
coded parity data. In this case, trellis termination is

Figure 7: BER for UEP turbo codes with the
interleaver of Figure 2 and insertion of stuff bits

before tail bits.

done after the entry of stuff bits to the first RSC
encoder. In order to consider tail bits effect for the
second RSC encoder and to avoid changing of the
interleaver memory states, which are in the reset
condition, the tail bits are transferred through the
first line of interleaver that has no memory.
Figure 7 shows simulation results for the identical
data structure of previous example to verify
performance of the new interleaver based on
relevant computed freed in Table 4.

Lev.1 Lev.2 Lev.3 Overall

freed 8 4 2 3

freeN 1 1 2 1

freeω 3 2 2 2

Table 4- Free distance specifications with insertion
of stuff bits before tail bits to the interleaver.

Another method (referred here to as method 2) of
achieving UEP is to consider a variable period
interleaver which alters the number of stuff bits at
different levels. Figure 8 shows a convolutional
interleaver configured according to this method. In
this example, the number of blocks at each level is
the same as that of Table 1. The data requiring the
highest protection level (level 1) is distributed on 5
lines of the interleaver with 6 stuff bits. Meanwhile,
level 2 and 3 data are distributed on 4 and 3 lines of
the interleaver, respectively.

Figure 8: Interleaver structure in method 2.
Again, two alternative schemes using the new

structure, i.e. insertion of stuff bits after or before
the tail bits are considered and their simulation
results compared with the fixed period interleaver
for all the levels. Table 5 and Figure 9 show the
computed freed and the performance for protection
levels when stuff bits are inserted after tail bits,
respectively.

Considering the different stuff bits length of
different levels, average value of stuff bits for
overall level has been calculated, which
approximately equals 3.

Lev.1 Lev.2 Lev.3 Overall

freed 7 5 2 3

freeN 1 4 2 1

freeω 2 2.25 2 3

Table5- Free distance specifications with insertion
of stuff bits after tail bits to the interleaver.

In this scheme freed in level 2 occurs multiple times

but its performance at low SNRs is equal to that of
the overall performance of the code. Also at level 1,
degradation is observed at high SNRs. With
insertion of stuff bits before tail bits, an
improvement is obtained at relevant protection
levels, as illustrated in Figure 10. The resulting free
distances have been presented in Table 6.
In comparison with the previous method, level 2 has
been improved near to the level 1 graph in Figure 8
while level 1 protection shows better performance
than the other levels. Method 2 has improved
performance but at the expense of an increase in
stuff bits and hence redundancy level. Thus, a
compromise needs to be found between optimisation
of turbo code performance and the number of
utilized stuff bits.
As one optimisation, combination of two mentioned
schemes is suggested. For instance, in method 2 and
level 1, we apply zero stuff bits insertion before tail
bits to get more protection. But in level 2 we insert
them after the tail bits that have acceptable
behaviour with less redundancy. Also simulation
shows that the level 3 protection performance of
turbo codes in both sub-methods are identical, which
can be due to puncturing effect at short data length.
Therefore, for this level, format of stuff bits
insertion after tail bits is recommended.

5. CONCLUSIONS

In this paper, we proposed a technique, which
initializes convolutional interleaver memories by the
insertion of stuff bits at the end data of blocks of
specific lengths. This process results in a semi-block

Level
1

Level
3 Level

2
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interleaver structure for turbo coding. The
performance of this new structure has been
compared with that of conventional block
interleavers and applied to unequal error protection
turbo codes. Two major methods were proposed and
tested. In each method, two schemes depending on
insertion of stuff bits before or after the tail bits were
investigated. The results show that a stuff bit
insertion before the tail bits in the interleaver with
variable period will produce the best performance.
Further work will consider finding a suitable
compromise between the turbo-code performance
and the stuff-bit redundancy.

Figure 9: BER for UEP turbo codes with interleaver
of Figure 8 and insertion of stuff bits after tail bits.

Lev.1 Lev.2 Lev.3 Overall

freed 9 5 2 3

freeN 1 2 2 1

freeω 3 2.5 2 2

Table 6- Free distance specifications with insertion
of stuff bits before tail bits to the interleaver.

Figure 10: BER for UEP turbo codes with
interleaver of Figure 8 and insertion of stuff bits

before tail bits.
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