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Cch1, a putative voltage-gated calcium ion channel, was investigated for its role in ascus development in
Gibberella zeae. Gene replacement mutants of CCH1 were generated and found to have asci which did not
forcibly discharge spores, although morphologically ascus and ascospore development in the majority of asci
appeared normal. Additionally, mycelial growth was significantly slower, and sexual development was slightly
delayed in the mutant; mutant mycelia showed a distinctive fluffy morphology, and no cirrhi were produced.
Wheat infected with �cch1 mutants developed symptoms comparable to wheat infected with the wild type;
however, the mutants showed a reduced ability to protect the infected stalk from colonization by saprobic fungi.
Transcriptional analysis of gene expression in mutants using the Affymetrix Fusarium microarray showed 2,449
genes with significant, twofold or greater, changes in transcript abundance across a developmental series. This
work extends the role of CCH1 to forcible spore discharge in G. zeae and suggests that this channel has subtle
effects on growth and development.

Forcible discharge of ascospores from asci is a mechanism
common to the majority of fungi in the phylum Ascomycota.
The mechanism is vital for initiating the disease cycle in many
plant-pathogenic species, including Gibberella zeae (asexual
stage Fusarium graminearum), the causal agent of fusarium
head blight of wheat. Analysis of the epiplasmic fluid surround-
ing the spores within the ascus indicates that sugars (Ascobolus
immersus) (14) or ions (G. zeae) (56) accumulate and act as
osmolytes for generation of the turgor pressure necessary to
fire the spores. In the case of G. zeae, the pressure drives an
impressive acceleration—870,000 � g—the highest yet re-
corded in a biological system (56). While the physiological
basis of the mechanism of discharge is beginning to be eluci-
dated, the genetic basis remains largely unexplored.

Shifts in calcium levels across both internal and plasma
membranes regulate many cellular processes (2). Calcium
fluxes are generated by internal release or by influx through
calcium channels. Although calcium signaling is not well un-
derstood in fungi, the components are conserved in fungal
genomes (59), and several parts of the signaling machinery
have been studied, including calcineurin (43, 10, 4, 48, 13),
calmodulin (37), Ca2�/calmodulin-dependent kinases (11, 12,
35, 31, 58, 52), and phospholipase C (19).

CCH1 encodes a calcium ion channel localized in yeast to
the plasma membrane (39). Cch1 has been described as a
voltage-gated Ca2� channel due to its highly conserved trans-
membrane voltage-sensing S4 domains related to the mamma-
lian L-type voltage-gated calcium channel (15, 39). However, a
recent comparison of the conserved charged residues (arginine

and lysine) in the S4 region indicates that the full complement
of residues is not present in the fungal proteins, and thus
fungal Cch1 may be less sensitive to voltage than its mamma-
lian orthologs (38). In Saccharomyces cerevisiae, Cch1 has been
proposed to interact with the stretch-activated channel Mid1
(32). Both are implicated in a phenotype described as “mating
pheromone-induced death”: on exposure to �-factor, deletion
mutants of either gene in a MATa background die shortly after
forming shmoos (26, 15). Based on phenotype and double-
mutant studies, Locke and colleagues (39) suggest that Cch1
and Mid1 may function together in yeast, and coimmunopre-
cipitation studies have supported their association in vivo.
However, Kanazaki and colleagues (32) have shown that Mid1
is capable of forming an independent, functional channel in
Chinese hamster ovary cells (32), and Liu et al. (38) present
evidence that Mid1 and Cch1 have independent roles under
certain culture conditions.

G. zeae is a major crop pathogen, infecting wheat, barley,
maize, and other cereal crops worldwide and causing extensive
losses. In addition to reduced yield, the infected crop can be
rendered unusable by the production of mycotoxins (9, 56),
notably zearalenone (estrogenic) and trichothecenes (antifeed-
ant and emetic). While the fungus possesses an asexual stage
(F. graminearum) capable of producing abundant conidia, the
primary inoculum of the disease is believed to be ascospores
(49), which are forcibly discharged from perithecia forming on
crop debris. The process of sexual development both in culture
and in planta has been well described (54, 23). Recently, a
detailed transcriptional analysis during the developmental
stages of the perithecium was completed (24) on the Fusarium
GeneChip (22).

As forcible ascospore discharge can be considered a possible
target for control measures, we have been focusing on the
physiological and genetic aspects of this phenomenon. In G.
zeae, pharmacological evidence suggests that calcium plays a
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crucial role in forcible spore discharge (57). We have begun to
investigate the role of calcium flux and signaling by the tar-
geted disruption of the G. zeae homolog of S. cerevisiae CCH1.
Our results suggest that Cch1 is critical to the discharge pro-
cess.

MATERIALS AND METHODS

Fungal strains and growth conditions. The strain of G. zeae used for this study
was a Michigan field isolate, PH-1 (FGSC 9075; NRRL 31084), and mutants derived
from this wild-type strain. The genome of PH-1 has been sequenced (http://www
.broad.mit.edu/annotation/genome/fusarium_graminearum/Home.html), and con-
siderable annotation has been completed (http://mips.gsf.de/genre/proj/fusarium).
All strains were maintained as mycelia and conidia (106 conidia ml�1) in 30%
glycerol at �80°C and on sterile soil at �20°C. Conidia were generated for stocks
and for quantification in carboxymethylcellulose (Sigma Chemical Co., St. Louis,
MO) following standard techniques (7).

Construction of �cch1 mutants. The ortholog of S. cerevisiae CCH1 was
identified in the G. zeae genome on the basis of BLAST sequence homology as
fg01364 (mips.gsf.de/genre/proj/fusarium). Cultures were grown for 48 h in liquid
yeast extract-sucrose medium (2% yeast extract–6% sucrose, pH 5.8), and my-
celia were collected in Miracloth (Calbiochem-Novabiochem Corp., San Diego,
CA) and lyophilized. DNA was extracted using CTAB (hexadecyl-trimethylam-
monium bromide) according to the method of Kerényi et al. (33). Primers (Table
1) were designed to 438-bp (primers 1 and 2) and 623-bp (primers 4 and 5)
regions upstream and downstream, respectively, of the predicted transcriptional
start and stop sites; the primers nearest the coding sequence had additional
25-base tails complementary to the hygromycin B phosphotransferase gene (hph)
of plasmid pCB1004 (8) (Table 1). Primers 10 and 11 were used to amplify hph.
The upstream and downstream flanking regions of CCH1 were combined with
hph in a further round of PCR, using primers 1 and 5, and this construct was
transformed into G. zeae. CCH1 was replaced by double-crossover integration of
the gene replacement construct into the homologous portion of the genome.
Protoplast-based transformation was performed as described by Gaffoor et al.
(17). Hygromycin-resistant transformants were selected on V8 agar containing
150 �g ml�1 hygromycin B (Calbiochem-Novabiochem) and subsequently trans-
ferred to V8 agar containing 450 �g ml�1 hygromycin B (17). Conidia from
hygromycin-resistant colonies were transferred to 2% water agar, and single
conidial isolates were obtained for further analysis. Conidial isolates were grown
for 3 to 4 days in carboxymethylcellulose broth, collected by centrifugation, and
stored as above. Several mutants were confirmed by PCR and Southern analysis
and used for further characterization. Transformants �cch1-T12 and �cch1-T14
were representative of the mutant phenotype and genotype and were used for
further study, along with ectopic transformant �cch1-T11.

When the expected amplicon was �2,000 bp, PCRs used Invitrogen Taq
(Invitrogen, Carlsbad, CA), and the reaction protocol followed Tank and Sang
(53). For amplicons of �2,000 bp (primer pair 1 and 5; assembling the deletion
construct and amplifying the complementation template), Expand Long-Tem-

plate Polymerase was used, following manufacturer’s instructions (Roche Ap-
plied Science, Indianapolis, IN).

For Southern analysis, genomic DNA was cut to completion with BamHI,
which was predicted to cut CCH1 twice, yielding one fragment of 3,507 bp that
would hybridize to the CCH1 internal probe (amplified by primers 7 and 8).
BamHI was not predicted to restrict the gene deletion construct carrying the hph
gene. Restriction fragments were resolved by electrophoresis in 0.8% agarose in
1� Tris-acetate-EDTA (47) and transferred onto a Nytran Supercharge nylon
membrane (Schleicher and Schuell Bioscience, Keene, NH). The membranes
were probed twice with [32P]CTP-labeled probes, once with the CCH1 internal
probe, and once with the hph probe. The residual probe was removed by im-
mersion in boiling 0.1% sodium dodecyl sulfate in water between hybridizations
(18). Primers 7 and 8 (within CCH1) and primers 4 and 9 (upstream of and within
CCH1, respectively) were used to evaluate putative transformants for the ab-
sence of CCH1. The primer pair 3 and 13 and the pair 12 and 6 were used to
evaluate putative transformants for the presence of the hygromycin resistance
cassette in connection with the CCH1 flanking regions. Primer pair 7 and 8 and
primer pair 10 and 11 were used as probes in Southern analysis, and pair 1 and
5 was used on PH-1 to amplify the entire CCH1 gene plus flanking regions for use
in the complementation.

Complementation of the cch1 mutation. Protoplasts from mutant �cch1-T14
were transformed with the complete CCH1 genomic region including the up-
stream and downstream flanking regions (total size, 7,662 bp) (see “Construction
of �cch1 mutants” above) in the neomycin-resistant plasmid pYN06 (as de-
scribed by Huo et al. [25]). Transformants were selected by their ability to grow
on regeneration medium containing 200 �g ml�1 G418. Transformants were
screened for the loss of the fluffy phenotype in the vegetative mycelia on carrot
agar, and single spore isolates were obtained and stored as above. Genetic
characterization of complemented mutants was done initially by PCR and sub-
sequently by Southern analysis.

Characterization of mutant phenotypes. Ten-microliter conidial stocks were
center inoculated (for characterization of vegetative growth) or spread across the
surface (for sexual development and GeneChip studies) of carrot agar (36) in a
petri plate (60-mm diameter) and incubated at room temperature (22 to 24°C)
until the mycelia reached the edge of the plate (4 to 6 days). For growth rates,
radial growth from center-inoculated cultures (five replicates) of each mutant
and the wild type were measured at 24-h intervals from the time of inoculation
until the colony reached the edge of the plate. The first day’s growth was
discounted. G. zeae is homothallic, and sexual development was induced by
gently removing the surface mycelium and applying 1 ml of 2.5% Tween 60 to the
surface (6). To help visualize developmental stages, samples were collected daily
thereafter from the surface of the agar. Samples were stained with acridine
orange, squash mounted in water on a microscope slide, and examined at mag-
nifications of �200 and �500 on a Zeiss standard epifluorescence microscope, as
previously described (23). Wild-type PH-1 was used for comparison.

A previous study delineated six stages of sexual development corresponding to
vegetative hyphae, dikaryotic hyphae, perithecium initiation, paraphysis devel-
opment, ascus development, and ascospore formation. These developmental

TABLE 1. Primers used in this study

Primer
no. Primer name Sequence (5�–3�) Contiga Coordinatesa

1 Cch1 U5 GATATCCAGTCGCGTCAC 1.69 11544–11527
2 Cch1 U3 ACTTATTCAGGCGTAGCAACCAGGCGTCCAACGA

GGTCCAATGTC
1.69 11107–11124

3 Cch1 U5 nested ATGTTCGAAGCGTGTTTAGTGTGTTT 1.69 11524–11499
4 Cch1 D5 TCAGCATCTTTTACTTTCACCAGCGTTGGAAGAG

AAGATAGGTAC
1.69 4504–4487

5 Cch1 D3 GTGTCTTTATCTAGCTTCAATAG 1.69 3882–3904
6 Cch1 D3 nested ATCCTCCTGGGCGCCATCGCACCG 1.69 3938–3961
7 Cch1 internal F CGTCAGTCTATCCCGCTGCAAG 1.69 11036–11105
8 Cch1 internal R GGTTAGGCAGAGGTGGTCTTGG 1.69 10166–10187
9 Cch1 internal F rc CTTGCAGCGGGATAGACTGACG 1.69 11105–11036
10 HC-CN1004Fb AACGCTGGTGAAAGTAAAAGATGCTGAA
11 HC-CN1004Rb ACGCCTGGTTGCTACGCCTGAATAAGT
12 Hyg internal 3� TTCGATCAGAAACTTCTCGACAGACG
13 Hyg internal 5� CGGCCGTCTGGACCGATGGCTGTGTA

a Contigs and coordinates are given for the G. zeae genome and do not apply to hygromycin primers 10 to 13, which amplify pCB1004.
b Primers are courtesy of Jennifer Biezske.
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stages were designated as 0 h (vegetative hyphae and time of induction of sexual
development) through 144 h (mature perithecia with discharging ascospores,
with spores of some asci still coming to maturity). Although the cch1 mutants are
developmentally delayed, we have retained the hourly designations of the wild
type here for consistency. When the cultures reached the 144-h stage, a cork
borer was used to remove a circular agar plug covered with perithecia. The plug
was cut into two semicircles which were placed on a microscope slide in a moist
chamber, with perithecia-covered surfaces perpendicular to the slide. The slides
were examined after 15, 24, and 48 h for spore discharge. To account for
potentially slower growth and development of the mutants, samples were also
taken at 168 h postinduction and assayed for spore discharge.

Calcium supplementation. The cch1 mutants were supplemented with calcium
to determine if the addition of calcium would compensate for the mutation.
Calcium supplementation was done as follows: CaCl2 was added to solidified
carrot agar (i) simultaneously with inoculation or (ii) simultaneously with the
Tween 60 at the time of induction of sexual development or (iii) at the initiation
of the discharge assay, when the CaCl2 was allowed to permeate the agar plug.
In all cases, CaCl2 at concentrations of 10, 100, 500, and 1000 mM was added to
the agar, resulting in final concentrations of 0.77, 7.69, 38.46, and 76.92 mM,
respectively.

In Cryptococcus neoformans, a �cch1 mutant, was unable to grow when con-
centrations of extracellular calcium were very low (38). Accordingly, the wild
type and �cch1 mutants were grown on Bilay’s medium (5) supplemented with a
1 mM concentration of the calcium chelator BAPTA (1,2-bis(2-aminophe-
noxy)ethane-N,N,N�,N�,-tetraacetic acid). A 60-mm petri plate was center inoc-
ulated with 10 �l of conidial stock, and growth was observed over 1 week.

Pathogenicity assays. To determine the effect of the �cch1 mutation on patho-
genicity of wheat, a method modified from Jin and Zhang (30) was used. Spring
wheat (Triticum aestivum L. cv. “Bobwhite”) was grown in the greenhouse to
anthesis and inoculated with 10 �l of conidial stock of either the wild type
(control) or the �cch1-T12 or the �cch1-T14 mutant. Ten florets (one floret per
head and one head per plant) were inoculated as previously described (23).
Following inoculation, the plants were placed in a misting chamber for 96 h for
the infection to develop; upon removal from the mist chamber, the wheat was
observed for the development of symptoms. Colonization of stems by saprobic
fungi occurred naturally in the greenhouse; these fungi were not inoculated onto
the stems. All inoculated plants were housed together, with controls placed
among the inoculated plants. The wheat matured in the greenhouse until fully
senesced (approximately 28 days after infection), after which the stems were cut
above the node closest to the soil line, and both stems and heads were allowed
to air dry at 25°C for a minimum of 7 days in the laboratory. Two 7-cm segments,
starting immediately below the head, were taken from each dried stem and
placed in glass petri plates (100-mm diameter) containing 6 g (dry weight) of
sterile vermiculite moistened with 5 ml of sterile distilled water. The stem
fragments were incubated under continuous cool white light (F34T12/CW; Phil-
lips United States, New York, NY) for 7 days at room temperature; then peri-
thecia were quantified under a dissecting microscope (StereoZoom 7; Leica
Microsystems GmbH, Wetzlar, Germany). Finally, each stem fragment was sus-
pended in 9 ml of 0.2% Tween 20 and agitated briefly to remove spores; spores
were collected from the resulting suspension by centrifugation. Spores were
resuspended in a known volume of water, quantified using a hemocytometer, and
identified. Spore ratios were compared using the chi-square test on a two-by-two
contingency table with 1 degree of freedom.

Microarray analysis. The mycelium harvested at the time of induction, i.e.,
when the mycelium reached the edge of the petri dish, was considered the 0 h
vegetative mycelium (4 days for the wild type and 5 days for the mutant). Surface
mycelia or developing perithecia were similarly harvested from the induced
cultures, at the stage in which ascus initials were present in immature perithecia
(96 h) and at the time of ascus and ascospore maturity (multiseptate ascospores
present in well-developed asci; 144 h). Three replicates were harvested for each
developmental stage. Collection and analysis of developmental stages from the
wild type have been previously described (24). All harvested samples were ly-
ophilized and frozen at �80°C until RNA extraction.

RNA was extracted from lyophilized samples using the Trizol reagent (Invitro-
gen). A CTAB-chloroform step was incorporated into all RNA preparations due
to high levels of polysaccharides in the 96-h and 144-h stages, as described in
Hallen et al. (24). The samples were purified using an RNeasy Mini Kit (Qiagen)
following the manufacturer’s instructions. Purified RNA was processed using the
Affymetrix One-Cycle Target Labeling procedure, following the Affymetrix man-
ual (1) and hybridized to the Fusariuma520094 GeneChip (Affymetrix). Hybrid-
ization, washing and chip reading buffers, and procedures followed Affymetrix
guidelines (1). The hybridization signals were scanned with a GeneChip GCS
3000 scanner (Affymetrix) and the cell intensity (CEL) files were obtained from

GCOS 2.1 software (Affymetrix). CEL files are available at PLEXdb (http://www
.plexdb.org/), accession numbers FG5 (wild type) and FG6 (mutant). CEL files
were normalized in the Bioconductor package of R, version 2.3.0rc (20, 45) using
RMA, an expression measure that accounts for background correction, quantile
normalization, and variation between arrays (27, 28).

Comparisons between �cch1 and the wild type for each developmental stage
were conducted using the Limma package in Bioconductor (51). The list of
differentially expressed genes was ranked based on the moderated t statistic
introduced by Smyth (50). Statistical significance was empirically determined for
each comparison by selecting the cutoff P value lower than the smallest P value
found in any of the Affymetrix control probe sets, as recommended by Smyth
(51). Genes for which significant differential transcript abundance was detected
were functionally characterized using FunCat (46).

RESULTS

The putative G. zeae homolog of the yeast CCH1 was re-
placed with the coding sequence of the hph gene imparting
hygromycin resistance. Sixteen hygromycin-resistant colonies
were obtained from a single transformation experiment with
the CCH1 deletion construct. Of the 16, six showed abnormal
vegetative growth on carrot agar. All 16 were analyzed by PCR,
and 5 of the abnormal colonies, designated �cch1-T10, -T12,
-T13, -T14, and -T15, were shown to be consistent with hph
insertion, replacing CCH1. Of the transformants demonstrat-
ing wild-type growth (ectopic insertions of the hph gene), one
isolate, designated �cch1-T11, was used in further studies as a
control. The status of transformants �cch1-T10 through
�cch1-T14 was confirmed by Southern analysis with an internal
fragment of CCH1 and with hph (Fig. 1).

Mutants of G. zeae lacking a functional CCH1 displayed
abnormal, delayed vegetative growth on carrot agar. Colony
morphology was distinct, with a dense, fluffy growth not ob-
served in the wild type (Fig. 2). Radial colony growth of the
wild type was 17.8 mm 24 h�1 until the edge of the petri plate
was reached, compared with 10.3 for �cch1-T12 and 10.6 for
�cch1-T14 (standard deviations of 1.4, 0.5, and 0.3, respec-
tively). The ectopic transformant �cch1-T11 exhibited radial
colony growth of 21.2 mm 24 h�1 (standard deviation, 2.6), and
the complemented strain �cch1comp6 grew 20.7 mm 24 h�1

(standard deviation, 0.7).
Following induction of sexual development, the �cch1 mu-

FIG. 1. Southern analysis of �cch1 mutants and complements com-
pared to the wild type using a probe internal to CCH1 (A) and a probe
specific to hph1 (B). Lanes from left to right: 1-kb ladder, wild type
(WT), transformant �cch1-T10, �cch1-T11, �cch1-T12, �cch1-T13,
�cch1-T14, and complements cch1comp6 and cch1comp5. There is an
empty lane between the two complements. Transformant �cch1-T11 is
an ectopic insertion of the replacement construct, including hph. Ten
micrograms was loaded per lane. Genomic DNA was digested with
BamHI. The CCH1 internal probe hybridizes to a BamHI fragment of
2,891 bp in the wild type. The hph1 probe hybridizes to a BamHI
fragment of 3,465 bp in �cch1 replacement mutants. Numbers on the
left indicate size in kb.
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tants continued to exhibit slower development, with a delay of
approximately 24 h compared with the wild type to full matu-
rity. While there were obvious differences in gross colony mor-
phology, these were not quantifiable at the microscopic level
when we examined hyphal tip growth. Normal morphological
development of the perithecia was present in the mutants. Asci
viewed under the microscope were morphologically normal,
and ascospores were viable (86 out of 97 [88%] ascospores
germinated, compared with 130 out of 140 [92%] for the wild
type; results not significantly different, with the chi-square
test). Spore discharge was not detected either at the time of
mutant perithecium maturity (168 h postinduction; multisep-
tate ascospores present in perithecium) or 24 h after attaining
maturity (192 h postinduction) (Fig. 3). Examination of lids of
petri dishes containing mutant cultures up to 3 weeks after
maturation failed to reveal any released ascospores, whereas
the lids of wild-type cultures exhibited copious amounts of
spores that had been discharged from the perithecia. Notably,
38% of the �cch1 mutant asci contained at least one abnormal
spore (Fig. 4). Abnormal ascospores have also been occasion-
ally observed in the wild type. Abnormal spores were much
reduced in size and were not included in the germination
assays.

Wild-type perithecia will commonly exude spores which
have not been discharged as the colonies age and dry. These
exuded spore masses, called cirrhi, are prominent within sev-
eral days of maturation in the wild type (Fig. 4A). No cirrhi
were observed at any time as the mutant cultures aged (Fig.
4B). The presence of a single cluster of conidia was frequently
observed on the surface of the perithecia (Fig. 4B). Strikingly,
older cultures of the wild type normally become covered with
conidial clusters (reduced sporodochia), but the �cch1 mu-
tants never accumulated more than these single clusters. There
was no difference in conidia production between the wild type
and the mutants in standard conidia-inducing medium made
with carboxymethylcellulose.

A complementation construct was prepared by subcloning a
7.6-kb fragment surrounding and including the CCH1 coding
region into pYN06 and using that construct to complement the
�cch1-T14 mutant. Two G418-resistant colonies, �cch1comp5
and �cch1comp6, were obtained from one transformation ex-
periment, and both harbored the wild-type CCH1. The wild-
type vegetative phenotype and active spore discharge were
restored with the complementation (Fig. 2 and 3), which was
confirmed initially by PCR analysis (results not shown) and
subsequently by Southern analysis (Fig. 1).

To test whether additional calcium could complement the
�cch1 mutation, as had been shown in S. cerevisiae (15), trans-
formants were supplemented with calcium (CaCl2) during sev-
eral different cultural and developmental stages. Carrot agar
was amended to a final concentration of 0.77, 7.69, 38.46, or
76.92 mM CaCl2 at each of three time points: at the time of
initial inoculation, concurrent with induction of sexual devel-
opment, and at the initiation of the ascospore discharge assay.
To ensure that higher than average calcium levels did not exert
a negative effect, wild-type PH-1 was also supplemented. No
phenotypic differences in either wild-type or mutant cultures
were noted at the two lowest concentrations of CaCl2. At the
higher levels, the wild-type vegetative phenotype was partially
restored in the mutants (Fig. 5). In addition, spore discharge
was restored in the mutants at the two highest levels of CaCl2
(shown for 38.46 mM CaCl2 in Fig. 3), although at the highest
level (76.92 mM) spore discharge began to diminish in the wild
type, probably due to a reduction in the turgor in the ascus
(57). To test, by contrast, the phenotype of the wild type and
mutants under calcium stress, the calcium chelator BAPTA
was added to solid Bilay’s medium, which was then center
inoculated with conidia of the wild type and �cch1 mutants.
Growth was poor for all cultures; however, wild-type PH-1
was capable of extending hyphae beyond the point of inoc-
ulation, while the �cch1 cultures never grew beyond the

FIG. 2. Vegetative growth on carrot agar 96 h after inoculation. (A) Wild type. (B) Ectopic transformant �cch1-T11. (C and D) Mutants
�cch1-T12 and �cch1-T14. Note the dense, fluffy growth. (E) �cch1comp6. Complementation of the �cch1 deletion mutant restores the wild-type
phenotype.

FIG. 3. Forcible ascospore discharge in the wild type (A), ectopic transformant �cch1-T11 (B), mutant �cch1-T12 (C), complement
�cch1comp6 (D), and mutant �cch1-T12 supplemented with 38.46 mM CaCl2 (E). Photographs were taken 24 h after the assay was initiated. Other
mutants shared a phenotype similar that of to �cch1-T12.
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point of inoculation (Fig. 6), although some aerial hyphal
growth was visible.

Examination of wheat infected with �cch1 and with the
wild type revealed no differences in symptom severity, with
all inoculated plants (10 plants each for the wild type and
the �cch1 mutants) exhibiting well-developed symptoms
(senescence of heads and stems extending below the top
node) by 14 days postinoculation. Mycelia were readily ob-
served within the pith of the stems when the plants were
harvested at 28 days postinoculation. Perithecia were
formed in 5 days when dry wheat stem sections were incu-
bated in moist vermiculite under light. Perithecia were pro-
duced abundantly by both the wild type and the mutants in
approximately equal numbers (average, 114 perithecia per 7
cm stem fragment). Stems colonized by the �cch1 mutants

and by the wild type revealed both obvious colonization and
conidiation by both G. zeae and other nonpathogenic fungi
from the greenhouse (largely Penicillium and Aspergillus
spp.). In both wild-type- and mutant-infected stems, G. zeae
conidia were in the minority compared with those of the
other fungi; however, the number of G. zeae conidia was
smaller, and the number of other conidia was greater in the
stems colonized by the mutants. Thus, there were 8.75 � 103

G. zeae conidia per stem in the �cch1 mutants, compared
with 5.04 � 105 conidia from other organisms. In the wild-
type-infected stems, there were 1.32 � 104 G. zeae conidia
per stem and 2.08 � 105 conidia from other organisms
(results were averaged over seven stems). The ratios were
1/59 (G. zeae conidia/other conidia) in wheat stems infected
by a cch1 mutant and 1/16 in stems infected by the wild type.

FIG. 4. Cirrhus formation and ascospore morphology. Cirrhi were present in the wild type (A; circled) and absent in the mutant �cch1 (B).
Occasional clusters of conidia (arrowheads) were seen on the surface of the mutant perithecia. A moderate number of cch1 mutant asci harbored
abnormal spores (C; arrowhead). For panels A and B an Axioskop 2 Plus microscope (Carl Zeiss, Inc., Hallbergmoos, Germany) equipped with
differential interference contrast optics was used. An AxioCam HRC (Hallbergmoos) photomicrographic system attached to the microscope was
used to capture images. The photograph in panel C was taken on a Nikon Labophot 2 microscope using phase optics and a Kodak DCS Pro camera
(Rochester, NY). Scale bars, 180 �m (A and B) and 5 �m (C).

FIG. 5. The effect of supplemental calcium (CaCl2) on vegetative growth. (A) Wild-type PH-1. (B) Mutant �cch1-T12 (other �cch1 mutants
showed the same effect). From left to right, the CaCl2 concentrations are 0.77, 7.69, 38.46, and 76.92 mM.
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These values differed significantly at a P of �0.001 accord-
ing to the chi-square distribution.

As calcium fluxes are known to affect gene transcription,
gene expression was compared between the wild type and
�cch1-T14. RNA was extracted at three time points, represent-
ing vegetative growth, immature perithecia (containing
paraphyses, croziers, and immature asci), and mature perithe-
cia with multiseptate ascospores. These time points in �cch1
were developmentally comparable to the wild type 0 h, 96 h,
and 144 h, respectively (24). In total, 2,449 probe sets showed
a statistically significant change in abundance of twofold or
greater between mutant and the wild type for all three time
points inclusive. Specifically, 651 transcripts were differentially
regulated in vegetative growth, 1,428 at 96 h and 515 at 144 h
(see Table S1 in the supplemental material for a complete list
of differentially expressed transcripts). There is comparatively
little overlap between time points, with only 111 transcripts
showing differential accumulation versus the wild type at more
than one time point. Table 2 shows those significantly different
from the wild type at both 0 and 96 h. CCH1 (probe set
fgd69-40_at) shows a decrease in transcript abundance of 6.18-
to 8.62-fold in the �cch1 mutants compared with the wild type,
indicating that hybridization on the GeneChip to the CCH1
probe set is essentially absent in the mutants but present in the
wild type, as expected for gene replacement mutants.

A functional categorization of genes showing a statistically
significant decrease in transcript accumulation of twofold or
greater in the �cch1 mutant compared to wild type is shown in
Table 3 (for the list of individual genes and complete break-
down into FunCat categories see Table S2 in the supplemental
material). Of particular interest are those categories for which
there is an enrichment of genes showing a decrease in tran-
script abundance in the mutant compared to the genome as a
whole. This enrichment is significant at P values of less than
0.05 (29). This analysis shows a significant enrichment of genes
involved in metabolism (FunCat category 01) in the pool of
down-regulated �cch1 genes. FunCats 02 and 14 (energy and
protein fate, respectively) also contained significant propor-
tions of genes with lowered transcript levels at 0 and 96 h
compared to the wild type, while FunCats 30 and 40 (cellular
communication/signal transduction mechanism and cell fate,
respectively) contained significant proportions of genes with
lowered abundance at 96 and 144 h for the same comparison.
Genes involved in cell cycle and DNA processing (FunCat 10)

were significantly reduced in transcript levels at all time points
in the mutant.

DISCUSSION

Arguably, the most unique cell in the life cycle of the asco-
mycetous fungi is the ascus. Asci elongate in response to in-
creased turgor pressure and eventually rupture at the tip to fire
spores into the air (54). In the perithecium-forming fungi, the
asci fire singly in succession—approximately 45 s apart in G.
zeae under optimal conditions (56)—which suggests the pres-
ence of a regulatory mechanism that coordinates discharge.
One possibility for a regulatory mechanism is a calcium signal-
ing cascade. In this study, we have identified one component of
the calcium signaling machinery, CCH1, which affects dis-
charge in G. zeae when genetically disrupted.

Cch1 has been implicated as part of the high-affinity calcium-
acquiring machinery (42). The role of Cch1 in G. zeae in
facilitating calcium influx at low concentrations was aptly dem-
onstrated by the lack of growth of the mutants in the presence
of the calcium chelator BAPTA in contrast to the wild type and
ectopic �cch1 mutant, which both exhibited growth (Fig. 6).
These results support the role of Cch1 in obtaining calcium in
low-calcium environments, as has been suggested in studies
of C. neoformans (38) and yeast (39, 42). However, the fact
that discharge was restored at high concentrations of Ca2�

indicates that another channel is present—possibly a distinct
low-affinity Ca2� influx system, as postulated by Muller and
colleagues (42)—and able to substitute for Cch1.

In an effort to simulate perithecium formation in crop resi-
due in the field, we have established a protocol to induce
development of perithecia on colonized wheat stems, a process
which also allows conidiation. An unexpected outcome of this
experiment was the observation that the �cch1 mutant allowed
more conidiation from contaminating fungi than did the wild
type. This suggests that, while the �cch1 mutant is competent
in infecting and colonizing wheat, it may not be as capable as
the wild type in defending its resources against competitors in
the crop residue. One possible explanation may be the reduced
expression of the polyketide synthase gene responsible for au-
rofusarin production (fg12040) (17, 34, 41). fg12040 showed a
16-fold reduction in transcript abundance in the �cch1 mutant
compared to the wild type during vegetative growth; this is of
interest as rubrofusarin, a precursor to aurofusarin and also

FIG. 6. The effects of the calcium chelator BAPTA on growth of the wild type (A), ectopic transformant �cch1-T11 (B), and mutant �cch1-T12
(C) at 9 days postinoculation. Mutant �cch1-T14 (not shown) gave a similar phenotype to �cch1-T12.
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TABLE 2. Transcripts showing statistically significant twofold or greater differential accumulation between mutant and wild type at multiple time points

Type of change in transcript
abundance and transcript

identifiera

Transcript abundance in the mutant relative to wild type at the indicated
time pointb

Annotation

0 h P0 h 96 h P96 h 144 h P144 h

Twofold or greater increase
between wild type and
mutant at all time
points: fgd246-110_at

4.252137 1.70E-07 2.961257 0.0003721 4.35791 5.88E-07 Hypothetical protein

Twofold or greater decrease
between wild type and
mutant at all time
points

fg06105_s_at �1.667428 3.26E-05 �1.544056 0.00103707 �1.81548 4.83E-06 Probable trimethyllysine dioxygenase
fgd361-40_s_at �2.310062 7.23E-06 �2.286179 0.00069665 �1.875791 5.85E-06 Conserved hypothetical protein

Increase at 0 h and 96 h*
fgd318-850_at 4.205249 5.17E-06 1.885949 0.00306174 �0.775595 0.308734 Conserved hypothetical protein
fgd185-60_at 3.210368 1.31E-06 2.112676 0.00275112 �0.015636 0.975858 Conserved hypothetical protein
fgd197-120_at 2.983299 2.00E-05 3.231011 0.00374232 �0.789604 0.072781 Hypothetical protein
fgd21-20_at 2.585006 1.33E-05 3.126629 0.000714 �0.521372 0.301871 Hypothetical protein
fgd158-490_at 2.584465 3.26E-09 3.758745 0.00031145 �0.09127 0.742611 Probable pectin lyase precursor
fgd233-360_s_at 2.518178 2.38E-05 2.804031 0.00354073 �0.346337 0.20056 Hypothetical protein
fg09187_s_at 2.208471 2.86E-05 1.88661 0.00203256 �0.636026 0.107265 Related to VerA protein
fgd160-740_at 2.162682 4.44E-08 2.443102 7.39E-05 0.166141 0.547707 Conserved hypothetical protein
fg07734_at 1.818964 2.82E-05 3.329558 0.00023151 1.547734 0.004251 Related to global transactivator

Increase at 0 h and
decrease at 96 h*

fgd292-290_x_at 4.260392 4.53E-10 �1.659034 0.00190987 0.348952 0.033907 Putative protein (EST hit)
fgd458-640_at 3.146793 3.02E-07 �1.276051 0.00170183 �0.482921 0.101694 Related to putative tartrate transporter
fgd4-40_at 3.124855 7.92E-06 �1.618002 0.00441397 �0.065222 0.833894 TOX1; related to KP4 killer toxin
fg12249_at 2.651301 9.82E-06 �1.947163 0.00309896 0.067724 0.859242 Probable amino acid transport protein GAP1
fg07325_s_at 2.186069 3.70E-05 �1.067731 0.00077608 �1.441705 0.003597 Related to ATP-binding cassette transporter protein

YOR1
fgd320-650_at 1.260561 3.12E-07 �1.959269 0.00170962 �0.004734 0.979366 Hypothetical protein

Decrease at 0 h and
increase at 96 h*

fgd199-110_s_at �1.122248 3.28E-05 2.398922 0.00446521 0.085527 0.791343 Hypothetical protein
fgd112-310_at �1.911777 8.49E-06 1.598495 0.00482901 2.132243 0.000159 Related to ARG8, acetylornithine aminotransferase
fgd266-180_at �1.930477 2.96E-08 1.938448 0.00304904 �0.034996 0.915222 Conserved hypothetical protein
fgd425-330_at �2.12576 1.26E-05 2.153474 0.0028155 �1.021158 0.028486 Related to ANON-37CS protein
fgd77-70_at �2.285935 5.13E-06 3.955246 0.00321478 �0.319272 0.191412 Probable regulatory subunit of protein phosphatase-1
fgd148-1240_at �2.324533 2.33E-05 2.198154 0.00390104 �0.61492 0.135032 Conserved hypothetical protein
fg04626_s_at �2.640947 3.24E-05 3.575254 0.00025086 �0.026996 0.935111 Hypothetical protein

Decrease at 0 h and 96 h*
fg01182_s_at �1.213758 6.88E-06 �1.160318 0.00016456 �1.044243 0.000145 Conserved hypothetical protein
fg06960_s_at �1.36357 4.90E-06 �1.061768 0.00012174 �1.312393 0.00465 Related to Ku70-binding protein
fgd56-90_at �1.384284 2.98E-06 �2.039921 0.00023909 0.357408 0.189783 Probable multiubiquitin chain binding protein (MBP1)
fgd450-20_at �1.398908 1.96E-05 �1.399369 0.00086921 �0.564188 0.330237 Probable phosphatidylinositol/phosphatidylcholine

transfer protein SEC14
fgd104-290_at �1.432652 6.95E-06 �1.847161 0.0029308 �2.325124 0.000334 Conserved hypothetical protein
fgd422-230_at �1.54976 3.70E-06 �1.312596 0.00028198 �1.461646 0.034723 Probable coatomer epsilon subunit
fg00331_s_at �1.584002 3.51E-05 �2.637301 0.00105877 0.20298 0.541548 putative protein (EST hit)
fgd35-590_at �1.626283 4.53E-06 �2.011254 0.00309951 �1.186748 0.001245 Probable septum formation maf
fg00430_s_at �1.753789 2.95E-05 �1.739395 0.00224068 �1.538549 0.000397 Probable oligosaccharyltransferase
fg08308_s_at �1.83793 3.73E-06 �1.467145 0.00483457 0.147557 0.543416 ABC2; related to multidrug resistance protein
fgd383-190_at �1.997796 2.90E-07 �1.792443 0.00110624 �0.905406 0.005111 Conserved hypothetical protein
fgd24-30_at �2.028044 1.84E-05 �1.579857 0.00059991 �1.650269 0.000555 Conserved hypothetical protein
fgd248-140_at �2.053918 2.44E-05 �1.838453 0.00458005 �1.713851 0.001132 Probable aldo-keto reductase YPR1
fgd104-420_at �2.108565 7.59E-06 �1.449971 0.00035639 �0.236224 0.159022 Probable branched-chain alpha-ketoacid

dehydrogenase kinase; mitochondrial precursor
fgd168-1760_s_at �2.108666 5.61E-09 �1.108928 0.00270452 -1.463851 0.054713 Related to type 2C protein phosphatase
fgd335-320_at �2.145885 1.17E-06 �1.382001 0.00043239 2.014346 0.010176 Probable glycine decarboxylase P subunit
fgd367-120_at �2.170614 6.10E-08 �1.815004 0.00365397 1.029645 0.009561 Related to n-carbamoyl-l-amino acid hydrolase
fgd59-140_at �2.553609 3.19E-06 �1.51113 0.00069322 �0.825075 0.009643 Probable GTPase-activating protein of the rho/rac

family (LRG1 protein)
fgd212-830_at �2.58426 5.02E-07 �1.522224 0.0020098 �1.344456 0.098771 Probable 3-hydroxyisobutyrate dehydrogenase
fgd170-50_s_at �2.753081 1.54E-06 �1.113897 0.00290648 �0.848131 0.000775 Probable potassium transporter TRK-1
fgd192-1180_at �3.780183 2.01E-08 �1.404931 0.00321436 0.313153 0.495277 Related to serine-type carboxypeptidase F precursor
fgd90-10_at �4.045339 2.81E-05 �1.489611 0.00080104 �3.030282 0.001579 Probable DIP5-glutamate and aspartate permease; able

to mediate transport of other amino acids

a Significant changes in abundance in the mutant are indicated by an asterisk.
b Log 2 relative change. Negative numbers and positive numbers represent a decrease and increase, respectively, in mutant transcript abundance compared with wild

type. P values are identified by time point (e.g., P value for change in transcript abundance at 0 h is Po h). The cutoffs for statistical significance vary between treatments.
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produced by the fg12040 protein, is known to possess antimi-
crobial properties (16, 21). The antimicrobial properties of
aurofusarin have not been determined. More rigorous testing
of this hypothesis using a strain deficient in aurofusarin pro-
duction is under way. Although the growth of the �cch1 mu-
tant is slower in culture, the progress of disease symptoms is
identical to that of the wild type, suggesting that its develop-
ment is not slowed in the plant. Regardless, the stem assay uses
fully colonized stems, so the slow growth of the �cch1 mutant
compared with wild-type G. zeae should not affect the outcome
of this assay.

In wild-type G. zeae, CCH1 transcripts are detected at mod-
erate levels throughout growth and development and do not
appear to be exclusive to sexual development (24) (PlexDB
accession number FG5). Results from the Fusarium GeneChip
analysis of the �cch1 mutant showed surprisingly little overlap
in differentially accumulated transcripts between time points
examined. This suggests that the role of Cch1 in G. zeae is a
dynamic one, changing to suit different needs during organis-
mal development and differentiation. In support of Cch1’s role
in sexual development, 20 genes implicated in meiosis (FunCat
10.03.02), out of 77 meiosis genes predicted in the G. zeae
genome, exhibited a significant decrease in transcript abun-
dance in the mutant during at least one of the three time points
examined. Transcripts for genes involved in the mitotic cell

cycle showed a significant decrease in all time points, as did
transcripts for DNA recombination and repair genes. The
highest category of genes showing reduced mRNA accumula-
tion in the mutant at 0 h (during mycelial growth) was metab-
olism. The decrease in these classes of genes may explain the
delay in mycelial growth and development. It is surprising, with
the large number of genes whose expression is affected, that
the in vitro effects of the mutation are so subtle. The mutant
lags in development by approximately 24 h following induction.
Mycelial growth (preinduction) is also noticeably slower. Thus,
differences between gene expression in the vegetative state
might include differences in mycelial age. However, develop-
mental stages reflect formation of discrete cell types (perithe-
cium initials, ascogenous hyphae, paraphyses, and ascospores),
and therefore our method of sampling based on developmental
stage should ensure an equitable comparison.

For the study of sexual development and differentiation, 96 h
is arguably the most interesting of the time points we exam-
ined: the perithecium has reached its full size and pigmenta-
tion, and asci are forming. Ascus structure will be completed
over the next 24 h, and the spores will mature over the next
48 h (55, 44). A decline in meiosis-related transcript abun-
dance was observed in each of the time points in the mutant;
however, meiosis takes place during ascus development from
about 96 to 120 h (24). It is not surprising, therefore, that 96 h

TABLE 3. Functional categories of genes showing a statistically significant decrease in transcript accumulation of twofold or greater in the
�cch1 mutant compared to wild typea

FunCat
code Category name (description) % of

genome

Relative decrease in transcript of the mutant and statistical significance
at the indicated time point

0 h 96 h 144 h

No. of
genes (%) P No. of

genes (%) P No. of
genes (%) P

01 Metabolism 13.7 95 (24.2) 9.43E-09 172 (20.7) 6.54E-09 37 (9.86) 1
02 Energy 2.96 22 (5.62) 0.003189 44 (5.3) 0.000129 4 (1.06) 1
10 Cell cycle and DNA processing 4.36 32 (8.18) 0.000491 79 (9.52) 3.05E-11 32 (8.53) 0.000235
11 Transcription 4.77 20 (5.11) 0.408944 55 (6.63) 0.008169 31 (8.26) 0.002126
12 Protein synthesis 2.84 4 (1.02) 1 26 (3.13) 0.32809 9 (2.4) 1
14 Protein fate (folding,

modification, destination)
6.44 38 (9.71) 0.007318 124 (14.9) 1.79E-19 31 (8.26) 0.091332

16 Protein with binding function
or cofactor requirement
(structural or catalytic)

7.36 39 (9.97) 0.032521 101 (12.1) 2.53E-07 25 (6.66) 1

18 Regulation of metabolism and
protein function

1.14 10 (2.55) 0.014227 27 (3.25) 6.93E-07 10 (2.66) 0.010869

20 Cellular transport, transport
facilities and transport
routes

7.5 40 (10.2) 0.027795 107 (12.9) 1.35E-08 27 (7.2) 1

30 Cellular communication/signal
transduction mechanism

1.86 9 (2.3) 0.307383 29 (3.49) 0.000818 17 (4.53) 0.000686

32 Cell rescue, defense and
virulence

4.73 23 (5.88) 0.16665 61 (7.35) 0.000378 16 (4.26) 1

34 Interaction with the
environment

3.29 15 (3.83) 0.308379 42 (5.06) 0.003558 19 (5.06) 0.042005

36 Systemic interaction with the
environment

0.18 3 (0.76) 0.035313 4 (0.48) 0.065461 1 (0.26) 0.508159

40 Cell fate 1.49 9 (2.3) 0.131456 33 (3.98) 2.15E-07 14 (3.73) 0.001518
41 Development (systemic) 0.3 2 (0.51) 0.34069 5 (0.6) 0.110039 1 (0.26) 1
42 Biogenesis of cellular

components
4.34 20 (5.11) 0.257292 74 (8.92) 2.12E-09 18 (4.8) 0.366487

43 Cell type differentiation 2.5 16 (4.09) 0.037512 47 (5.66) 1.15E-07 15 (4) 0.050677
99 Unclassified proteins 69.3 215 (54.9) 1 413 (49.8) 1 259 (69) 0.568122

a As some genes can be classified in more than one FunCat category, percentages sum to 	100.
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showed the most meiosis genes down-regulated (12; also see
Table S2 in the supplemental material). Also at 96 h, more
genes are differentially regulated in the �cch1 mutant than in
the wild type, and this difference is greater than that at 0 h and
144 h (Table 3; also see Table S2 in the supplemental material).
Some of these changes in gene expression may be reflected in the
increased number of spores with aberrant morphologies in the
asci of the mutant.

Understanding the mechanism by which Cch1 affects dis-
charge will reveal important aspects of ascus function. In mam-
malian cells, the L-type ion channels are triggered to open by
membrane depolarization. Previous work has indicated that
the fungal channels are less sensitive to voltage fluctuations
and may have a different gating mechanism (38). Interestingly,
we previously reported the effect of the L-type ion channel
inhibitor, verapamil, resulting in nearly complete arrest of as-
cospore discharge (57). Mycelial growth of treated cultures was
also reduced by nearly 50%. Thus, the application of verapamil
to the cultures resulted in a phenotype that closely mimics that
of the �cch1 mutation, and the target of verapamil is, there-
fore, probably Cch1. Because verapamil is effective on perithe-
cia whose asci are mature and whose nuclei are already en-
closed in the spores, it seems likely that the effect of Cch1 on
discharging asci is directly on the cell components to effect
spore propulsion rather than by influencing transcription. This
hypothesis is further supported by the calcium addition exper-
iment reported here, in which the addition of exogenous cal-
cium elicits discharge, indicating that the structural and phys-
iological components of the discharge apparatus are intact.
Calcium signaling is known to regulate cytoskeletal rearrange-
ments (for example, Mace et al. [40]) and other physiological
functions (3) in mammals. There are no gross cytoskeletal
defects in the mutant, or the shape of the asci would be af-
fected. However, more subtle defects in cytoskeleton function
may be preventing ascus function. We will explore mechanisms
both upstream and downstream of Cch1 in future experiments.
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