Crop Watch No. 94-16, July 29, 1994

Lisa Brown Jasa
University of Nebraska-Lincoln, ljasa@unlnotes.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cropwatch

Part of the Agriculture Commons

http://digitalcommons.unl.edu/cropwatch/68

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Crop Watch by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Greenbug numbers increasing

Surveys of sorghum fields across the state indicate that greenbug numbers have increased to near economic levels in some isolated fields. We are not sure exactly why one field will have high numbers of greenbugs and the surrounding fields will have few if any of the pests, but this may relate to whether the fields were planted to greenbug resistant hybrids.

Growers should scout their sorghum at least once a week for greenbugs on the underside of the lower leaves and the damage that they cause to the leaves. From boot to soft dough stages, consider insecticide treatment if greenbug colonies are present on most plants, before one lower leaf has been killed, and if parasite numbers are low (less than 20% of greenbugs parasitized). Parasitized greenbugs become mummified, are tan or brown in color, and appear swollen or bloated. Once parasitization reaches 20% or higher, greenbugs will be eliminated in 7 to 10 days without the insecticide treatment.

If insecticide treatment is determined necessary, refer to the list of insecticides in EC94-1509, Insect Management Guide for Nebraska Corn and Sorghum. One treatment is usually sufficient to protect sorghum from further greenbug damage.

Steve Danielson
Extension Entomology Specialist

Scout now for 2nd generation European corn borer eggs

Second generation European corn borer moths have begun to emerge in south central Nebraska and will be laying eggs during August (see July 22 CropWatch for predicted egg-laying periods).

Fields with green silks during the peak moth flight period are most susceptible to second generation egg laying. The white, flat eggs overlap each other like fish scales and are laid in masses of 5-40 eggs. Eggs are most likely found on the underside of leaves, near the mid-rib, on the ear leaf and the three leaves above or below the ear leaf. A black spot is visible on the eggs for about 24 hours before they hatch. The spot is the head of the developing corn borer; this stage is often referred to as the black head stage.

Begin scouting fields soon to determine when egg laying begins in your area. To determine whether control would be profitable, examine 25 plants at four sites per field (100 plants total). Record the number of egg masses and the number of plants sampled. Go through the calculations outlined in the following worksheet to determine if an economic infestation is present. You will also need to know:

- crop stage;
- expected yield;
- expected market price for corn;
- percent control with insecticide; and
- cost of control (insecticide plus application costs).

Use of this worksheet will allow you to better evaluate the factors influencing the cost/benefit relationship for second generation

(Continued on page 111)

Inside

Black stem in alfalfa 110
Greenbugs in Kansas 110
Herbicide Guide 110
Worksheet for 2nd generation corn borers 111
Precipitation, GDD, and evapotranspiration 112
Greenbug watch in Kansas

Light to moderate populations of greenbugs were found in some early planted milo fields in Ford, Finney, and Haskell counties in southwest Kansas. Winged greenbugs were common in a field in the Plymell area of Finney County. Growers in nearby counties in particular and in the western half of Kansas in general, should begin regular checking of milo fields for possible serious buildups of this pest during the next few weeks. The greenbug is capable of very rapid population increases. Lady beetles were moderate to abundant in most milo fields checked in western Kansas.

Kansas Department of Agriculture
Insect Survey Report (July 22)

Summer black stem now active in alfalfa

Central and eastern Nebraska alfalfa growers should begin scouting their third cutting of alfalfa for summer black stem and other leaf disease development. The most obvious symptom is premature leaf defoliation starting with the lower leaves and progressing upward in the canopy. The leaf spots, which develop before the stem lesions, are ash-gray and roughly circular. They are much larger than the lesions of common leaf spot. Lesions on the stem are long and range from a reddish to a chocolate brown.

Summer black stem can be a problem in the second and third cuttings. Warm-to-hot, wet or humid weather favors disease development. As with most leaf and stem diseases of alfalfa, losses are greatest if harvest is delayed until full bloom.

Now is the time to scout fields regularly so that cutting schedules can be adjusted to compensate for disease activity. Adjusting the cutting schedule to reduce leaf loss is the most practical and economical control method.

John E. Watkins
Extension Plant Pathologist

Herbicide guide to be revised

Farmers, Extension educators, industry representatives, and all other users of the Extension Herbicide Use Guide are invited to submit suggestions for the 1995 edition. We appreciate your previous input. You have helped make the Nebraska Herbicide Use Guide a most useful weed control aid for farmers, dealers, applicators, farm managers, consultants, Extension educators, and others.

Please send your suggestions by Sept. 1 to the Agronomy Department - Weed Science, Attention John McNamara, 362 Plant Science Building, University of Nebraska, Lincoln, NE 68583-0915.

Alex Martin
Extension Weeds Specialist
John McNamara, Extension Assistant, Agronomy-Weed Science
European corn borer treatments. Average values are suggested in the worksheet, but may be modified for local conditions.

1) Borer survival is suggested to be 15%. Larval survival varies with weather conditions and irrigation. In irrigated corn, larval survival may be 20% or more, while in dryland corn with no significant rainfall, it may be 10% or less. Survival of eggs and small larvae decreases greatly in hot, dry weather, or with extended periods of heavy rain.

2) Yield loss will be about 4% per borer for infestations occurring before silks turn brown and 3% per borer after silks turn brown, but before blister stage. These averages are based on published research, but only account for physiological yield losses (reduced grain production) and do not consider yield loss from stalk breakage or ear drop. These factors are difficult to predict and vary with hybrid, cultural practices and weather.

3) Percent control with insecticides is suggested to be 75%; change this value if you think that control will be different under your situation.

Infestations are most damaging when corn borers enter the stalk early in the reproductive cycle of corn. There is a short time between first egg hatch and significant stalk tunnelling when corn borers are best controlled. Concentrate scouting efforts in this early egg laying period and repeat every three to five days. Often second generation egg laying may extend for 21 days or more.

Management worksheet for second generation European corn borers

Number of egg masses/plant x 23 eggs/egg mass x 15% survival* = ________ borers/plant

Borers/plant x 4% yield loss/borer** = ________ % yield loss

% yield loss x ______ expected yield (bu/A) = _________ bu/acre loss

Bu/A loss x $ _________ sale price/bu = $ _________ loss/acre

Loss/A x 75% control = $ _________ preventable loss/acre

Preventable loss/acre

Cost of control (chemical + application costs)

$ _________ Profit (+) or loss (-)/acre if treatment is applied

If preventable loss exceeds cost of control, insecticide treatment is likely to result in economic benefit.

* Assumes 15% survival rate; may vary with weather.

** Use 3% loss per borer/plant if infestation occurs after silks are brown. The potential economic benefits of treatments decline rapidly if infestations occur after corn reaches the blister stage.
Nebraska weather data as of July 24

<table>
<thead>
<tr>
<th>Growing degree days*</th>
<th>Precipitation***</th>
<th>Evapotranspiration rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulated from</td>
<td>Fahrenheit, Base 50</td>
<td>7/17-7/24 Act %*</td>
</tr>
<tr>
<td>5/1 5/10 5/20 5/31</td>
<td>5/10 5/20 5/31</td>
<td></td>
</tr>
<tr>
<td>Ainsworth</td>
<td>1487 1416 1237 1053</td>
<td>0.00 0 11.22 97</td>
</tr>
<tr>
<td>Alliance</td>
<td>1369 1290 1126 975</td>
<td>0.09 18 3.91 40</td>
</tr>
<tr>
<td>Arthur</td>
<td>1424 1348 1187 1016</td>
<td>0.47 67 10.46 96</td>
</tr>
<tr>
<td>Beatrice</td>
<td>1699 1637 1468 1249</td>
<td>0.06 7 11.46 84</td>
</tr>
<tr>
<td>Central City</td>
<td>1654 1591 1411 1187</td>
<td>0.64 92 9.80 74</td>
</tr>
<tr>
<td>Clay Center</td>
<td>1664 1602 1429 1218</td>
<td>0.47 61 12.72 95</td>
</tr>
<tr>
<td>Concord</td>
<td>1536 1485 1316 1113</td>
<td>0.01 1 11.47 87</td>
</tr>
<tr>
<td>Curtis</td>
<td>1607 1531 1361 1172</td>
<td>0.47 67 7.35 62</td>
</tr>
<tr>
<td>Elgin</td>
<td>1539 1484 1313 1107</td>
<td>1.26 170 12.64 96</td>
</tr>
<tr>
<td>Gordon</td>
<td>1364 1294 1125 978</td>
<td>0.04 6 9.06 86</td>
</tr>
<tr>
<td>Grant</td>
<td>1557 1478 1309 1123</td>
<td>1.73 275 6.69 62</td>
</tr>
<tr>
<td>Holdrege</td>
<td>1653 1581 1212 1411</td>
<td>0.07 9 12.66 97</td>
</tr>
<tr>
<td>Lincoln</td>
<td>1771 1708 1528 1293</td>
<td>0.04 6 12.95 99</td>
</tr>
<tr>
<td>McCook</td>
<td>1696 1612 1235 1432</td>
<td>0.06 9 8.80 79</td>
</tr>
<tr>
<td>Mead</td>
<td>1659 1596 1425 1207</td>
<td>0.28 35 15.35 96</td>
</tr>
<tr>
<td>North Platte</td>
<td>1529 1455 1098 1284</td>
<td>0.43 62 11.22 100</td>
</tr>
<tr>
<td>O'Neall</td>
<td>1489 1426 1258 1073</td>
<td>0.31 41 16.18 134</td>
</tr>
<tr>
<td>Ord</td>
<td>1588 1522 1350 1150</td>
<td>0.39 56 13.62 116</td>
</tr>
<tr>
<td>Red Cloud</td>
<td>1694 1629 1465 1258</td>
<td>0.63 82 10.09 78</td>
</tr>
<tr>
<td>Rising City</td>
<td>1638 1580 1413 1193</td>
<td>0.43 62 13.98 118</td>
</tr>
</tbody>
</table>

Tasseling/silking normally begins at approximately: 1200 GDD's (short season); 1300 GDD's (mid season); or 1400 GDD's (long season)

**Base 50 is used for corn, sorghum and soybean production.

***Precipitation is a seven-day summary ending on July 24.

****Percent of normal precipitation levels.

*****Days indicates number of days ahead or behind normal, relative to accumulated growing degree days on July 24.