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Abstract
Existing data storage systems based on hierarchical direc-
tory tree do not meet scalability and functionality require-
ments for exponentially growing datasets and increasingly
complex metadata queries in large-scale file systems with
billions of files and Exabytes of data. This paper proposes a
novel decentralized semantic-aware metadata organization,
called SmartStore, which exploits metadata semantics of
files to judiciously aggregate correlated files into semantic-
aware groups by using information retrieval tools. The de-
centralized design of SmartStore can improve system scal-
ability and reduce query latency for both complex queries
(including range and top-k queries), which is helpful to con-
struct semantic-aware caching, and conventional filename-
based point query. The key idea of SmartStore is to limit
search scope of a complex metadata query to a minimal
number of semantically related groups and avoid or alle-
viate brute-force search in entire system. Extensive exper-
iments based on real-world traces show that SmartStore sig-
nificantly improves system scalability and reduces query la-
tency by more than one thousand times faster than current
database approaches. To the best of our knowledge, this is
the first paper addressing complex queries in large-scale file
systems.

1. Introduction
Fast and flexible metadata retrieving is critical in the next-
generation data storage systems. As the storage capacity
is approaching Exabytes and the number of files stored is
reaching billions, directory-tree based metadata manage-
ment widely deployed in conventional file systems [1–4] can
no longer meet the requirements of scalability and function-
ality. For the next-generation large-scale storage systems,
new metadata organization schemes are desired to meet two
critical goals: (1) to serve a large number of concurrent ac-
cesses with low latency and (2) to provide flexible I/O inter-
faces to allow users to perform advanced metadata queries.

In the next-generation file systems, metadata accesses
will very likely become a severe performance bottleneck as
metadata-based transactions not only account for over 50%

of all file system operations [10] but also result in billions
of pieces of metadata in directories. Given the sheer scale
and complexity of the data and metadata in such systems,
we must seriously ponder a few critical research problems
[16] such as “How to efficiently extract useful knowledge
from an ocean of data?”, “ How to manage the enormous
number of files that have multi-dimensional or increasingly
higher dimensional attributes?”, and “How to effectively and
expeditiously extract small but relevant subsets from large
datasets to construct accurate and efficient data caches to
facilitate high-end and complex applications?”.

For the above problems, first, while a high-end or next-
generation storage system can provide a Petabyte-scale or
even Exabyte-scale capacity containing an ocean of data,
what the users really require to satisfy many of their ap-
plication needs is some knowledge about the data’s behav-
ioral and structural properties that can in turn effectively fa-
cilitate the applications. Thus, we need to deploy and or-
ganize these files according to semantic correlation of file
metadata in a way that would easily expose such properties.
Second, files with multi-dimensional attributes produce pro-
hibitively expensive storage and indexing costs when using
conventional file systems based on a directory-based hier-
archy. Third, in real-world applications, cache-based struc-
tures have proven to be very useful in dealing with indexing
among massive amounts of data. However, traditional tem-
poral or spatial (or both) locality-aware methods alone will
not be effective to construct and maintain caches in large-
scale systems to contain the working sets of complex data-
intensive applications. It is thus our belief that semantic-
aware caching, which leverages metadata semantic correla-
tion and combines pre-processing and pre-fetching based on
range and top-k queries, will be sufficiently effective in re-
ducing the working sets and increase cache hit rates.

At the same time, new I/O interfaces are of great neces-
sity to allow users to flexibly locate target files in a large-
scale storage system. Of particularly desirable interfaces are
range query and top-k query, where the former identifies files
whose attribute value is within a given range, while the lat-
ter locatesk files whose attributes are closest to given val-
ues. For example, a user may wish to obtain the answers
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to Range Query: “Which experiments did I run yester-
day that took less than 30 minutes and generated files larger
than 2.6GB?” and Top-K Query: “ I can not accurately
remember a previously created file but I know that its file
size is around 300MB and it was last visited around Jan.1,
2008. Can the system show 10 files that are closest to this
description?”.

In a small-scale storage system, conventional directory-
tree based design and I/O interfaces may support these com-
plex file queries through exhaustive or brute-force searches.
However, in an Exabyte-scale storage system, complex
queries need to be judiciously supported in a scalable way
since exhaustive searches can result in prohibitively high
overheads. Furthermore, the inherent performance bottle-
neck imposed by the tree structure in conventional file sys-
tem design can become unacceptably severe in an Exabyte-
scale system. While database techniques may arguably of-
fer alternative solutions for complex queries, the nature of
databases dictates that they manage an enormous amount
of ordered tables and indexed lists for each single metadata
update [13] ignoring access locality and skewed distribution
of file metadata and resulting in unacceptable user perfor-
mance. In addition, databases provide over-enforced consis-
tency control and thus can cause unnecessary overhead.

This paper proposes a novel decentralized semantic-
aware metadata organization scheme, calledSmartStore,
to efficiently manage file metadata. SmartStore organizes
files into a semantic R-tree through semantic analysis on
file metadata, which enables efficient complex queries and
focuses on methods for metadata organization and query in
a decentralized environment. Semantic R-tree is a multi-
dimensional structure to organize file metadata and rep-
resent their multi-dimensional attributes, while supporting
point query and complex queries that include range and top-
k queries to facilitate the construction of semantic-aware
caching.

Figure 1 shows an example that compares SmartStore
against conventional file systems. The basic idea behind
SmartStore is that files are grouped and stored according
to their metadata semantics, instead of directory namespace.
This motivated by the observation that metadata semantics
can guide the aggregation of highly correlated files into
groups that in turn have higher probability of satisfying com-
plex query requests, judiciously matching the access pattern
of locality. Thus, query and other relevant operations can be
completed within one or a small number of such groups,
where one group may include several storage nodes, other
than linearly searching via brute-force on almost all stor-
age nodes in a directory namespace approach. On the other
hand, the semantic grouping can also improve system scal-
ability and avoid access bottleneck and single-point failure
since it renders the metadata organization fully decentral-
ized whereby most operations, such as insertion/deletion and
queries, can be executed within a given group.

Some related research has been conducted by other re-
searchers. Data space [11] from the database research field
is proposed as a data co-existence approach to organizing
and operating collections of heterogeneous and partially un-
structured data, by employing automatic methods to extract
semantic relationships of data to obtain approximate query
results. Database techniques generally cannot take full ad-
vantage of important characteristics of file systems, such as
access locality and “hot spot” data, to enhance system per-
formance. On the other hand, Spyglass [12] exploits the lo-
cality of file namespace and skewed distribution of meta-
data to map namespace hierarchy into a multi-dimensional
K-D tree and uses multi-level versioning and partitioning to
maintain consistency. It partitions the namespace hierarchy
with increasing versioning overheads to support filename-
based point query services. In contrast, SmartStore lever-
ages semantics of multi-dimensional attributes, of which
namespace is only a part, to produce distributed semantic
R-tree adaptively based on metadata semantics and support
complex queries with high reliability and fault tolerance.

D1
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D111 D112 D121 D122 D123 D131 D132

Conventional directory tree Semantic R-tree
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Figure 1. Comparisons with conventional file system.
This paper makes the following main contributions.

• Decentralized metadata semantic-aware file system
organization scheme: Although partition may simplify
the management over mass data [16, 17], intelligent
and semantic-aware design can further optimize and en-
hance system performance by leveraging the inherent and
abundant correlations among files. This paper presents
a decentralized semantic-aware metadata organization
scheme to support complex multi-query services and im-
prove system performance by judiciously exploiting the
metadata semantic information of files and effectively
utilizing semantic analysis tools, i.e., Latent Semantic
Indexing (LSI) [19]. The new design is different from
the conventional hierarchical architecture of file systems
based on a directory tree data structure in that it removes
the latter’s inherent performance bottleneck and thus can
avoid its disadvantages in terms of file organization and
query inefficiency. Additionally and importantly, Smart-
Store is able to provide the existing services of conven-
tional file systems while supporting new complex query
services with high reliability and scalability.

• Practical implementation: We have implemented the
proposed SmartStore by aggregating correlated files into



several groups based on their metadata semantics, which
can be iteratively aggregated into groups at higher lev-
els until a single group is formed at the highest level,
thus producing a semantic R-tree structure. We main-
tain the complete index information that contains multi-
dimensional attributes of stored files in multiple decen-
tralized storage servers through mapping all nodes in the
semantic R-tree onto actual storage servers, thus generat-
ing a decentralized index structure. Index units, like fold-
ers in the conventional directory tree structure, that main-
tain the summary of multi-dimensional attribute informa-
tion are now deployed among the storage units in a decen-
tralized way to facilitate multi-query services. Based on
experimental results, SmartStore prototype is more than
one thousand times faster and 20 times smaller than cur-
rent database methods with a very small false probability.

• Multi-query services: To the best of our knowledge,
this is the first study to design and implement complex
queries, such as range and top-k queries, within the con-
text of ultra-large-scale distributed file systems. More
specifically, our SmartStore can support three query in-
terfaces for point, range and top-k queries. Conventional
query schemes in small-scale file systems are often con-
cerned with filename-based queries that will soon be ren-
dered inefficient and ineffective in the next-generation
large-scale distributed file systems. The complex queries
will serve as an important portal or browser, like the web
or web browser for Internet and city map for a tourist, for
query services in an ocean of files. Our study is a first at-
tempt at providing support for complex queries directly
at the file system level.

The rest of the paper is organized as follows. Section 2
describes the SmartStore system design. Section 3 presents
details of design and implementation. Section 4 shows key
issues for discussions. Section 5 presents the extensive ex-
perimental results. Section 6 presents the related work. Sec-
tion 7 concludes our paper.

2. SmartStore System
2.1 Overview

The SmartStore system has three components: 1) Based on
LSI tool, SmartStore semantically represents and groups
metadata into storage and index units; 2) The units iteratively
construct semantic R-tree structure that runs in a distributed
environment; 3) In the semantic R-tree, SmartStore supports
insertion, deletion and multi-query services.

Figure 2 shows a diagram of SmartStore that provides
multi-query services for users and meanwhile organizes
metadata to enhance system performance by using decen-
tralized semantic R-tree structure. Section 3 describes the
design details of each component and here we discuss the
overall functions respectively from user and system views.

SmartStore

Semantic 

Grouping

Insertion 

Deletion 

Range Query

Top-K NN 

Query

Key Operations

 Index Units

Light-weight Distributed Computing for Semantic 

R-tree

Point Query

Storage Units Reliable Mapping 
Latent Semantic 

Indexing

Figure 2. SmartStore system and components.

2.2 User View

SmartStore supports flexible multi-query services for users
and these queries follow similar query path. In general, users
initially send a query request to a randomly chosen server
that is also represented as storage unit that is a leaf node of
semantic R-tree. The chosen storage unit, also calledhome
unit for the request, then retrieves semantic R-tree nodes by
using an on-line multicast-based or off-line pre-computation
approach to locating a query request to its correlated R-tree
node. After obtaining query results, the home unit returns
them to users. The key difference between point query and
complex queries including range or top-k is that a point
query checks Bloom filters [20] and a complex query checks
minimum bounding rectangles (MBR) [7].

2.3 System View

Semantic grouping is one of the key components in the
system design, which efficiently utilizes metadata seman-
tic information, such as file physical and behavior attributes,
to carry out the semantic-based metadata grouping. These
multi-dimensional attributes exhibit different characteristics.
For example, attributes such as access frequency, file size,
amount of “read” and “write” operations are changed fre-
quently, while some other attributes, such as filename and
initial creation time, remains untouched most of time. Smart-
Store combines these attributes to conjecture their seman-
tic correlations and then organizes correlated metadata into
groups that are in turn structured in a semantic R-tree. These
metadata groups are stored within a distributed environ-
ment with multiple metadata servers. By grouping correlated
metadata, SmartStore exploits their affinity to boost the per-
formance of both point query and complex queries.

Storage and index units as shown in Figure 3 constructing
semantic R-tree come from semantic grouping by exploiting
and leveraging metadata semantics. Each metadata server
is a leaf node in our semantic R-tree and potentially holds
multiple non-leaf nodes of the R-tree. In the rest of the paper,
we refer to the semantic R-tree leaf nodes asstorage units
and the non-leaf nodes asindex units.
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Figure 3. Storage and index units.

3. Design and Implementation
In this section, we present SmartStore components including
semantic grouping, system reconfigurations such as node
insertion and deletion, and point and complex queries.

3.1 Semantic Grouping

3.1.1 Statement and Tool

We define semantic metadata grouping and then show our
approaches to achieving this grouping.

Statement 1(Semantic Metadata Grouping). Given file
metadata with D-dimensional attributes, find d-dimensional
(1 ≤ d ≤ D) attributes, representing special interests, to
partition similar file metadata into multiple groups so that:

• A file in a group has higher correlations with the other
files in this group than with any file outside of the group;

• Group sizes are approximately equal.

Semantic grouping is an iterative process in SmartStore.
In the first iteration of grouping, a predetermined constant
value ε1(0 ≤ ε1 ≤ 1) is used as an admission threshold.
All groups generated in the first iteration are used as leaf
nodes to construct a semantic R-tree. The composition of
the selectedd-dimensional attributes includes agrouping
predicate, which serves as grouping criteria. The seman-
tic grouping process can be recursively executed by aggre-
gating groups in the(i − 1)th-level into theith-level nodes
of the semantic R-tree with the association valueεi(0≤ εi ≤
1),(1≤ i ≤ H), until reaching the root, whereH is the depth
of the constructed R-tree.

More than one predicate may be used to construct the se-
mantic groups. Thus, multiple semantic R-trees can be ob-
tained and maintained concurrently in a distributed manner
in a large-scale distributed file system where most files are of
interests to arguably one or a small number of applications
or application environments. In other words, each of these
semantic R-trees may possibly represent a different applica-
tion environment or scenario. Our objective is to identify a
set of predicates that optimize the query performance.

An item a with D-dimensional attributes can be repre-
sented as asemantic vectorSa = [S1,S2, · · · ,SD]. Similarly,
a point query can also be abstracted asSa = [S1,S2, · · · ,Sd]
(1 ≤ d ≤ D). In the semantic R-tree, each node covers all
metadata that can be accessed through its children nodes.

Each node can also be represented by a geometric centroid
of all metadata it covers. When attributes are represented as
semantic vectors, they can be either physical ones, such as
time of creation and file size, or behavioral ones, such as
corresponding process ID and access pattern. Our previous
work [9] shows that combining physical and behavioral at-
tributes can improve the identification of file correlations,
which help improve cache hit rate and prefetch accuracy.

We propose to use Latent Semantic Indexing (LSI) [19]
as a tool to measure semantic similarity. LSI is a technique
based on the Singular Value Decomposition (SVD) [18] to
measure semantic similarity. SVD reduces a high-dimensional
vector into a low-dimensional one by projecting the large
vector into a semantic subspace. Specifically, SVD decom-
poses an attribute-file matrixA, whose rank isr, into the
product of three matrices, i.e.,A = UΣVT , where U =
(u1, . . . ,ur) ∈ Rt×r andV = (v1, . . . ,vr) ∈ Rd×r are orthog-
onal,Σ = diag(σ1, . . . ,σr) ∈ Rr×r is diagonal, andσi is the
i-th singular value ofA. VT is the transpose of matrixV. LSI
utilizes an approximate solution by representingA with a
rank-k matrix to delete all butk largest singular values, i.e.,
Ak = UkΣkVT

k .
A metadata query for attributei can also be represented

as a semantic vector of sizek, i.e., thei-th row ofUk ∈ Rt×k.
In this way, LSI projects a query vectorq ∈ Rt×1 into the
k-dimensional semantic space in the form of ˆq = UT

k q or
q̂ = Σ−1

k UT
k q. The inverse of the singular values is used to

scale the vector. The similarity between semantic vectors is
measured as their inner product. Due to space limitation, this
paper only gives a basic introduction to LSI and details can
be found in [19].

3.1.2 Basic Grouping Procedures

We first use LSI to group metadata according to their seman-
tic similarity. Next we present how to further formulate and
organize the groups into a semantic R-tree.

First, we calculate the correlations among these servers,
each of which is represented as a leaf node (i.e., storage
unit). Given N nodes storingD-dimensional metadata, a
semantic vector withd attributes(1≤ d ≤ D) is constructed
by using LSI to represent each of theN metadata nodes.
Then using the semantic vectors of theseN nodes as input
of the LSI tool, we obtain the semantic correlation value
between any two nodes,x andy, among theseN nodes.

The next procedure is to build parent nodes, i.e., the
first-level non-leaf node (index unit), in the semantic R-tree.
Nodesx andy are aggregated into a new group if their corre-
lation value is larger than a predefined admission threshold
ε1. When a node has correlation values larger thanε1 with
more than one another node, the one with the largest cor-
relation value will be chosen. These groups are recursively
aggregated until all of them form a single one that is the root
of R-tree. In the semantic R-tree, each tree node uses Mini-
mum Bounding Rectangles (MBR) to represent all metadata
that can be accessed through its children nodes.



The above procedures aggregate all metadata into a se-
mantic R-tree. For complex queries, the query traffic is very
likely bounded within one or a small number of tree nodes
due to metadata semantic correlations and similarities. If
each tree node is stored on a single metadata server, such
query traffic is then bounded within one or a small num-
ber of metadata servers. Therefore, the proposed SmartStore
can effectively avoid or minimize brute-force searches that
must be used in conventional directory-based file systems
for point and complex queries.

3.2 System Reconfigurations

3.2.1 Insertion

When a storage unit is inserted into a semantic group of
storage units, the semantic R-tree is adaptively adjusted to
balance the workload among all storage units within this
group. An insertion operation involves two steps: group lo-
cation and threshold adjustment. Both steps only access a
small fraction of semantic R-tree in order to avoid message
flooding in the system.

When inserting a storage unit as a leaf node of the se-
mantic R-tree, we need to first identify a group that is most
closely related to this unit. Semantic correlation value be-
tween this new node and a randomly chosen group is com-
puted by using the LSI analysis over their semantic vectors.
If the value is larger than certain admission threshold, the
group then accepts the storage unit as a new member. Other-
wise, the new unit will be forwarded to adjacent groups for
admission checking. After a storage unit is inserted into a
group, the MBR will be updated to cover the new unit.

The admission threshold is one of the key design para-
meter to balance load among multiple storage units within a
group. It directly determines the semantic correlation, mem-
bership, and size of a semantic group. The initialized value
of this threshold is determined by the sampling analysis. Af-
ter inserting a new storage unit into a semantic group, the
threshold is dynamically adjusted to keep the semantic R-
tree balanced.

3.2.2 Deletion

The deletion operation in the semantic R-tree is similar to a
deletion in a conventional R-tree [7]. Deleting a given node
entails adjusting the semantic association of that group, in-
cluding the value of group vector and the multi-dimensional
MBR of each group node. If a group contains too few stor-
age units, the remaining units of this group are merged into
its sibling group. When a group becomes a child node of its
former grandparent in the semantic R-tree as a result of be-
coming the only child of its father due to group merging, its
height adjustment is propagated upward if necessary.

3.3 On-line Queries

We present the intuitive on-line queries that locate a query
request to correlated node by multicasting messages.

3.3.1 Range Query

A range query is to find files satisfying multi-dimensional
range constraints. A range query can be easily supported
in the semantic R-tree that contains an MBR on each tree
node with a time complexity bounded byO(logN) for N
storage units. A range query request can be initially sent
to any storage unit that then multicasts query messages to
its father and sibling nodes in semantic R-tree to identify
correlated target nodes, which may contain results with high
probability.

3.3.2 Top-K Query

A top-k query aims to identifyK files with attribute values
that are closest to the desired one, query pointq. The main
operations are similar to those of a range query. After a
storage unit receives a query request, it first checks its father
node, i.e., an index node, to identify a target node in the
semantic R-tree that is most closely associated with the
query pointq. After checking the target node, we obtain
a MaxD that is used to measure the maximum distance
between the query pointq and all currently obtained results,
serving as a threshold for improving the queried results. The
MaxD value can be updated when obtaining better results.
By multicasting query messages, the sibling nodes of the
target node are further checked to verify whether the current
MaxD represents the smallest distance to the query point,
i.e., determining whether there are still better results. Until
the parent node of the target node cannot find files with
smaller distance thanMaxD, we can return the top-k query
results to the request.

3.3.3 Point Query

Filename-based indexing is very popular in existing file sys-
tems and will likely remain popular in future file systems. A
point query for filenames is to find some specific file, if it ex-
ists, among storage units. A simple but bandwidth-inefficient
solution is to send the query request to a sequence of storage
units to ascertain the existence and location of the queried
file following the semantic R-tree directly. This method suf-
fers from long delays and high bandwidth overheads.

In SmartStore, we deployed a different approach for point
query. Specifically, Bloom filters [20], which are space-
efficient data structures for membership queries, are em-
bedded into storage and index units to support fast filename-
based query services. A Bloom filter is built for each leaf
node to represent the file names of all files whose metadata
are stored locally. The Bloom filter of an index unit is ob-
tained by the logical union operations of the Bloom filters
of its child nodes, as shown in Figure 4. A filename-based
query will be routed along the path on which the corre-
sponding Bloom filters report positive hits. A false positive
is solved by broadcasting to all leaf nodes.

The above multi-query operations have to suffer from
heavy messages to locate most correlated nodes that contain
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queried files with high probability, since a query request
is randomly allocated to a storage unit that is possibly not
correlated with the request. The query performance can be
further improved by off-line pre-processing.

3.4 Queries Accelerated by Off-line Pre-processing

To further accelerate queries, we utilize duplicate-basedap-
proach to performing off-line pre-processing. Specifically,
each storage unit locally maintains a copy of the semantic
vectors of all index units to speed up the queries. The ba-
sic idea of the off-line pre-processing is that each storage
unit maintains semantic information of a limited number of
index units to strike a tradeoff between accuracy and mainte-
nance costs as shown in Figure 5. We deploy the replicas of
first-level index units, e.g.,D,E, I , in storage units to obtain
a good tradeoff, which is further verified in Section 5.4. Any
arriving request thus can first be formulated into a request
vector based on its multi-dimensional attributes. We then
use the LSI tool over the request vector and semantic vec-
tors of existing index units to check which index unit is the
most semantically associated with the request, i.e., discov-
ering the target index unit that has the largest probabilityof
successfully serving the request. The request can be further
forwarded directly to the target index unit, in which a local
search is performed. In this way, we can efficiently reduce
the communication costs for positioning target units using
off-line pre-processing, for point, range and top-k queries.

Request 
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Storage units

Index units

Root

(1) Group  Location 

using LSI  

(2) forward 

request (3) local search

(4) if fail, continue 

to forwardMatching? 
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Query : Forward

Matching? 

Query : Forward

Off-line pre-processing
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Figure 5. On-line and off-line queries. Off-line pre-
processing can quickly locate target index unit that has high
probability to satisfying requests.

4. Key Issues
We discuss key issues in SmartStore in terms of node
split/merge, units mapping and attribute updating.

4.1 Node Split and Merge

The operations of splitting and merging nodes in semantic R-
tree follow the standard algorithms in R-tree [7], in which a
node will be split when the number of its child nodes is larger
than a predetermined thresholdM and a node is merged with
its adjacent neighbor when the number of its child nodes
is smaller than another predetermined thresholdm. In our
design, the parameterm andM can be defined asm≤ M

2 .
The parametermcan be varied in real-world applications by
experimental tuning to obtain load balance.

4.2 Multi-Mapping for Index Units

Since index units are stored in storage units, it is necessary
and important to map the former into the latter in a way
that balances the load among storage units while enhances
system reliability. Our mapping is based on a simple bottom-
up approach that iteratively applies the random selection and
labeling operations, as shown in Figure 6 by an example. The
example shows the process that maps index units to storage
units. An index unit in the first level can be first randomly
mapped to one of its child nodes in the R-tree (i.e., a storage
unit from the covered semantic group). Each storage unit
that has been mapped by an index node is labeled to avoid
being mapped by another index node. After all the first-
level index units have been mapped into storage units, the
same mapping process is applied to the second-level index
units that are mapped to the remaining storage units. This
mapping process repeats iteratively until the root node of
the semantic R-tree is mapped. In practice, also verified by
experiments in Section 5.4, the number of storage units is
generally much larger than that of index units and thus each
index unit can be mapped to a different storage unit.

Index units

Storage units

Mapping 

Grouping 

The first-level 

index units

The second-level index unit

Figure 6. Mapping operations for index units.
Our semantic grouping scheme aggregates correlated

metadata into semantic-aware groups that can satisfy query
requests with high probability and the experimental results
in Section 5 further show that most of requests can ob-
tain query results by visiting one or a very small number
of groups. The root node hence will not likely become a
performance bottleneck.



However, the single point of failure of the root node may
result in a serious threat to system reliability. Thus, we uti-
lize a multi-mapping approach to enhancing system reliabil-
ity through fault tolerance, by allowing the root node to be
mapped to multiple storage units. In this multi-mapping of
the root node, the root is mapped to a storage unit in each
group of the storage units that cover a different subtree of
the semantic R-tree, so that the root can be found within all
different subtrees. Since each father node in the semantic R-
tree maintains the MBR-based multi-dimensional attribute
ranges of its child nodes while the root keeps the attribute
bounds of files of the entire system (or application environ-
ment), a change on a file or metadata will not necessarily
lead to an update on the root node representation, unless it
results in a new attribute value that falls outside of any at-
tribute bound maintained by the root. Thus, most changes
to metadata in a storage unit will not likely lead to an up-
date on the root node, which significantly reduces the cost
of maintaining consistency among the multiple copies of the
root node that must multicast any change to one copy of the
root to all others.

This method of mapping the root node to all semantic
“groups” at a certain level of the semantic R-tree also facil-
itates fast query services and improves system reliability. It
can help speedup the query services by quickly eliminating
an unsatisfiable query request through checking the root to
determine if the query range falls outside of the root range.If
a root in a group fails, the group can easily obtain a copy of
the root index information from one of the adjacent groups
to create a new mapping within the failing group and then
multicast the newly mapped root to other groups.

4.3 Attribute Monotone for Updating

SmartStore can support updating function by analyzing the
monotone of multi-dimensional attributes to further insert,
delete or migrate changed files, obtaining system load bal-
ance and improving query accuracy.

SmartStore considers an attribute to be of monotone-
sensitivity if its value always increases or decreases over
time. One example is the time of creation of a file since the
time is increased monotonically. The monotone-sensitivity
attributes potentially leads to inefficiency of semantic R-
tree representation since when adding a new file, its created
time must often be outside of the existing represented MBR
ranges, i.e., an outlier, thus resulting in frequent updates
to maintain information consistency and query accuracy. In
contrast, non-monotone-sensitivity attributes, e.g., file size,
needs not to be always increased or decreased, hence leading
to infrequent updating operations. The difference between
monotone-sensitivity and monotone-insensitivity attributes
is that the former may become an outlier of the root MBR
and thus requires updating all nodes from the current node
to the root, whereas the latter may still be covered by the
current node’s MBR and thus require no or limited updates.

Our scheme considers an aggregate-based approach for
updating. After changing the value of a monotone-sensitivity
attribute, SmartStore needs to re-computes the correlation of
semantic vectors among changed files and all index units of
the first-level node. If the file still maintains the most corre-
lation with the current group, meaning that no migration is
required, SmartStore sends the update message to the index
unit of the group to extend its MBR, while the updated at-
tribute information will be kept in the index unit as an aggre-
gate. When the number of updated messages in the aggregate
is larger than some threshold, we then update the MBR of all
nodes from the current index unit to the root. The changed
file might also be migrated into the group that is most corre-
lated and the new group will carry out the similar operations
to update higher-level nodes in an aggregate way. On the
other hand, if the value of a monotone-insensitivity attribute
is changed, we only need to update the related nodes that
consider the changed value an outlier.

The feasibility of the aggregate-based update design
for monotone-sensitivity attributes is that the root is infre-
quently visited and some update latency will not introduce
much query errors, while our first-level index units that are
frequently visited keep the up-to-date attribute information
to guarantee query accuracy.

5. Performance Evaluation
We have implemented a prototype of SmartStore. This sec-
tion evaluates SmartStore through the prototype by using
representative large I/O traces, includingHP [21], MSN[14],
EECS[15]. We compare SmartStore against the database ap-
proach and the evaluation metrics considered are query ac-
curacy, query latency and communication overhead.

5.1 System Implementation

The SmartStore prototype is implemented in the Linux en-
vironment and our experiments are conducted on a cluster
of 60 storage units. Each storage unit has Intel Core 2 Duo
CPU, 2GB memory, and high-speed networks. We carry out
the experiments for 30 runs each to validate the results based
on the evaluation guidelines of file and storage systems [1].

In order to emulate the I/O behaviors of the next-generation
storage systems, we scaled up the I/O traces both spatially
and temporally. Specifically, a trace is decomposed into sub-
traces. We add the unique subtrace ID to all files to intention-
ally increase the working set. The start time of all subtraces
is set to zero so that they are replayed concurrently. The
chronological order among all requests within a subtrace is
faithfully preserved. The combined trace contains the same
histogram of file system calls as the original one but presents
a heavier workload (higher intensity). The number of sub-
traces replayed concurrently is denoted as theTrace Inten-
sifying Factor(TIF) as shown in Table 1, 2 and 3. Similar
workload scale-up approaches have also been used in other
studies [5,6].



Table 1. Scaled-up HP trace.
Original TIF=80

request(million) 94.7 7576
active users 32 2560

user accounts 207 16560
active files(million) 0.969 77.52
total files (million) 4 320

Table 2. Scaled-up MSN trace.
Original TIF=100

# of files(million) 1.25 125
total READ (million) 3.30 330

total WRITE (million) 1.17 117
duration (hours) 6 600

total I/O (million) 4.47 447

Table 3. Scaled-up EECS trace.
Original TIF=150

total READ (million) 0.46 69
READ size(GB) 5.1 765

total WRITE (million) 0.667 100.05
WRITE size (GB) 9.1 1365

total operations (million) 4.44 666

We compare SmartStore with two baseline systems. The
first one is a popular database approach that uses aB+

tree [8] to index each metadata attribute. The second one is
a simple, non-semantic R-tree-based database approach that
organizes each file based on its multidimensional attributes
without leveraging metadata semantics.

While filename-based point query is very popular in most
file systems workloads, no file system I/O traces represent-
ing requests for complex queries are publically available.In
this paper, we use a synthetic approach to generating reason-
able complex queries within the multi-dimensional attribute
space. The file static attributes and behavioral attributesare
derived from the available I/O traces. We randomly generate
range values used for range query, and desired values used
for top-k query according to three different statistic distri-
butions, including Uniform, Gauss, and Zipf. Due to space
limitation, we mainly present the results of Zipf distribution.

5.2 Grouping Efficiency

The grouping efficiency determines how effectively Smart-
Store can bound a query within a small set of semantic
groups to improve the overall system scalability. Figure 7
shows that most operations, from 87.3% to 90.6%, can be
served by one group, i.e., 0-hop routing distance. This con-
firms the effectiveness of our semantic grouping. In addition,
since the semantic vector of one group, i.e., the first-levelin-
dex unit in the semantic R-tree, can accurately present the
aggregated metadata, these vectors are replicated to other
storage units in order to perform fast and accurate queries
locally as mentioned in Section 3.4. The observed results
further prove the feasibility of the off-line pre-processing
scheme, which can quickly direct a query request to the most
correlated index units.
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Figure 7. The number of hops of routing distance.

5.3 Query Accuracy

We evaluate the performance of complex queries by using
“Recall” metric and point query by checking Bloom filters.

5.3.1 Complex Queries

We use “Recall” as a metric often used to measure search
quality in the field of information retrieval, to evaluate
the query accuracy. Given a queryq, we denoteT(q) the
ideal set ofK nearest objects andA(q) the actual neigh-
bors reported by SmartStore. We definerecall as recall =
|T(q)∩A(q)|

T(q) .
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Figure 8. Recall of complex queries usingHP trace.
Figure 8 shows the recall values of complex queries,

including range and top-k (k=8) nearest neighbor (NN)
queries, for theHP trace. We observe that a top-k query gen-
erally achieves higher recall than a range query. The main
reason is that top-k query in essence is a similarity search,
thus targeting a relatively smaller number of files. We also
notice that requests following a Zipf or Gauss distribution
obtain much higher recall values than those following uni-
form distribution. This is because under a Zipf or Gauss
distribution, files are mutually associated with a higher de-
gree than under uniform distribution. Table 4 and 5 show the
recalls of range and top-k queries, as a function of the query
numbers, forMSN and EECStraces. Experimental results
further confirm that SmartStore can achieve a high accuracy
for complex queries.

5.3.2 Point Query

SmartStore can support point query, i.e., filename-based in-
dexing, through checking multiple Bloom filters stored in
index units as described in Section 3.3.3. Although Bloom
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Figure 9. Average hit rate for point query.

Table 4. Recall of range and top-k queries usingMSN.
1000 2000 3000 4000 5000

Uniform
Range Query 86.2 85.7 84.5 83.2 82.8

K=8 90.5 89.7 87.4 86.2 85.8

Gauss
Range Query 90.5 89.3 88.6 87.7 86.4

K=8 95.8 94.2 93.5 92.4 91.6

Zipf
Range Query 91.2 90.5 89.3 88.7 87.3

K=8 96.5 95.1 94.3 93.6 92.6

Table 5. Recall of range and top-k queries usingEECS.
1000 2000 3000 4000 5000

Uniform
Range Query 87.3 86.5 84.6 83.2 81.5

K=8 91.5 90.2 89.8 87.4 85.6

Gauss
Range Query 89.7 88.2 87.5 85.5 83.1

K=8 96.7 95.1 94.2 92.3 91.1

Zipf
Range Query 90.2 89.6 87.5 86.7 84.8

K=8 97.3 96.2 94.8 93.5 92.7

filter-based searching may lead to false positives and false
negatives due to hash collisions and information staleness,
the false probability is very small. In addition, these false
positive and false negative are identified when the target
metadata is accessed. Figure 9 shows the hit rate for point
query. It is observed that over 88.2% query requests can be
served accurately by Bloom filters.

5.4 System Scalability
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for a total of 60 data nodes.

Figure 10. Optimal thresholds in system scale and semantic
R-tree levels.

We study the impact of system size on the optimal thresh-
old, as shown in Figure 10. Figure 10(a) shows the optimal
thresholds when the total number of storage units increases
from 20 to 60. Figure 10(b) shows the optimal thresholds at
different levels of the semantic R-tree. We examine the query
accuracy by measuring the recall when executing 2000 re-
quests composed of 1000 range and 1000 top-k queries, as

show in Figures 11. These the requests are respectively gen-
erated from Gauss and Zipf distributions. Experimental re-
sults show that SmartStore can consistently achieve a high
query accuracy when the number of storage units increases,
demonstrating the scalability of SmartStore.
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Figure 11. Recall with the increments of system scale
within the requests following Gauss and Zipf distributions.

We compare on-line and off-line query performance in
terms of query latency and message numbers with the sys-
tem scale increments as shown in Figure 12. Figures 12(a)
compares the query latency between two methods, as de-
scribed in Section 3.4, under a Zipf distribution. The on-
line method identifies the most correlated storage unit for
the query request by multicasting messages; whereas, the
off-line method stores semantic vectors of the first-level
index units in advance to execute off-line LSI-based pre-
processing to quickly locate the most correlated index unit.
In addition, Figures 12(b) compares the number of inter-
nal network messages of the on-line and off-line approaches
when performing complex queries. We observe that the off-
line approach can significantly reduce the total number of
network messages. This is mainly due to the fact that it
uses LSI-based pre-processing to determine correlated stor-
age unit for a query request.

Number of Data Nodes

L
a

te
n

c
y
 (

m
s
)

20 30 40 50 60
0

100

200

300

400

500

600

700
HP(on-line)
MSN(on-line)
EECS(on-line)

HP(off-line)
MSN(off-line)
EECS(off-line)

(a) Average query latency.

Number of Data Nodes

M
e

s
s
a

g
e

 N
u

m
b

e
r 

(1
0

0
0

)

20 30 40 50 60
0

30

60

90

120

150

180
HP(on-line)
MSN(on-line)
EECS(on-line)

HP(off-line)
MSN(off-line)
EECS(off-line)

(b) Message numbers.

Figure 12. Performance comparisons using on-line and off-
line approaches.

5.5 Performance Comparisons between SmartStore
and Baseline Systems

We compare the query latency between SmartStore and the
two baseline systems described earlier in Section 5.1, la-
beled DBMS and R-tree respectively. Figure 13 and 14 show
the latency comparisons of point, range and top-k queries
using theMSNandEECStraces. It is observed that Smart-
Store incurs much lower latency. SmartStore effectively ag-



gregates correlated file metadata together and significantly
limits search scope. In contrast, DBMS has to check each
B+-tree index for each attribute, resulting in linear brute-
force search costs. Although the non-semantic R-tree ap-
proach is able to improve query performance, to some ex-
tent, by using a multi-dimensional structure and thus allow-
ing the parallel indexing on all attributes, its query latency
is still much larger than SmartStore due to no considerations
on semantic correlations.

We also examine the space overhead of SmartStore, R-
tree and DBMS, as shown in Figure 15. SmartStore con-
sumes much smaller space than the R-tree and DBMS
approaches, due to its decentralized scheme and multi-
dimensional representation. SmartStore stores the index
structure, i.e., semantic R-tree, across multiple nodes, while
R-tree is a centralized structure. Additionally, SmartStore
utilizes the multi-dimensional attribute structure, i.e., se-
mantic R-tree, while DBMS builds aB+-tree for each at-
tribute. As a result, DBMS has a large storage overhead.
Since SmartStore has a small space overhead and can be
stored in memory on most servers, it allows the query to be
served at the speed of memory or network.
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Figure 15. Comparisons of space overheads of SmartStore,
R-tree and DBMS.

6. Related Work
Researchers in the database field aim to bring database ca-
pacity to Petabyte scales with billions of records. For ex-
ample, the design based on the notion of data space [11]
is proposed as a data co-existence approach to serving the
collections of heterogeneous and partially unstructured data.
However, the data space approach is potentially inefficient
for mass data in file systems because it lacks the optimiza-
tion for system workloads by exploiting access patterns and
locality of reference and skewed distribution of metadata,
and requires a prohibitively large and complex table lists for
maintaining relationships of all participants.

Distributed directory service for Farsite [2] utilizes tree-
structured file identifiers to support dynamically partition-
ing metadata at arbitrary granularities. Ceph [3] maximizes
the separation between data and metadata management by

using a pseudo-random data distribution function to sup-
port a scalable and decentralized placement of replicated
data. G-HBA [6] supports a scalable and adaptive decentral-
ized metadata lookup scheme that logically organizes meta-
data servers into a query hierarchy and exploits grouped
Bloom filters to efficiently route metadata requests to desired
servers through the hierarchy. Our SmartStore can efficiently
support complex queries, which are rarely investigated in ex-
isting file systems. SmartStore clusters semantically associ-
ated metadata servers into groups and schedules a metadata
query request to the group that can successfully serve this
request with a very high probability.

Our proposed architecture mainly exploits the advantages
of R-tree for multi-dimensional range and top-k queries.
An R-tree [7] is a tree-based data structure that, similar
to B-tree [8], is often used to represent and index spatial
multi-dimensional data by minimum bounding rectangles
(MBR). An R-tree can split the data space into hierarchically
nested bounding boxes, which can contain several data enti-
ties within certain ranges. In our design, we exploit its spe-
cial capability of supporting range and top-k nearest neigh-
bor (NN) queries by modifying its structure appropriately to
serve our special purpose of semantic grouping. Although
successful for databases, R-tree-based research has not been
directly conducted in large-scale distributed file systems, es-
pecially for supporting complex queries. To the best of our
knowledge, SmartStore is the first study that attempts to ex-
ploit the R-tree structure for semantic grouping of file meta-
data to significantly reduce the costs of key operations in
complex queries.

7. Conclusion
The paper presents a new paradigm for organizing file meta-
data for next-generation file systems, called SmartStore, by
exploiting file semantic information to provide efficient and
scalable complex queries while enhancing system scalabil-
ity and functionality. The novelty of SmartStore lies in that
it matches actual data distribution and physical layout with
their logical semantic association so that a complex query
can be successfully served within one or a small number of
storage units. Specifically, this paper has made three main
contributions. (1) A semantic grouping algorithm is pro-
posed to effectively identify files that are correlated in their
physical attributes or behavioral attributes. (2) SmartStore
can very efficiently support complex queries, such as range
and top-k, which will likely become increasingly important
in the next-generation file systems. (3) Our prototype imple-
mentation proves that SmartStore is highly scalable, and can
be deployed in a large-scale storage system with many stor-
age units.
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