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Abstract

The relation between satellite measurements of the normalized difference vegetation index (NDVI), cumulated over the growing season,

and inventory estimates of forest woody biomass carbon is estimated statistically with data from 167 provinces and states in six countries

(Canada, Finland, Norway, Russia and the USA for a single time period and Sweden for two periods). Statistical tests indicate that the

regression model can be used to represent the relation between forest biomass and NDVI across spatial, temporal and ecological scales for

relatively long time scales. For the 1.42 billion ha of boreal and temperate forests in the Northern Hemisphere, the woody biomass carbon pools

and sinks are estimated at a relatively high spatial resolution (8� 8 km). We estimate the carbon pool to be 61F 20 gigatons (109) carbon (Gt C)

during the late 1990s and the biomass sink to be 0.68F 0.34 Gt C/year between the 1982 and 1999. The geographic detail of carbon sinks

provided here can contribute to a potential monitoring program for greenhouse gas emission reduction commitments under the Kyoto Protocol.

D 2002 Elsevier Science Inc. All rights reserved.

Keywords: Forest biomass pools; Sources and sinks; Kyoto Protocol; Remote sensing; NDVI; Forest inventory

1. Introduction

The terrestrial carbon cycle is a highly dynamic system

that includes several storage pools, such as vegetation, soil,

detritus, black carbon residue from fires, harvested products,

etc, which can be characterized by their turnover time

(Schulze, Wirth, & Heimann, 2000). Carbohydrate pools

turn over on a daily basis, leaves can store carbon for several

seasons and carbon in living wood and soil pools may remain

there for millennia. Fire may return carbon to the atmosphere

instantaneously and can produce long-lived black carbon.

Many studies, including Bousquet et al. (2000), suggest that

about 1–2 Gt carbon are sequestered annually in pools on

land in temperate and boreal regions. Such sinks represent

15–30% of annual anthropogenic carbon emissions. The use

of carbon sinks in policies to reduce greenhouse gas emis-

sions presently is being debated (IPCC, 2000). Thus, char-

acterizing the location and mechanism of carbon sinks is of

scientific and political importance.

Forests play a major role in the global carbon budget

because they dominate the dynamics of the terrestrial carbon

cycle. Studies are currently afoot for assessing the use of

forest biomass sinks to sequester carbon as part of a global

mitigation effort (Sedjo & Toman, 2001). These studies

emphasize the importance of forests in the carbon cycle and

the need to quantify, measure, monitor and manage carbon

pools in forests. Forests contain about 60% of the carbon

stored in vegetation and about 50% of the carbon stored in

soil (TBFRA-2000, 2000). Of these totals, a large percentage

of the vegetation (41%) and soil (72%) pools are located be-

tween 25jN and 75jN (Dixon, Houghton, Solomon, Trexler,

0034-4257/02/$ - see front matter D 2002 Elsevier Science Inc. All rights reserved.
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& Wisniewski, 1994). Consistent with these fractions, this

study analyzes the carbon stored in the woody biomass of

temperate and boreal forests, which cover an area of about

1.4–1.5 billion ha (Liski & Kauppi, 2000). Due to limits

associated with remotely sensed data, we focus on live forest

biomass, rather than dead biomass and soil carbon. Consis-

tent with previous uses of remotely sensed data, we define

forests to include the following remote sensing land covers

(Hansen, DeFries, Townshend, & Sohlberg, 2000): broad leaf

forests, needle leaf forests, mixed forests and woody savan-

nas. These land covers are broadly consistent with land use

definitions of a forest, but not forest and other wooded land

(Liski & Kauppi, 2000). Woody biomass includes wood,

bark, branches, twigs, stumps and roots of trees, shrubs and

bushes. This pool gains carbon from productivity investment

in these components and loses carbon due to harvest, fire,

disease, insect attacks, windthrow, etc.

National Forest Resource Inventories for most countries

have detailed and reliable information on forest distribution

and changes over 5-year periods (e.g., Birdsey & Heath,

1995; Fang, Chen, Peng, Zhao, & Ci, 2001; Liski & Kauppi,

2000; Lowe, Power, & Gray, 1996; Turner, Koerper, Harmon,

& Lee, 1995). However, inventory data are available for

certain countries and regions only, and the quality of these

data varies substantially among inventories. For example, no

data are available for remote regions in Canada, Russia and

elsewhere. Satellite observations of vegetation provide global

coverage with relatively high spatial resolution over the last

two decades. Biomass cannot be directly measured from

space, but, as we demonstrate below, remotely sensed green-

ness can be used to estimate biomass on decadal and longer

time scales. Year-to-year changes in biomass are quite small,

about two orders of magnitude smaller than the biomass pool,

unlike year-to-year changes in greenness, which can vary 5–

10% relative to the seasonal average due to climate variability

(Myneni, Tucker, Asrar, & Keeling, 1998). At decadal and

longer time scales, biomass can change considerably due to

cumulative differences between annual gains and losses.

These can be observed as low-frequency variations in clima-

tological greenness, in much the same way that changes in

greenness at century and longer time scales suggest succes-

sional changes.

In this paper, we investigate the relation between satel-

lite-derived greenness and inventory estimates of forest

woody biomass carbon content (Section 2) and evaluate

the ability of regression models to represent the relation

Fig. 1. Distribution of provincial and state forest areas in Canada, Finland, Norway, Russia and the USA (single time period) and Sweden (two time periods) at

1 million- (a) and 0.25 million-ha (b) intervals.
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between biomass and NDVI across spatial, temporal and

ecological scales (Section 3). Remote sensing estimates of

forest woody biomass carbon pools and changes are de-

scribed in Section 4, where we also provide uncertainty

analysis in remote sensing estimates relative to inventory

data with special emphasis on Canada, China, Russia and

the USA.

2. Satellite NDVI and forest inventory data

2.1. GIMMS NDVI data

A global NDVI data set at 8� 8-km resolution for the

period July 1981 to December 1999 was developed from

about 40,000 orbits of daily data from the Advanced Very

Fig. 2. Distribution of forests area by genus in the six sample countries (The USA, Canada, Russia, Sweden, Norway, and Finland).
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High Resolution Radiometers (AVHRR) on board the

NOAA-7, -9, -11 and -14 satellites by the Global Inventory

Monitoring and Modeling System (GIMMS) group. The

normalized difference vegetation index (NDVI) measures

the contrast between red and near-infrared reflection of solar

radiation and can be used to proxy green leaf area (Myneni

et al., 1998). NDVI varies between � 1 and + 1, and

increases from about 0.1 to 0.75 for increasing amounts of

vegetation but saturates in the case of dense leaf canopies,

for example, humid tropical forests and old growth forests.

Growing season NDVI is determined by two dimensions:

the length of the growing season and the magnitude of

observations. As such, growing season NDVI is an ideal

measure of seasonal greenness.

The processing of satellite data involved cloud screening

and calibration for sensor degradation and inter-sensor var-

iations (Los, 1998; Los, Justice, & Tucker, 1994; Rosbor-

ough, Baldwin, & Emery, 1994; Vermote & Kaufman, 1995).

Residual atmospheric effects were minimized by analyzing

only the maximum NDVI value within each 15-day interval.

These data generally correspond to observations from near-

nadir viewing directions (Los et al., 1994) and clear atmos-

pheric conditions (Holben, 1986). The data from April 1982

to December 1984 and from June 1991 to December 1993

were corrected to remove the effects of stratospheric aerosol

loadings from El Chicon and Mount Pinatubo eruptions in

mid- and high latitudes of the Northern Hemisphere, respec-

tively (Vermote & El Saleous, 1994). Further details on the

quality of the GIMMS NDVI data set can be found in

Kaufmann et al. (2000) and Zhou et al. (2001).

2.2. Forest inventory data

Inventory data for stem wood volume from 171 prov-

inces in six countries (Canada, Finland, Norway, Russia,

Sweden and USA) that cover over 1 billion ha of forest area

are analyzed to estimate above-stump and total biomass.

The total number of provinces and states in the six countries

is 182. Of these, data from 171 provinces where forest area

covers more than 15% of the land area (10% in Russia) are

used in the following analysis. About 44% of the provinces

have forested area less than 1.0 million ha (29% less than

Fig. 3. Age structure of forest in Canada, Russia and the USA.
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0.5 million ha), and about 27% have areas greater than 5

million ha (11.5% greater than 20 million ha) (Fig. 1). The

dominant forest type is needle leaf (spruce, pine, fir and

other conifers in Canada, greater than 60%; larch, pine and

spruce in Russia, greater than 70%; spruce and pine in

Finland, Norway and Sweden, about 70–90%). The area

under broad leaf forest (mostly oak) in the USA is com-

parable to that of needle leaves (pine, fir and spruce), about

40% (Fig. 2). About 40% of the forest area in Canada and

55% in Russia is mature or overmature forests. The area

under immature forests in Canada is about 30% (23%

middle-aged forests in Russia). The area under regeneration

is less than 10% in Canada (20% in Russia) (Fig. 3). Thus,

in a broad sense, the Canadian and Russian forest age

structures are comparable. In the USA, fully three-fourths

of the forest area includes forests younger than 85 years, but

these data probably are 10–20 years old. These three large

countries account for 77% of the forest area north of 30jN.

The inventory data have information on wood volume.

Above-stump biomass, the oven-dry weight in tons/ha of

various biological components, is estimated from inven-

toried wood volume for needle leaf and broadleaf forests

using Eq. (1)

ABðPÞ ¼ Ncf ðCÞWVNðPÞ þ Bcf ðCÞWVBðPÞ
FAðPÞ ; ð1Þ

where AB is above-stump biomass (tons/ha), Ncf is the

conversion factor for conifers (tons biomass/m3 stem wood),

Bcf is the conversion factor for broad leaves (tons biomass/

Fig. 4. An example to match inventory data and satellite NDVI. (a) Administrative map of Sweden with 24 provinces for which the inventory data are available;

(b) land cover map at a spatial resolution of 1�1 km; (c) forest and land area from remote sensing estimates and inventory reports.
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m3 stem wood), WVN is wood volume of needle leaf forest

(m3), WVB is wood volume of broad leaf forest (m3) and FA

is forest area (ha). The values for AB, WVN and WVB are

derived for inventory data for individual provinces, and the

values for Ncf and Bcf are assigned for individual countries.

Total biomass is estimated by adding the root biomass,

TBðPÞ ¼ ABðPÞ 1 þ FFNðPÞ
Ncf ðCÞ þ FFBðPÞ

Bcf ðCÞ

� �
Rcf ðCÞ

� �
; ð2Þ

where TB represents the total biomass (tons/ha), FFN is

forest fraction of conifers (% of pixel area), FFB is forest

fraction of broad leaves (% of pixel area) and Rcf is

conversion factors for roots (tons biomass/m3 stem wood).

The conversion factors are country specific and are obtained

from the Temperate and Boreal Forest Resources Assess-

ment (TBFRA-2000, 2000).

2.3. Matching inventory and remote sensing data

The relation between biomass and cumulative growing

season NDVI data requires matching inventory data to remote

sensing data, such that the growing season NDVI totals are

calculated using pixels for forest land covers only. The

methodology used to match inventory and remotely sensed

data are described below using Sweden as an example.

Sweden spans a latitude range of about 55jN to 70jN,

and includes 23 provinces for which inventory data are

Fig. 5. Plot of total (a) and above-stump (b) woody biomass versus cumulative growing season NDVI. The NDVI data are 5-year averages prior to the date of

inventories. Outlier 1 is British Columbia (Canada) and outliers 2 are data from Washington, Oregon and (northern) California (USA). These represent 16 % of

North American forest area.

J. Dong et al. / Remote Sensing of Environment 84 (2003) 393–410398



available (Fig. 4a). These data include stem wood volume in

million cubic meters and forest area in thousand hectares for

various tree types and trunk size classes. Data are published

in a series of statistical handbooks. We use data from two

periods (1982–1986 and 1993–1997).

To match these provincial inventory estimates to the

8� 8-km pixel data for NDVI, we map the distribution of

forest area in each of the provinces, not just the total forest

area. To do so, we use a remote sensing land cover map (Fig.

4b). This map has a spatial resolution of 1�1 km (Hansen et

al., 2000). Using this map to define data layers in a Geo-

graphical Information System, we calculate the cumulative

growing season greenness for all forest pixels. Forests

include the following remote sensing land covers: broad leaf

forests, needle leaf forests, mixed forests and woody sav-

annas. This ensures that the resulting provincial cumulative

growing season greenness data are assembled from the

NDVI for forested regions only. Also, comparing estimates

for total forest area generated from inventory and remote

sensing data allow us to validate the methodology. This

comparison is shown in Fig. 4c. The inventory stem wood

volume data are converted to total and above-stump biomass,

as described above, and plot against the provincial growing

season cumulation NDVI (see triangles in Fig. 5).

3. Regression analysis of biomass and satellite greenness

data

3.1. The biomass–NDVI equation

The relation between NDVI and inventory estimates for

above-stump biomass and total biomass are shown in Fig. 5

for all seven samples. The three outliers that are associated

with growing season NDVI values beyond 110 are obser-

vations from the US temperate forests, where biomass is

either uncharacteristically low (southeastern states) or high

(pacific northwestern states). The relationship between bio-

mass and NDVI is estimated from the sample data (without

outliers) using the following equation:

1=Biomass ¼ a þ b½ð1=NDVIÞ=Latitude2� þ c Latitude;

ð3Þ

in which Biomass is a measure of total or above-stump

biomass obtained from inventory, NDVI is the cumulative

growing season NDVI averaged over a 5-year period prior to

inventory date, Latitude is the centroid of the area sampled

by forest inventory in a province, and a, b and c are

regression coefficients. The value of these coefficients is

estimated using ordinary least squares. For total biomass,

they are a =� 0.0377 (F 0.00977), b = 3809.65 (F 902.51)

and c = 0.0006 (F 0.00011) adjusted R2 = 0.43. For above-

stump biomass they are, a = � 0.0557 (F 0.0136), b =

5548.05 ( F 1274.17) and c = 0.000854 ( F 0.000153)

adjusted R2 = 0.49. Values in parentheses are standard errors.

Eq. (3) specifies the relation between NDVI and biomass

[(1/NDVI)/Latitude2], such that this relation can vary across

space. Over large spatial scales, biomes vary by latitude,

with low biomass boreal forests at high latitudes and high

biomass hardwood forests at mid-latitudes. This latitudinal

variation probably is not linear. Biomass increases with

latitude north of 25–30jN, where most of the world’s

deserts are located. To capture this nonlinear variation, we

divide NDVI by the square of latitude. This specification

implies that the amount of biomass that is associated with a

given level of NDVI varies with latitude with the largest

values in temperate latitudes (Fig. 6a). Similarly, the rela-

tion between biomass and NDVI varies with latitude (Fig.

6b).

3.2. Evaluation of the biomass–NDVI equation

Estimating the biomass–NDVI equation from pooled data

implies that the relation between biomass and NDVI does not

vary among the seven samples. As noted above, the data used

to estimate the biomass–NDVI equation represent a wide

variety of inventory practices, provincial forest acreage,

ecosystem types, age structures, management practices, fire

and insect dynamics and time periods. These differences

could cause the biomass–NDVI equation to indicate a

relation between biomass and NDVI when in fact no relation

exists and/or could bias the statistical estimates for the

regression coefficients (Hsiao, 1986). Such problems would

affect the reliability of our estimate for biomass and ulti-

mately, the carbon sink. Because of these potential problems,

using the seven samples to estimate the relation between

biomass and NDVI for all of North America and Eurasia begs

two related questions: (1) does the relation between biomass

and NDVI vary across spatial, temporal and ecological

scales; (2) if the relation does vary, can Eq. (3) be used to

generate accurate estimates for biomass (and changes in

biomass) in countries where there are no forest inventory

data to generate country-specific relations?

One way to evaluate the ability of the biomass–NDVI

equation to represent the relation between biomass and

NDVI across spatial, temporal and ecological scales is to

test the null hypothesis that the regression coefficients do

not vary across the seven samples used to estimate the

equation. This null hypothesis is tested by comparing a

restricted model, in which the value of the regression

coefficients do not vary among samples, against an unre-

stricted model, in which the values of the regression

coefficients are allowed to vary. From this perspective,

Eq. (3) can be considered to be a restricted version of the

following unrestricted model in which the intercepts are

allowed to vary across the seven samples as

1=Biomass ¼
X7

i¼1

ai þ b½ð1=NDVIÞ=Latitude2� þ c Latitude;

ð4Þ

J. Dong et al. / Remote Sensing of Environment 84 (2003) 393–410 399



in which i corresponds to the seven samples. The set of

restrictions that equalizes the values of a is tested with a test

statistic (x), which is given by Eq. (5),

x ¼ ðRSSR � RSSUÞ=s

RSSU=ðT � KÞ ; ð5Þ

in which T is the number of observations (167), K is the

number of regressors in the unrestricted equation, s is one

less than number of coefficients restricted to be equal (in

this case, 6), RSSR is the residual sum of squares from the

restricted model (Eq. (3)) and RSSU is the residual sum of

squares from the unrestricted version of equation (Eq. (4)).

The test statistic (x) is distributed as an F with s and (T�K)

degrees of freedom in the numerator and denominator,

respectively. If x exceeds the critical value, this result

indicates that the residual sum of squares for the restricted

model increases in a manner that is statistically significant at

the relevant level of significance relative to the residual sum

of squares for the unrestricted model, in which case we

reject the null hypothesis that the intercepts are equal across

the seven samples. The results indicate that we strongly

reject the set of restrictions that equalize the values of a
( F(6,158) = 7.53, p < 0.0001).

Although the value of a varies by sample, this will have

little effect on the estimate for the carbon sink. For the

purpose of evaluating our ability to use the regression

results from Eq. (3) to calculate the change in carbon

storages, we test whether the relation between NDVI and

biomass varies among the seven samples. We compare a

restricted model (Eq. (4)), in which a varies across the seven

samples, against an unrestricted version of the model (Eq.

(6)), in which both a and b vary across the seven samples,

1=Biomass ¼
X7

i¼1

ai þ
X7

i¼1

bi½ð1=NDVIÞ=Latitude2�

þ c Latitude: ð6Þ

The results indicate that we reject the null hypothesis that

the b’s are the same across the seven samples ( F(6,151) =

2.59, p>0.03), but much less strongly than we rejected the

previous restriction. This result implies that the values for b
vary among nations. To assess this variation, we estimate

Eq. (3) seven times with observations for an individual

nation and/or period and test the null hypothesis b = 0. The

results indicate that there is a statistically meaningful

relation between biomass and NDVI in nearly every nation

Fig. 6. The relations (a) between total biomass and latitude at three levels of total growing season NDVI and (b) between total biomass and total growing season

NDVI at three latitudes.
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and sample period (Table 1). For Finland, the relation is

significant at the p < 0.1 level, but not at the p < 0.05 level.

This result is not surprising given the small sample from

Finland (the regression equation estimated from the Finnish

data has only 5 df ). For the USA, there is no statistically

meaningful relation between NDVI and biomass. This fail-

ure is due to a single observation. If we remove this

observation and reestimate Eq. (3), there is a statistically

meaningful relation between NDVI and biomass ( p < 0.01).

Together, these results indicate that there is a statistically

significant correlation between NDVI and biomass within

nations.

Variations in b among nations could affect our estimate

for the change in the carbon pool if the differences are

systematically associated with NDVI or latitude. Therefore,

we evaluate the stability of the relation between biomass and

NDVI statistically. One way to evaluate the relation is to

estimate Eq. (3) with subsamples that include values of

NDVI equal to or greater than a pre-defined threshold. For

this subsample, we can evaluate whether there is a relation

between biomass and NDVI by testing the null hypothesis

b = 0. Rejecting this null hypothesis would indicate that there

is a relation between biomass and NDVI within the range of

values for NDVI that is defined by the threshold. To explore

this possibility, we estimate the relation between biomass

and NDVI at every possible threshold for NDVI between 47

and 127 (the minimum and maximum values are chosen so

that there are enough degrees of freedom to do the statistical

tests). To do so, we estimate Eq. (3) with a subsample that

includes observations with a value for NDVI of 127 or

greater and progressively lower the threshold by one unit.

Line (4) in Fig. 7a shows the significance level of the t-

statistic for the test b = 0. A value above either line (3) or line

(2) indicates that b is not statistically different from zero at

threshold of p < 0.05 or p < 0.1 (i.e. there is no relation

between NDVI and biomass). Line (4) moves above line

(3) when the regression subsample includes values of NDVI

equal to or greater than 113. At this point, the regression

sample has less than 23 df (line 1), which reduces the

reliability of the statistical estimation. These results indicate

that there is a relation between NDVI and biomass for nearly

all values for NDVI.

Another important issue is whether the relation between

biomass and NDVI for values above the threshold is the

same as the relation for values below the threshold. We

evaluate this question by defining a dummy variable (DUM)

that is equal to 1 for values of NDVI above a predefined

threshold and equal to zero for values of NDVI equal to or

below that threshold. We use this dummy variable to modify

Eq. (3) as follows

1=Biomass ¼ a1 þ a2DUM þ b1½ð1=NDVIÞ=Latitude2�
þ b2DUM½ð1=NDVIÞ=Latitude2�þcLatitude:

ð7Þ

The DUM variables allow the relation between NDVI

and biomass to change at a threshold. That is, if the

regression coefficient a2DUM is statistically significant,

such a result indicates that the intercept for the relation

between NDVI and biomass is a1 for values of NDVI equal

to or less than threshold and a1 + a2 for values of NDVI

greater than the threshold. Similarly, if the regression

coefficient b2DUM is significant, such a result indicates

that the relation between biomass and NDVI is b1 for values

of NDVI equal to or less than the threshold and b1 + b2 for

values of NDVI greater than the threshold.

We can test whether the DUM variables in Eq. (7) are

statistically significant with the x-statistic (Eq. (5)). But

unlike our previous use, the x-statistic cannot be evaluated

against the standard F distribution. The standard F distri-

bution will overstate the significance of the x-statistic,

because we evaluate subsamples for all potential NDVI

thresholds between 49 and 127 without a priori theory as

to the NDVI threshold at which the regression coefficients

change (Christiano, 1992). The lack of an a priori threshold

affects interpretation as follows. Using Eq. (7), we test 80

thresholds. Random chance implies that 4 of the 80 x-

statistics will exceed the p < 0.05 critical value for the F

distribution. This would cause us to argue that the regression

coefficients change between subsamples.

To account for the repeated sampling (and the uneven

distribution of observations), we simulate the distribution of

the x-statistic that is unique to Eq. (7) using Monte Carlo

techniques (Christiano, 1992). First, we generate 1000

experimental data sets. Each data set is generated using

the following equation

1=Biomass ¼ a þ b½ð1=NDVIÞ=Latitude2�

þ c Latitude þ l; ð8Þ

in which a, b and c are the values estimated from the full

sample. The 167 values of l for each data set are generated

by drawing randomly from a normal distribution with a

mean value of zero and a standard error of 0.004, which is

the standard error for the regression equation estimated from

the full sample. The regression coefficients remain constant

Table 1

Regression results for the total biomass Eq. (3) with data from an individual

nation and period

Countries b1 Standard

error

t-Statistic Degrees of

freedom

Sweden

1982–1986

2836 968 2.93 ( p < 0.004) 18

Sweden

1995–1999

2743 951 2.89 ( p < 0.004) 18

Norway 9858 2038 4.84 ( p < 0.0001) 14

Finland 2793 1536 1.82 ( p < 0.07) 5

Canada 1631 382 4.27 ( p < 0.0001) 8

Russia 8315 2664 3.12 ( p < 0.002) 54

USA 747 562 1.33 ( p < 0.19) 29

USA* 1371 527 2.60 ( p < 0.01) 28

* Result for US when one outlier is removed.
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to ensure consistency with the null hypothesis of the test—

there is no change in the value of a and/or b at any NDVI

threshold. Each experimental data set is estimated using Eq.

(7) with each threshold between 49 and 127. The largest x-

statistic from the analysis of each experimental data set

(regardless of the threshold it is associated with) is saved.

These thousand values are ranked in descending order by

size, such that the value at position 50 represents the

p < 0.05 threshold. That is, there is less than a 5% chance

of generating a value for x that is equal to or greater than

this value if Eq. (7) is searched randomly over all possible

breakpoints.

The results indicate that Eq. (3) describes the relation

between biomass and NDVI over a wide range of values for

NDVI. As indicated by line (5), we cannot reject the null

hypothesis that the value for b2DUM in Eq. (7) is zero for

nearly every value for the 0/1 threshold (except for a thresh-

old of 49, for which the dummy variable has only 1 df). Line

(4) indicates that we cannot reject the null hypothesis that

a2DUM is equal to zero for all NDVI thresholds. As

indicated by line (1), we are unable to reject the null

hypothesis that both a2DUM and b2DUM are zero for

thresholds above 67 and below 80. This range generates

subsamples that are approximately equal, which generate the

most reliable results. As indicated by line (2), about 25% of

the sample has a value for NDVI below 70 while about 40%

of the observations have a value for NDVI above 80.

Together, these results indicate that the relation between

Fig. 7. (a) The relation between NDVI and biomass for samples defined by NDVI. Line (4) gives the significance level for the t-statistic associated with b (Eq. (3)),

estimated with data that include values of NDVI equal to or greater than the value given on the x-axis. The degrees of freedom in these regressions are given by

line (1). Lines (2) and (3) represent the significance level at the p < 0.05 and p < 0.10 thresholds. (b) The stability of the relation between NDVI and biomass for

samples defined by NDVI. Line (5) or (4) tests whether the slope (b1DUM in Eq. (7)) or the intercept (a1DUM in Eq. (7)) differs between samples above and

below a given threshold for NDVI, respectively. Line (1) tests whether the intercept and slope (a1DUM and b1DUM in Eq. (7)) differ between samples above

and below a given threshold for NDVI. Line (2) represents the number of observations below a given level of NDVI. Line (3) represents the p < 0.05

significance level.
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NDVI and biomass is stable over a wide range of subsam-

ples.

3.3. The effect of latitude on the relation between NDVI and

biomass

Alternatively, the relation between NDVI and biomass

may vary over latitude. We can explore the effect of latitude

on the relation between NDVI and biomass by estimating Eq.

(3) with subsamples that are defined by latitude (rather than

by NDVI). The data used to estimate Eq. (3) include

observations between 29jN and 69jN. To see if there is a

relation between NDVI and biomass within latitudinal bands,

we use data from these latitudinal bands to estimate Eq. (3)

and test whether b is statistically different from zero. The first

subsample includes all observations north of 67jN, and the

next subsample includes all observations north of 66jN. We

repeat this expansion of the subsample until all observations

are included. We also repeat this sampling starting with

observations from low latitudes, such that the first subsample

includes observations from 29jN to 31jN, the second from

29jN to 32jN and so on. Regardless of the latitude that is

used to truncate the subsample, we strongly reject ( p < 0.01)

the null hypothesis that b is equal to zero. The consistent

rejection of this null hypothesis indicates that there is a

statistically meaningful relation between NDVI and biomass,

regardless of latitude.

3.4. Temporal and spatial relations between NDVI and

biomass

To explore whether the spatial relation between biomass

and NDVI is different from the temporal variation between

biomass and NDVI, we use observations for Sweden to

estimate the following equation,

1=Biomass ¼ a1 þ a2DUM8286

þ b1½ð1=NDVIÞ=Latitude2�

þ b2DUM8286½ð1=NDVIÞ=Latitude2�

þ c Latitude; ð9Þ

in which DUM8286 is a dummy variable that is equal to 1

for observations from the 1982–1986 period and is equal to

0 for observations from the 1995–1999 period. If the spatial

relation between biomass and NDVI during the 1982–1986

and 1995–1999 periods is different from the temporal

relation between biomass and NDVI between these two

periods, a2DUM and/or b2DUM will not be equal to zero.

Conversely, if the spatial relation between biomass and

NDVI during the 1982–1986 and 1995–1999 periods is

the same as the temporal relation between NDVI and bio-

mass between these two periods, a2DUM and/or b2DUM

will be zero.

We test whether a2DUM and/or b2DUM are equal to zero

with the x-statistic that is evaluated against the standard F

distribution. Results indicate that we cannot reject the null

hypothesis that a2DUM is equal to zero ( F(1,36) = 0.005,

p < 0.95), b2DUM is equal to zero ( F(1,36) = 0.01,

p < 0.91), or a2DUM and b2DUM are equal to zero

( F(2,36) = 0.07, p < 0.94). Together, these results indicate

that the spatial relation between biomass and NDVI is not

statistically different from the temporal relation between

biomass and NDVI.

4. Biomass estimates

4.1. Pattern of woody biomass sinks and pools

Seasonal totals for NDVI are obtained by matching

provincial estimates of forest area from inventory data

and those from a high-resolution (1 km) satellite vegetation

map (Hansen et al., 2000) in a geographical information

system. Annual data are averaged over two 5-year periods,

1982–1986 and 1995–1999, that correspond to the start

and end of the satellite records. To calculate the change in

carbon storage between these periods, the period averages

are subtracted from each other. Fig. 8a shows the difference

of the growing season NDVI totals between two time

periods for all vegetated regions. Growing season is defined

as the period when composite (15-day) NDVI values are

greater than 0.1. The forest fraction, expressed as the

fraction of each quarter degree pixel area under forest land

covers (broad leaf forests, needle leaf forests, mixed forests

and woody savannas) (Hansen et al., 2000) (Fig. 8b), is

used as a weight to convert NDVI totals to biomass in each

pixel.

Because of their high spatial resolution relative to inven-

tory measurements, biomass estimates from satellite data

provide spatial detail on the carbon pool and the location

and magnitude of changes. The spatial picture of pixel level

changes in the biomass pool shown in Fig. 9a depicts carbon

gains in excess of 0.3 ton C/ha/year in Eurasian boreal and

North American temperate forests and carbon losses greater

than 0.1 ton C/ha/year in some Canadian boreal forests. The

gains in Eurasia are located over a large, broad, nearly

contiguous swath of land from Sweden (about 10jE, north

of 60jN), through Finland, European Russia, central Siberia

to trans-Baikalia (120jE, north of 50jN). In North America,

similar gains occur in the eastern temperate forests of the

USA and in southern Ontario and Quebec below the 50th

parallel. Carbon losses occur in Canada’s boreal forests,

from Newfoundland to Northwest territories, except for

small fragments in northern Saskatchewan and Alberta,

where carbon storage increases (about 110jW and 60jN).

The biomass map in Fig. 9b indicates larger pools, in ton C/

ha, in North America compared to Eurasia (51 vs. 39). The

average pool size in Europe and the USA is larger than in

Canada and Russia (54–58 vs. 38–44). Among European
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countries, Austria, France and Germany have relatively

large pools (60, 67 and 73, respectively). The estimates

for Finland, Norway and Sweden are comparable to Russia

(35–40 vs. 38).

4.2. Comparison of remote sensing and inventory estimates

We estimate that the 1.42 billion ha of temperate and

boreal forests stored 61F 20 Gt C during the late 1990s

(Table 2). The estimate for carbon gain during the 1980s and

1990s is 0.68F 0.34 Gt C/year. This is in the mid-range of

estimates by Sedjo (1992) for the mid-1980s (0.36 Gt C/

year) and Temperate and Boreal Forest Resources Assess-

ment—2000 (Liski & Kauppi, 2000) for the early and mid-

1990s (0.88 Gt C/year).

The sequestration rate, in ton C/ha/year, is highest in

Europe (0.84) and the USA (0.66), and smallest in Canada

and China (0.27–0.31), with intermediate values for Rus-

sia (0.44). As a result, sequestration rates in Eurasia and

North America (0.47–0.49) are similar. This implies that

nearly 70% of the sink is in Eurasia (0.47 Gt C/year),

which is consistent with its forest area but is dispropor-

tionably large relative to its pool size (Table 2). Estimates

for the carbon pool and sink in the woody biomass of

temperate and boreal forests in individual nations are given

in Table 3.

We evaluate the uncertainties in the satellite estimates for

the biomass pool and changes by comparing them to

national, provincial and state estimates (Fig. 10 and Appen-

dix A). Panel (a) compares estimates of the above-stump

biomass carbon pool in 46 states of the USA (Cost, 1990),

11 provinces of Canada (Penner, Power, Muhairwe, Tellier,

& Wang, 1997) and total biomass pool in 37 Eurasian

countries (Liski & Kauppi, 2000). It also shows inventory

biomass estimates for 10 US states for which data are

available from two time periods (FIA, 2000). The inventory

estimates shown here are not used to estimate the regression

model. The remote sensing estimates are calculated by

simulating the regression models with pixel-level cumula-

tive growing season NDVI data that are averaged over the 5

years prior to the inventory dates, and using the high-

resolution satellite vegetation map to identify forest pixels

(Hansen et al., 2000). Both sets of biomass estimates are

converted to carbon by multiplying by 0.5, a standard factor

for converting woody biomass to carbon. Estimates for

Japan are divided by 2 to correspond with the axes. Panel

(b) compares changes in the woody biomass carbon pool in

22 provinces of Sweden, 9 states of the USA (FIA, 2000)

Fig. 8. (a) Difference in growing season NDVI totals between two time periods, 1995–1999 and 1982–1986, for all vegetated regions and (b) map of forest

fraction defined as the fraction of each quarter degree pixel area under forest land covers.
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and 37 Eurasian countries (Liski & Kauppi, 2000). The

Swedish data measure changes in two successive invento-

ries (1993–1997 and 1982–86) of stem wood volume that

we convert to woody biomass in carbon units and divide by

the time interval (11 years), as we did for the nine states of

the USA. The Eurasian data are for the early to mid-1990s

period. Only the Swedish data were used to estimate the

regression model. The remote sensing estimates for changes

in carbon storage are the differences in the predicted carbon

pool for the respective time periods and expressed on an

annual basis.

The average absolute difference between remote sensing

and inventory estimates is 10.4 ton C/ha for above-stump

biomass, 16.1 ton C/ha for total biomass, and 0.33 ton C/ha/

year for changes in pool size, or 27%, 33% and 50% of the

mean inventory estimates, respectively (Fig. 10a). The

national inventory sink estimates, in Fig. 10b (Liski &

Kauppi, 2000), are derived from wood volume increment

and loss data (natural and fellings), unlike remote sensing

estimates, which are biomass differences between two time

periods. The comparability of the two estimates is thus note-

worthy. We also evaluate changes in the carbon pool gen-

erated by uncertainty in the biomass–NDVI relation alone.

The results indicate that the standard error for our estimates of

change is one to two orders of magnitude smaller than the

average change, 0.48 ton C/ha/year, as discussed below.

If the estimates for biomass generated by the remote

sensing/statistical methodology are unbiased relative to

Fig. 9. Spatial detail of changes in the woody biomass carbon pool of northern forests between late 1990s and early 1980s (a) and pool size during late 1990s (b).

Table 2

Remote sensing estimates of carbon pool (1995–1999) and sink in total

woody biomass of temperate and boreal forests in North America and Eurasia

Country Average

pool

(tons/ha)

Carbon

pool

(Gt C)

Carbon

sink

(Gt C/year)

Forest

area

(Mha)

Canada 44.09 10.56 0.07312 239.5

USA 57.91 12.48 0.14153 215.5

North America 50.64 23.04 0.21465 455.0

China 25.77 3.68 0.03862 142.6

Finland 34.88 0.60 0.00556 17.2

Japan 47.35 0.90 0.01192 19.0

Russia 37.98 24.39 0.28359 642.2

Sweden 39.86 1.06 0.01386 26.5

Othery 59.40 7.05 0.11617 117.4

Eurasia 39.99 37.68 0.46972 964.9

Total 42.91 60.72 0.68437 1419.9

y Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and

Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark,

Estonia, France, Georgia, Germany, Greece, Hungary, Italy, Kazakhstan,

Kyrgyzstan, Latvia, Lithuania, Netherlands, Norway, Poland, Portugal,

Romania, Slovakia, Slovenia, Spain, Switzerland, Tajikistan, Turkey,

Turkmenistan, United Kingdom, Ukraine, Uzbekistan.
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those generated from inventory data, the data in Fig. 10a and

b will lie along the 45j line. By definition, this 45j line has

an intercept of zero and a slope of 1. To test whether this

45j line describes the relation between the biomass esti-

mates generated by remote sensing/statistical methodology

and those generated from the inventory data, we estimate the

following equation,

Inventory ¼ a þ b Remote Sensing þ l; ð10Þ

in which Inventory is the estimate for biomass from forest

inventories in Fig. 10a or b, Remote Sensing is the remote

sensing biomass estimate generated in Fig. 10a or b, a and b
are regression coefficients, and l is a normally distributed

random error term.

To test the null hypothesis that the intercept (a) is equal

to zero, we use a t-statistic. This test statistic will reject the

null hypothesis if its value exceeds the value associated with

the p < 0.05 threshold. Failure to exceed this threshold

indicates that the intercept is not statistically different than

zero. To test the null hypothesis that b equals 1.0, we use the

x-statistic (Eq. (5)). This test statistic will reject the null

hypothesis if imposing a value of 1 on b causes the residual

sum of squares for Eq. (10) to increase in a statistically

significant fashion relative to the version of Eq. (10) in

which b is allowed to assume the value that minimizes the

residual sum of squares. Failing to exceed this threshold

would indicate that b is not statistically different from one.

Lastly, both of these hypotheses (a = 0, b = 1) can be tested

Table 3

Estimates of the carbon pool and sink in the woody biomass of temperate

and boreal forests by country

Country Carbon pool

(Tg C)

Carbon sink

(Tg C/year)

Forest area

(million ha)

Albania 28.274 0.558 0.532

Armenia 14.386 0.426 0.328

Austria 263.196 4.039 4.359

Azerbaijan 43.706 1.287 0.841

Belgium 34.708 0.226 0.471

Bosnia 178.236 3.297 2.516

Bulgaria 160.584 4.095 2.531

Belarus 171.241 3.339 3.366

Canada 10560 73.123 239.500

China 3675.311 38.62 142.600

Croatia 127.828 1.982 1.787

Czech 154.151 3.245 2.971

Denmark 6.29 0.133 0.106

Estonia 109.006 1.234 2.294

Finland 601.369 5.558 17.243

France 1136.249 8.518 15.666

Georgia 142.365 3.234 2.384

Germany 622.256 12.262 9.354

Greece 111.421 2.72 1.981

Hungary 47.017 1.02 0.746

Italy 585.941 10.835 8.489

Japan 897.967 11.915 18.965

Kazakhstan 117.732 2.025 3.087

Kyrgyzstan 16.658 0.385 0.658

Latvia 176.342 2.406 3.543

Lithuania 87.933 1.235 1.819

Macedonia 41.205 0.837 0.640

Netherlands 10.847 0.16 0.157

Norway 259.108 2.782 6.958

Poland 322.26 6.946 6.361

Portugal 122.716 2.57 2.032

Romania 355.547 7.926 5.378

Russia 24393.805 283.589 642.221

Slovakia 138.065 3.427 2.077

Slovenia 89.37 1.668 1.219

Spain 588.747 7.344 10.424

Sweden 1054.516 13.859 26.455

Switzerland 107.971 1.247 1.734

Turkey 296.043 6.91 5.454

Turkmenistan 0.18 0.004 0.016

United Kingdom 204.827 4.353 1.864

Ukraine 132.258 1.325 3.702

USA 12480 141.528 215.500

Uzbekistan 0.289 0.001 0.030

Fig. 10. Comparison of remote sensing and inventory estimates of the

biomass carbon pool (a) and its rate of change (b). In both panels, we show

estimates at the provincial, state and national level, rather than on per unit

forest area basis, to include uncertainties associated with differences in

respective estimates of forest area. The scales for Canadian estimates of

carbon pools are larger than the estimates for the other countries, because

the provincial forest area in Canada is large. Similarly, Swedish estimates of

changes in carbon pools have smaller scales because of smaller forest area

in the provinces of Sweden.
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jointly with the x-statistic. This test statistic will reject this

null hypothesis if imposing the restrictions on a and b
causes the residual sum of squares for Eq. (10) to increase

in a statistically significant fashion relative to the version of

Eq. (10) in which a and b are allowed to assume the values

that minimize the residual sum of squares. Failing to exceed

this threshold would indicate that a is not statistically

different from zero and b is not statistically different from

1.0.

Results indicate that we fail to reject any of these

hypotheses. The intercept of a line fit to data in Fig. 10a

is not statistically different from zero (t = 0.83, p < 0.42).

Similarly, the slope of the line is not statistically different

from 1.0 ( F(1,112) = 0.40, p < 0.53). Finally, we cannot

reject the null hypothesis (a = 0, b = 1) for the data in Fig.

10a ( F(2,112) = 0.35, p < 0.71). Similar results are obtained

for the data in Fig. 10b. The intercept of a line fit to data in

Fig. 10b is not statistically different from zero (t = 0.05,

p < 0.97) nor is the slope of the line statistically different

from 1.0 ( F(1,66) = 1.28, p < 0.27). Finally, we cannot reject

the null hypothesis (a = 0, b = 1) for the data in Fig. 10b

( F(2,66) = 1.07, p < 0.35). Together, these results indicate

that the biomass estimates generated by the remote sensing/

statistical methodology are unbiased relative to the biomass

estimates generated from inventory data.

4.3. The effect of uncertainty in the biomass–NDVI relation

on the carbon sink estimate

We estimate the effect of uncertainty in the statistical

relation between biomass and NDVI on the estimate for the

carbon sink by running a Monte Carlo simulation. Ideally,

this Monte Carlo experiment would be simulated with the

entire data set. For each pixel and period in North America

and Eurasia, we would use the values of NDVI to calculate a

value for biomass that includes an error. This error would be

determined by the standard error for our estimate of bio-

mass, which can be derived from the regression results. This

process would be repeated a thousand times to generate a

confidence interval for our point estimate of the carbon sink.

Unfortunately, this process is not computationally feasible,

because the North American and Eurasian data set includes

tens of millions of pixels.

To avoid these difficulties, we evaluate the effect of

uncertainty in biomass–NDVI equation on our estimates

for the size of the sink by running a Monte Carlo experiment

for a simulated landscape in which NDVI does not change.

To do so, we create a hypothetical landscape of 10,000

pixels (640,000 km2) where NDVI is identical for each pixel

for both periods. We use statistical techniques to calculate

the standard error associated with the point estimate for

biomass that is generated by the biomass–NDVI equation

(Eq. (3)). This standard error increases as the values for

NDVI and latitude move away from the sample mean (83

and 54j, respectively). This standard error is multiplied by a

normally distributed random variable that has a mean value

of zero and a variance of 1. The resultant estimate for the

regression error is added to the point estimate to calculate a

value of biomass for each pixel. This process is repeated for

each pixel to generate a second value for biomass for each

pixel. These two values are subtracted from each other and

divided by two to calculate each pixel’s change in carbon

pool. These values are summed over the 10,000 pixels to

calculate the total change in the carbon pool in the hypo-

thetical landscape. The total is divided by 10,000 to calcu-

late the mean change in carbon storage per pixel. This

process is repeated 1000 times. We use these thousand

observations to calculate a mean (and standard error) change

in the carbon pool for the 640,000 km2 hypothetical land-

scape where NDVI does not change.

The results (Table 4) indicate that the mean estimate for

the per pixel change in the carbon pool is statistically

indistinguishable from zero and that the standard error of

this mean is one or two orders of magnitude smaller than the

positive per ha change in carbon pool (sink) reported in the

previous section (0.48 ton C/ha/year). The small size of the

standard error relative to the per pixel carbon sink does not

vary greatly if we change the values for latitude and/or

NDVI that are associated with the hypothetical 640,000-km2

landscape (the size of standard error decreases as we

increase the number of pixels included in the Monte Carlo

simulation). The generality of this result indicates that it is

highly unlikely that the size the carbon sink reported in the

text is a statistical artifact of the uncertainty in the statistical

relation between biomass and NDVI.

4.4. Comparison of estimates for Canada, China, Russia

and the USA

Four large countries, Canada, China, Russia and the

USA, contain 84% of the pool, 78% of the sink and 87%

of the forest area. Because of their importance, we compare

remote sensing estimates for these four countries with other

estimates. These comparisons are difficult because of differ-

ences in the definition of forest areas, periods for which the

estimates are valid and large uncertainties associated with all

estimates. The TBFRA-2000 estimates generally are for the

mid-1990s. Our sink estimate for the USA (0.142 Gt C/year)

is comparable to the TBFRA-2000 estimate (0.166 Gt C/

year). It is greater than estimates for the 1980s, from both

Table 4

Monte Carlo simulation results to evaluate the change in carbon storage that

is generated by the uncertainty in biomass–NDVI equation

Latitude NDVI

40 80 120

30j 2.57e� 04 (0.00246) 0.000701 (0.00671) 0.00166 (0.01582)

50j 4.85e� 04 (0.00468) 0.000799 (0.00772) 0.00521 (0.04979)

70j 1.89e� 04 (0.00184) 0.000903 (0.00871) 0.00205 (0.01962)

The number is mean per pixel changes in carbon pool (tons C/year/pixel);

the values in parenthesis are the standard errors for this estimate. NDVI

here refers to total growing season NDVI.
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inventory (0.063 Gt C/year by Turner et al., 1995 and 0.098

Gt C/year by Birdsey & Heath, 1995) and land-use change

studies (0.02 Gt C/year by Houghton, Hackler, & Lawrence,

1999). Our estimates of pool size (12.5 Gt C) and forest area

(215 Mha) for the late 1990s are comparable to those

published by TBFRA-2000 (13.85 Gt C, and 217 Mha,

respectively). Since the 1970s, Canadian forests have been

disturbed by fires and insect damage (Kurz & Apps, 1999),

which is consistent with the loss of carbon in Fig. 9a. Our

sink estimate, 0.073 Gt C/year, is similar to estimates

reported by TBFRA-2000 (0.093 Gt C/year) and the Cana-

dian Forest Service (about 0.085 Gt C/year for the 1981–

1991 period). Our estimate for the total terrestrial sink in

Canada between 1980 and 1996 is slightly greater than that

inferred by Chen, Chen, Liu, Cihlar and Gray (2000) (0.053

Gt C/year). Our estimates for pool size (10.6 Gt C) and

forest area (239 Mha) for the late 1990s also are comparable

to the TBFRA-2000 estimates (11.9 Gt C and 244 Mha).

Our estimate for pool size in China (3.68 Gt C for the

1995–1999 period) is slightly lower than the estimate by

Fang et al. (2001) (4.75 Gt C for the 1994–1998 period),

and the remote sensing estimate of forest area (142.6 Mha)

is slightly greater than the Fang et al. estimate (105.82 for

the 1994–1998 period). These differences cause estimates

of average pool sizes to differ. Our estimate (25.77 tons/ha

for the 1995–1999 period) is smaller than the estimate by

Fang et al. (2001) (44.75 tons/ha for the 1994–1998

period). Our sink estimate (0.039 Gt C/year for the period

1982–1999 period) is slightly greater than the Fang et al.’s

estimate (0.024 Gt C/year for the 1984–1998 period). These

differences may be caused by the large change in planted

forests due to afforestation and reforestation programs from

12.74 Mha in the 1977–1981 period to 18.74 Mha in the

1984–1988 period.

The remote sensing estimate of Russian forest area, 642

Mha, is lower than estimates by TBFRA-2000 (2000) (816

Mha), Alexeyev and Birdsey (1998) (771 Mha) and Nilsson

et al. (2000) (764 Mha). These differences may be associated

with the definition of forest. Forest and other wooded land

(FOWL) in the FAO statistics is equivalent to what Russia

defines as ‘‘forest land’’, which includes ‘‘forested area’’ and

‘‘unforested area’’. ‘‘Forested area’’ is defined by stocking

density. ‘‘Unforested area’’ is land where stocking density is

temporarily below the forested area threshold. In 1993,

‘‘forest land’’ was 887 Mha, ‘‘forested area’’ was 764 Mha

and ‘‘unforested area’’ was 123 Mha.

Estimates by Alexeyev and Birdsey (1998) and Nilsson

et al. (2000) may include ‘‘forested area’’ only, which is not

comparable to the remote sensing land cover definition of

forests. These inventory estimates fluctuate. For example,

the area of stocked stands (‘‘forested area’’) was estimated

to be 771.2 Mha in 1988, 763.5 Mha in 1993 and 769.8 Mha

in 1998.

The low estimate for forest area that is generated by the

remote sensing methodology (642 Mha) may be caused by

the coarse resolution of satellite data (8� 8 km). This

resolution may not capture tree stands in the forest–tundra

of Russia, where small lots of sparse, open larch stands with

extremely low growing stock (30–50 m3/ha) are located

throughout the vast peatlands. In addition, Russia has about

35 Mha of dwarf shrub communities (Betula nana and

others) which are counted as forests in inventory studies.

The total area of plain and mountain forest–tundra forests is

about 108 Mha, which may not be classified as forest land

cover in remote sensing data (recent unpublished analysis of

Alexeyev). There is an additional 20–30-Mha difference

between remote sensing and inventory estimates. When

expressed on a per ha forest area basis, the various pool

estimates are comparable (38–43 tons C/ha). The difference

in sink estimates between remote sensing and the TBFRA–

2000 is smaller (0.44 vs. 0.53; in tons C/ha/year). Nilsson et

al.’s estimate for the biomass sink, 0.058 Gt C/year, is

smaller than our (0.292 Gt C/year) and the TBFRA-2000

estimates (0.423 Gt C/year). Nilsson et al. could not have

derived their sink estimate from data for stem wood volume

data because the increment they quote (816 Mm3/year) on

760 Mha of forested area in 1990 is comparable to TBFRA-

2000 estimate of 1134 Mm3/year on 886 Mha of FOWL

area during the same period. If they used data for stem wood

volume, the three sink estimates would be comparable on a

per unit forest area basis. Alexeyev and Birdsey (1998) do

not provide a sink estimate. It is not clear why the TBFRA-

2000 estimate for forest area (816 Mha) is different than the

remote sensing estimate, considering that the two agree well

for Canada, USA and other countries.

5. Discussion

How robust are these results? Residual atmospheric

effects and calibration errors in satellite data cannot be ruled

out. Uncertainties in inventory data are country-specific and

difficult to quantify (Liski & Kauppi, 2000). Simple models

are used to convert wood volume and satellite greenness

data to biomass. The validity of the biomass–NDVI relation

at all scales is open to question. The differences in estimates

of forest area generated from remote sensing and forest

inventories are not easy to reconcile because of definition

problems.

The causes for the observed changes are not known but the

spatial patterns in Fig. 9a offer some clues. Increased inci-

dence of fires and infestations in Canada, fire suppression and

forest regrowth in the USA, declining harvests in Russia,

improved silviculture in the Nordic countries, woody en-

croachment and longer growing seasons from warming in the

northern latitudes may explain some of the changes (Cas-

persen et al., 2000; Houghton et al., 1999; Keeling, Chin, &

Whorf, 1996; Kurz & Apps, 1999; Myneni, Keeling, Tucker,

Asrar, & Nemani, 1997). This implies uncertainty regarding

the future of biomass sinks and therefore the need for

monitoring. All of this suggests a cautionary reading of the

results and need for further research.
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Nevertheless, this work contributes to global carbon

cycle research in four ways. First, it provides spatial detail

on the location of biomass carbon pools and where changes

in this pool have occurred at a resolution that permits direct

validation with ground data. Second, the NDVI data, when

used in inversion studies, provide additional constraints to

inferences regarding the distribution of sources and sinks for

atmospheric CO2 and isotopic concentration data. Third, the

inversion studies cannot partition the inferred sink between

vegetation, soil and other pools. For example, if vegetation

is a sink and soil is a source, estimates for changes in the

vegetation pool would complement inversion results.

Finally, debate currently is underway regarding which

of the forest biomass sinks can be used by the Annex 1

parties, the industrialized nations, to meet their commit-

ment to reduce greenhouse gas emissions under the Kyoto

Protocol of the United Nations Framework Convention on

Climate Change. Satellite estimates of biomass changes

can be used to verify compliance (Nilsson et al., 2000), if

the uncertainty of the remote sensing/statistical estimates

can be further reduced. Improved observations of green-

ness levels from a new generation of spacecraft sensors

such as the moderate-resolution imaging spectroradiometer

and multiangle imaging spectroradiometer, and possibly

direct biomass measurements with lidars, offer promise for

the future.
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Appendix A. Lists of provinces, states and countries in

Fig. 10

(a) The following provincial (Canada), state (USA) and

national data were used in Fig. 10a.

Canada (11)

Alberta, Manitoba, New Brunswick, Newfoundland,

Northwest Territories, Nova Scotia, Ontario, Quebec, Sas-

katchewan, Yukon Territory.

Not included: British Columbia

USA (46)

Alabama, Alaska, Arizona, Arkansas, Colorado, Connect-

icut, District of Columbia, Delaware, Florida, Georgia, Idaho,

Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine,

Maryland, Massachusetts, Michigan, Minnesota, Missis-

sippi, Missouri, Montana, Nebraska, Nevada, New Hamp-

shire, New Jersey, New Mexico, New York, North Carolina,

North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island,

South Carolina, South Dakota, Tennessee, Texas, Utah,

Vermont, Virginia, West Virginia, Wisconsin, Wyoming.

Not included: California, Hawaii, Oregon, Washington

Eurasian countries from TBFRA-2000 (37)

Albania, Armenia, Austria, Azerbaijan, Belgium, Bosnia,

Bulgaria, Belarus, Croatia, Czech, Denmark, Estonia, Fin-

land, France, Georgia, Germany, Greece, Hungary, Ireland,

Italy, Japan, Kazakhstan, Latvia, Lithuania, Netherlands, Nor-

way, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,

Sweden, Switzerland, Turkey, Ukraine, United Kingdom.

Countries not included:

(1) Russia and China are given in Table 1

(2) Kyrgyzstan, Macedonia and Uzbekistan: sink data not

given in TBFRA-2000

(3) Cyprus, Iceland, Israel, Luxemburg, Moldova, Turk-

menistan and Uzbekistan: forest area less than 0.1

million ha

USA (10)

Arkansas (1988, 1995), Florida (1987, 1995), Georgia

(1989, 1997), Mississippi (1987, 1994), North Carolina

(1984, 1990), South Carolina (1986, 1993), Texas (1986,

1992), Virginia (1986, 1992), Wisconsin (1983, 1996).

(b) The following provincial (Sweden), state (USA) and

national data were used in Fig. 10b.

USA (9)

Arkansas (1988, 1995), Florida (1987, 1995), Georgia

(1989, 1997), Mississippi (1987, 1994), North Carolina

(1984, 1990), Texas (1986, 1992), Virginia (1986, 1992),

Wisconsin (1983, 1996).

South Carolina not included because it shows decrease in

biomass.

Eurasian countries from TBFRA-2000 (37)

Albania, Armenia, Austria, Azerbaijan, Belgium, Bosnia,

Bulgaria, Belarus, Croatia, Czech, Denmark, Estonia, Fin-

land, France, Georgia, Germany, Greece, Hungary, Ireland,

Italy, Japan, Kazakhstan, Latvia, Lithuania, Netherlands, Nor-

way, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,

Sweden, Switzerland, Turkey, Ukraine, United Kingdom.

Countries not included:

(1) Russia and China are given in Table 1

(2) Kyrgyzstan, Macedonia and Uzbekistan: sink data not

given in TBFRA-2000

(3) Cyprus, Iceland, Israel, Luxemburg, Moldova, Turk-

menistan, and Uzbekistan: forest area less than 0.1

million ha

Sweden (22)

Älvsborg, Blekinge, Gävleborg, Göteborg, Gotland, Hal-

land, Jämtland, Jönköping, Kalmar, Kronoberg, Norrbotten,

Örebro, Östergötland, Skän, Skaraborg, Södermanland,

Stockholm, Uppsala, Värmland, Västerbotten, Västernorr-

land, Västmanland.

Not included: Kopparberg because of data-quality issues

References

Alexeyev, V. A., & Birdsey, R. A. (1998). Carbon storage in forests and

peatlands of Russia. General Technical Report, NE-244, USDS Forest

Service.

J. Dong et al. / Remote Sensing of Environment 84 (2003) 393–410 409



Birdsey, R. A., & Heath, L. S. (1995). Productivity of America’s forest and

climatic change. In L.A. Joyce (Ed.), General Technical Report RM-

GTR 271 (pp. 56–70). (USDA, Forest Service, Rocky Mountain Forest

and Range Experiment Station, Fort Collins, CO, 1995).

Bousquet, P., Peylin, P., Ciais, P., Quéré, C. L., Friedlingstein, P., & Tans,
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