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Berry phase from a randomly fluctuating magnetic field

R. Skomskia)
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(Presented 31 October 2011; received 23 September 2011; accepted 5 October 2011; published

online 6 February 2012)

The quantum-mechanical Berry phase due to a randomly fluctuating magnetic field is calculated by

exploiting an analogous random-walk problem in polymer physics. The phase depends on the time

correlations of the magnetic field, despite the adiabatic nature of the Berry phase. A probability

distribution for the phase is obtained, and how this phase could affect the magnetotransport in

granular magnetic nanostructures is briefly discussed. VC 2012 American Institute of Physics.

[doi:10.1063/1.3670063]

I. INTRODUCTION

Since its discovery, the Berry phase1 has revolutionized

quantum mechanics and perpetrated many areas of physics,

including magnetism. It means that the wave function acquires

a geometrical phase, jw> ! exp(ic)jw> that is unrelated to

the dynamical phase, expð�Ht=�hÞ, from the time-dependent

Schrödinger equation. The Berry phase is important for the

understanding of the orbital magnetic moment of itinerant

electrons, for quantum entanglement, and for a number of

magnetotransport phenomena, such as the anomalous Hall

effect.2 In fact, the Berry phase of a spin-1/2 particle in an

adiabatically changing magnetic field is one of the first exam-

ples of this phenomenon.1 The phase is well-defined when the

field forms a closed loop and is essentially equal to the solid

angle enclosed by the field, that is, to the corresponding area

on the unit sphere. For spin-1/2 particles, the Berry phase

obeys the simple relation,1,6

c ¼ X=2; (1)

where X is the solid angle of the loop. For nanoparticles that

can be described as rigidly exchange-coupled macrospins of

size, S, this equation changes to c¼ S X.6

In this paper, we determine the Berry phase caused by a

randomly fluctuating magnetic field. Due to the adiabatic na-

ture of the phase, the field must be slow compared to any

ongoing quantum-mechanical processes, which is typically

the case for meso- and macroscopic magnetic fields. To

determine the solid angle enclosed by the magnetic field, we

exploit a very similar problem in polymer physics, namely

the two-dimensional random-walk with closed loops, which

is also known as the problem of topologically constrained

polymers.3–5

II. SCIENTIFIC BACKGROUND: ORIGIN OF THE
BERRY PHASE

The Berry phase is created by varying the field angle
rather than the field strength, because it is an adiabatic

process and the spin is always parallel to the external mag-

netic field. Any change in the magnitude of the field yields

an ordinary Schrödinger-type dynamical phase, which does

not interfere with the Berry phase.1

In fact, the Berry phase of a spin in a magnetic field may

actually be considered as a “zero-energy” effect.6 The external

field, H(t), corresponds to a time-independent adiabatic energy,

Eo¼�lolB r.H, so that one can use a simple unitary transfor-

mation to adjust the zero of the energy scale and ensure that

Eo¼ 0. The nontrivial meaning of the corresponding “H¼ 0”

problem is easily seen by considering the action, S¼ $ L dt,

whose straight minimization corresponds to the system’s clas-

sical motion, whereas the path integral, $exp(iS=�)DxDp,

yields the quantum-mechanical amplitude. The Lagrangian,

L, contains not only the Hamiltonian, H, but also a geometri-

cal contribution describing the phase space. For the linear

motion of a particle, L¼ p dx/dt�H, however, the “flat”

character of the p-x phase space makes the geometrical term

uninteresting and the physics is determined by the Hamilto-

nian. However, the cross-product commutation rules for spins

correspond to spin precession and mix the x, y, and z spin com-

ponents, meaning that the geometrical term in L cannot be

neglected.6 Figure 1 visualizes this effect in terms of the paral-

lel transport in a curved phase space.

The simplest way to rationalize the Berry phase is to

assume a time-independent field magnitude, H. In the con-

sidered adiabatic limit, this corresponds to a constant Zee-

man energy, E¼�lolB H, and the previously mentioned

unitary transformation ensures that we can use E¼ 0. The

dynamical phase is, therefore, zero and the Schrödinger

equation predicts an unchanged wave function,

jw(t)>¼ jw(0)>. However, this unchanged wave function is

contradictory to our starting assumption that the field leads

to an adiabatic rotation of the spin, jw(t)>¼ jw(h, u)>. The

paradox is solved by the Berry phase, which yields the cor-

rect wave function without changing the Hamiltonian.

III. RANDOM-WALK STATISTICS

The next step is to map the random magnetic-field direc-

tion, shown in Fig. 2, onto a polymer analogy. The use of

magnetic models in polymer physics and vice versa has a
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long history, such as the use of the n¼ 0 vector-spin model

to explain phase transitions in polymers.7,8 Here we assume

that the magnet fluctuates without long-time memory, so that

we can map the field variation onto a random-walk diffusion

or polymer problem. The details of the short-time field varia-

tion are relatively unimportant.

A well-known example in polymer physics is the

valence-angle chain, where the ith polymer segment, li, is not

freely jointed to li-1 but confined to a cone defined by the bond

angle, h. In this case, lo
2¼ l2(1þ cos h)/(1 – cos h), where

l2¼ li
2. For h¼ 0, one obtains lo¼1, corresponding to a stiff

and long linear molecule, however, lo is finite for any nonzero

h, and the macroscopic chain behavior depends only on lo and

no longer explicitly on h. The Kuhn or statistical segment

length, lo, is defined by hli�liþ1i¼ 0 and hli2i¼ lo
2,9 that is, as

the bond length of an equivalent freely jointed polymer chain.

This maps the polymer chain onto a random walk, or, alterna-

tively, onto a Markovian diffusion process with hRNi¼ 0 and

hRNi2¼N lo
2, as illustrated in Fig. 3(a).

In the present analogy, we assume that the field fluctua-

tions are small, so that the direction of the field vector

remains close to H(0). Rather than using the field angles, h
and /, we can now write,

H tð Þ ¼ H 0ð Þez þ Hx tð Þex þ Hy tð Þey: (2)

To describe the randomness, we use the approximation,

Hxðtþ dtÞ ¼ Hx tð Þ þ dHx and

Hyðtþ dtÞ ¼ Hy tð Þ þ dHy; (3)

where hdHxi¼ hdHyi¼ 0 and hdHx
2þ dHy

2i¼ ho
2. The tra-

jectory of the magnetization direction, defined in terms of

Hx(t) and Hy(t), is analogous to the case of a random-walk

polymer chain in two dimensions, and ho corresponds to

Kuhn’s segment length, lo. One of the parameters, ho or to,

may be replaced by the angular velocity, g¼ ho/Hxto. Similar

to the polymer analogy, the parameters, to and ho, include

the effect of short-range correlations.

IV. RESULTS AND DISCUSSION

The magnetization paths of interest for the Berry phase

form closed random-walk loops, such as C1 and C2 in

Fig. 3(b). The number of these contours is infinite, and any

average over these contours has the character of a functional

integral,

Fh i ¼
ð

F Cð ÞDC: (4)

Here, the integration includes all closed paths, C(H(t)). In

the present case, F is the area in the Hx-Hy plane.

To calculate the functional integral of Eq. (4), we adopt

the procedure developed by Khandekar and Wiegel.4 The

calculation of the area is tedious but yields a transparent

FIG. 1. Parallel transport on a unit sphere. The area, X, corresponds to the

S¼1 Berry phase.

FIG. 2. (Color online) Random-walk description of a fluctuating magnetic

field.

FIG. 3. Random walk: (a) positions of the ith and Nth segments, and (b) typ-

ical closed loops, C1 and C2.
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analytical result for the areal probability distribution.4 The

probability is a function of the ratio, A/Nlo
2, where A is the

considered loop area and Nlo
2 is the average squared end-to-

end distance. In the magnetic analogy, it is convenient to

consider the ratio, X/Xo, where,

Xo ¼
t h2

o

Hzto

; (5)

is some average area corresponding to the writing time, t.
This yields the probability distribution,

PðXÞ ¼ p

Xocosh2 2pX
Xo

: (6)

Figure 4 shows this distribution. Both positive and negative

areas are possible, depending on the clockwise or counter-

clockwise character of the field loops, so that hXi¼ 0. How-

ever, the width, Xw, of the distribution, defined by Xw
2¼hX2i

is nonzero, and from Eq. (6) we obtain Xw¼ 0.144 Xo.

Here, X can be negative and includes, in general, contribu-

tions from subloops with an opposite sense of rotation. This

can be seen from the integral used to evaluate the area enclosed

by the polymer chain, namely A¼ [1/2]$(xdy� ydx).4 In Fig. 4,

only the positive half of the distribution is shown, and Xw is

marked by the dashed line.

Equation (6) and Fig. 4 become invalid for very long

times. This is easily seen by considering that X cannot be

larger than 4p, whereas Xo is proportional to t. Physically, the

field moves all around the unit sphere, and Eq. (4) can no lon-

ger be used. The “angular velocity” g¼ ho/Hzto, and the

requirement, Hx
2þHy

2� Ho
2, yield the condition, t� 1/g2to.

Naturally, a small angular velocity, g, helps to prolong this

time, however, a similar effect is achieved by reducing the

time step (or correlation time), to. For fixed g, this means that

rapid changes of the field direction (small to) reduce the

enclosed area.

V. DISCUSSION AND CONCLUSIONS

It is known that the Berry phase gives rise to quantum-

interference effects with far-reaching impact on the magne-

totransport, for example, on the anomalous Hall effect.2,10

Physically, this involves magnetic noncollinearities and

related interaction mechanisms, such as the Dzyaloshinski–

Moriya interactions and spin-orbit coupling.11 A similar

effect exists in polycrystalline nanostructures. When an elec-

tron travels through such a material, it accumulates a Berry

phase by experiencing the rapidly “changing” local magnetic

field of the differently oriented magnetic grains. This ran-

domness is of the type described in this paper and affects the

propagation of the electron.

So far, we have restricted ourselves to spin-1/2 particles,

where c¼X/2. As previously mentioned, c¼ S X, where S is

the total spin.6 Small nanoparticles can be considered as

macrospins with S� 1, so that the Berry phase can assume

very high values, even for small field changes. However, this

phase is difficult to determine, because the large spin gener-

ally implies that c¼ 2pnþDc (n integer and large, Dc< 2p)

and only Dc is easily detected by interference experiments.

In conclusion, we have calculated how a slowly varying

random magnetic field affects the Berry phase of magnetic

particles. The phase exhibits a distribution whose width is

determined by the angular velocity of the magnetic field. This

introduces a time-dependent aspect into the problem, despite

the adiabatic character of the Berry phase. Mechanisms simi-

lar to that described in the present paper are operative and pos-

sibly important in granular magnetic nanostructures.
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FIG. 4. (Color online) Probability distribution of the normalized Berry

phase. The parameter, Xo, increases linearly with the waiting time, t.
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