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Attenuation of ultrasonic waves in rolled metals
Liyong Yang and Joseph A. Turnera)

Department of Engineering Mechanics, Center for Materials Research and Analysis, W317.4 Nebraska
Hall, University of Nebraska—Lincoln,
Lincoln, Nebraska 68588-0526

~Received 12 March 2004; revised 31 August 2004; accepted 1 September 2004!

Scattering of ultrasonic waves in polycrystals with texture is studied in this article. The attenuations
of the three wave modes are determined as a function of dimensionless frequency and propagation
direction, respectively, for given orientation distribution coefficients~ODCs!. The calculation is
done in the case of a statistically orthorhombic sample made up of cubic crystallites. The wave
propagation and scattering model is formulated by the Dyson equation using an anisotropic Green’s
function approach. Within the limits of the first-order smoothing approximation, the Dyson equation
is solved in the spatial Fourier transform domain. The results presented are shown to be directional
dependent, frequency dependent, and especially dependent on the texture coefficients~ODCs! for
the quasilongitudinal and two quasishear waves. The theoretical results presented may be used to
improve the understanding of the microstructure during recrystallization processes. ©2004
Acoustical Society of America.@DOI: 10.1121/1.1810236#

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg@YHB# Pages: 3319–3327

I. INTRODUCTION

Metals and alloys are made of crystallite grains whose
characteristics and arrangements can be changed by the ap-
plication of heat processing, such as annealing. Microstruc-
tural parameters of metals determine the macroscopic me-
chanical properties of a material and include the grain size,
grain shape, and the orientation of the grains, or texture, and
their distribution in the microstructure. Ultrasonic waves
propagating in such aggregates lose energy due to scattering
from the granular microstructure of these materials. This
scattering is often characterized by the attenuation of the
medium. In general, the attenuation and wave velocity are
dependent on the grain size, shape, and on the particular
orientation distributions of the grains. If the grains are ran-
domly oriented such that the medium is statistically isotro-
pic, these propagation properties are independent of direc-
tion. However, the scattering attenuation and wave velocity
are a function of the propagation direction if the grains have
a preferred orientation. The preferred orientation of grains, or
texture, is best quantitatively described by the orientation
distribution function ~ODF! defining a probability density
function, which is usually expanded in a series of general-
ized spherical harmonics~Roe, 1965, 1966; Bunge, 1982!.
Often, most metallic materials with preferred orientation of
grains display anisotropy of material properties. Therefore,
knowledge of the anisotropic nature of the wave propagation
and scattering in textured materials such as attenuation and
velocity is critical for use with ultrasonic nondestructive
techniques. Such information will provide valuable insight
for modeling the microstructure of such complex materials
during processing.

The scattering of elastic waves by grains of polycrystals
has received considerable attention. The most recent contri-

butions for cubic symmetry with uniformly distributed orien-
tations of grains were made by Hirsekorn~1982, 1983!,
Stanke~1984!, and Weaver~1990!. The problem of wave
propagation and scattering in the case of polycrystalline
grains with an aligned@001# axis has been examined by
Ahmed and Thompson~1996! and Turner~1999!. In that
particular case, the average medium is statistically trans-
versely isotropic. Ahmed and Thompson~1992, 1996! also
studied correlations defined by both equiaxed grains and
grains with elongation.

During the recrystallization process of metals, such as
annealing, the microstructure may contain grains having pre-
ferred crystallographic orientations. For rolling texture, there
are three orthogonal axes of symmetry which are defined as
the rolling, transverse, and normal directions. Thus, the ma-
terial properties of this specific case may be assumed ortho-
rhombic due to the feature of the preferred orientation.
Hirsekorn~1985! also was one of the first to investigate the
wave scattering in polycrystals of cubic symmetry with roll-
ing texture as a function of frequency by using the perturba-
tion approach. She then extended her theory to determine the
directional dependence of the phase velocities and attenua-
tions of the three wave types under the same assumption
with fiber texture~Hirsekorn, 1986!. Her discussions were
restricted to waves propagating in the direction of an axis of
symmetry of the texture. The general formalism of the waves
propagating in any direction through polycrystalline metals
with rolling texture, however, has not yet been reported. The
detailed wave velocities of the three wave types, inclusive of
the quasilongitudinal and two quasishear waves, have been
discussed elsewhere~Sayers, 1982; Johnson, 1985; Hirao
et al., 1987; Li and Thompson, 1990! under the assumption
of orthorhombic-cubic symmetry.

In this article, the more sensitive ultrasonic parameter,
scattering attenuation, is studied for waves propagating in
any direction through such textured media. The wave propa-
gation and scattering model is formulated using the Dyson

a!Author to whom correspondence should be addressed. Electronic mail:
jaturner@unl.edu
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equation studied by Frisch~1968! and Weaver~1990! which
is easily solved in the spatial Fourier transform domain
within the limits of the first-order smoothing approximation
~FOSA! or Keller ~Karal and Keller, 1964! approximation.
The problem is studied here using the anisotropic Green’s
dyadic, an approach not used previously for textured materi-
als. The attenuations of the three wave types are calculated
numerically as a function of dimensionless frequency and
propagation direction, respectively, for given orientation dis-
tribution coefficients~ODCs! using the derived expressions.
The resulting attenuations are shown to be directional depen-
dent, frequency dependent, and dependent on the texture co-
efficients~ODCs! for the quasilongitudinal and two quasis-
hear waves. The theoretical results presented may be used to
improve the understanding of the microstructure during the
recrystallization process. In addition, the present formulation
may be used to study diffuse ultrasonic problems in a
straightforward manner. Although the present model is for
the case of orthorhombic-cubic symmetry, the formalism can
be easily modified to apply to other given symmetry cases.

In the next section, the preliminary elastodynamics of
elastic wave propagation and scattering is introduced in
terms of an anisotropic Green’s dyadic. The formalism of the
attenuation is then developed for the anisotropic case of
orthorhombic-cubic symmetry.

II. WAVE PROPAGATION AND SCATTERING MODEL

The equation of motion for the elastodynamic response
of an infinite, linear-elastic material to deformation is given
in terms of the Green’s dyadic by

$2d jkr] t
21]xiCi jkl ~x!]xl%Gka~x,x8;t !

5d j ad3~x2x8!d~ t !, ~1!

whered3(x2x8) is the three-dimensional spatial Delta func-
tion. The second-order Green’s dyadic,Gka(x,x8;t), defines
the response at locationx in the kth direction to a unit im-
pulse at locationx8 in the ath direction. The moduli are
considered to vary spatially and density is assumed uniform
throughout. In the case of orthorhombic-cubic symmetry, the
moduli C are supposed to be spatially heterogeneous and
have the form Ci jkl (x)5Ci jkl

0 1dCi jkl (x). The material
properties might have global anisotropy such that the mean
moduli are not necessarily isotropic. The covariance of the
moduli is characterized by an eighth-rank tensor

^dCi jkl ~x!dCabgd~x8!&5J i jkl
abgdh~x2x8!. ~2!

The spatial and tensorial parts of the above covariance,J
andh, are assumed independent. The correlation functionh
is also assumed a function of the difference between two
vectors,x2x8. This assumption implies that the medium is
statistically homogeneous.

The mean response,^G&, is governed by the Dyson
equation~Weaver, 1990; Frisch, 1968!

^Gia~x,x8!&5Gia
0 ~x,x8!1E E Gib

0 ~x,y!Mb j~y,z!

3^Gj a~z,x8!&d3y d3z. ~3!

In Eq. ~3!, the quantityG0 is the bare Green’s dyadic defined
as the ensemble average response of the medium without
fluctuations, namely, the solution to Eq.~1! whendCi jkl (x)
50. The second order tensorM is the mass or self-energy
operator. The Dyson equation, Eq.~3!, is easily solved in the
Fourier transform domain under the assumption of statistical
homogeneity. The assumption of statistical homogeneity en-
sures thatG0, M , and ^G& are functions of a single wave
vector in Fourier space. The Dyson equation is then trans-
formed and solved to give the result for^G~p!& of the form

^G~p!&5@G0~p!212M̃ ~p!#21, ~4!

whereM̃ is the spatial transform of the self-energy. The self-
energy M can be written as an expansion in powers of
moduli fluctuations. To first order~Frisch, 1968; Karal and
Keller, 1964! M is expressed as~Weaver, 1990!

Mb j~y,z!

' K ]

]ya
dCabgd~y!

]

]yd
Ggk

0 ~y,z!
]

]zi
dCi jkl ~z!

]

]zl
L . ~5!

Such an approximation is assumed valid if the fluctuations,
dC, are not too large. The components ofM̃ are employed to
calculate the attenuation of the three wave modes. Further
details of the scattering theory can be reviewed by the reader
in the articles of Karal and Keller~1964!, Frisch ~1968!,
Stanke and Kino~1984!, Weaver~1990!, and Turner~1999!.

The medium of oriented grains with rolling texture has
orthorhombic symmetry. When ultrasonic waves propagate
in such media, the phase velocity and the associated polar-
ization vector are determined by the Christoffel equation.
The dispersion relations for the mean response are then given
by the solution of the Dyson equation, Eq.~4!, as

gb~p!5@gb
0~p!212mb~p!#21

5@v22p2cb
22mb~p!#21, ~6!

for each wave type,b, quasilongitudinal (qP) and two qua-
sishear (qS1 andqS2) waves. The expressions for the dis-
persion relations of the mean response are written

v22p2cb
22mb~p!50, ~7!

which is solved for the wave vectorp. The attenuation of
each wave type is given by the imaginary part ofp. The
explicit expressions of the attenuation can be determined us-
ing an approximation valid below the high-frequency geo-
metric optics limit @mb(p)'mb((v/cb)p̂)# ~Stanke and
Kino, 1984; Weaver, 1990!. This approximation allows the
imaginary part ofp to be calculated directly from Eq.~7!.
Thus, the attenuations of the three wave types are calculated
as

ab~ p̂!52
1

2vcb~ p̂!
Im mbS v

cb
p̂D . ~8!

The attenuations for the three wave types, which are
each defined in Eq.~8!, are finally given in the general form
~Turner, 1999!
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ab~ p̂!5
1

cb
3~ p̂! H p

4 E d2ŝ
v4

cqS1
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqS1~ ŝ!
ŝD

••••ûKp̂ŝv̂1

••••ûKp̂ŝv1

1
p

4 E d2ŝ
v4

cqP
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqP~ ŝ!
ŝDJ

••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2

1
p

4 E d2ŝ
v4

cqS2
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqS2~ ŝ!
ŝDJ

••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3 J , ~9!

whereK is defined as the polarization for the wave typeb ~1,
2, or 3 for wave typesqS1, qP, andqS2, respectively!. In
the above equation, the integrals are over the unit sphere,
which is defined by unit vectorŝ. The directionp̂ defines the
propagation direction,ŝ is the scattered direction, andû and
v̂ are defined as the polarization directions. The dependence
of the vectorsû on p̂ and ofv̂ on ŝ is implicit. The argument
of h̃ is the difference between the incoming and outgoing
propagation directions. The inner products on the covariance
of the moduli fluctuations are given in terms of four unit
vectors. In the next section, the correlation function is speci-
fied.

III. CORRELATION FUNCTION

As shown in Eq.~2!, the tensorial and spatial contribu-
tions of the material covariance are assumed independent.
The spatial correlations are characterized byh. Here, it is
assumed thath has an exponential form

h~r !5e2r /L. ~10!

The correlation length,L, is of the order of the grain radius
in polycrystals. In general, a simple exponential form of the
spatial correlation function is not exact for polycrystals with
rolling texture for which there is grain elongation. For elon-
gated grains, a more general spatial correlation function must
be used~Ahmed and Thompson, 1992!. The influence of this
choice of correlation function on the attenuations is left as a
subject of future investigations. In Fourier transform space,
the correlation function is then given by

h̃~q!5
L3

p2~11L2q2!2
. ~11!

The forms of the attenuation given above contain the
difference of two vectors, h̃(q)5h̃(@v/c1(u)#p̂
2@v/c2(u8)# ŝ) as the argument for covariance in Eq.~2!.
Now the correlation functionsh̃b2g(p̂,ŝ) are considered. If
the three nondimensional frequencies are then defined as
xb5vL/cb , using the expression of the spatial Fourier
transform of the correlation function in Eq.~11!, the func-

tions h̃b2g(p̂,ŝ) are then expressed in terms of the above
dimensionless quantities as

h̃b2g~ p̂,ŝ!5
L3

p2~11xb
2~f!1xg

2~f8!22xb~f!xg~f8!p̂"ŝ!2
,

~12!

for the incoming wave typeb and outgoing wave typeg. The
inner product, p̂"ŝ5cosf cosf8 sinu sinu8
1sinf sinf8 sinu sinu81cosu cosu8, if the unit vectorsp̂
and ŝ are generally defined by p̂5x1 cosf sinu
1x2 sinf sinu1x3 cosu and ŝ5x1 cosf8 sinu8
1x2 sinf8 sinu81x3 cosu8. The anglesu, f and u8, f8 are
respectively defined as Euler angles in a general coordinate
system. The form of the eighth-rank tensor,J i jkl

abgd , is dis-
cussed next for rolling texture made up of cubic crystallites.

IV. COVARIANCE AND ATTENUATION

To calculate the attenuations, the relevant inner products
on the covariance of the moduli fluctuations are required.
The covariance of the moduli fluctuations is represented by
an eighth-rank tensor which is given explicitly by

J
••••ûp̂ŝv̂
••••ûp̂ŝv̂5Jabgd

i jkl ûbûkp̂ap̂l ŝi ŝdv̂gv̂ j . ~13!

For polycrystals of cubic symmetry, the eighth-rank covari-
ance,J i jkl

abgd , is written as

J i jkl
abgd5^Ci jkl Cabgd&2^Ci jkl &^Cabgd&

5k2K (
n51

3

ainajnaknaln (
n51

3

aanabnagnadnL
2k2K (

n51

3

ainajnaknalnL
2K (

n51

3

aanabnagnadnL , ~14!

where the brackets,^ &, denote an ensemble average over all
orientations of grains, andk5C11

0 2C12
0 22C44

0 is the single-
crystal anisotropy factor. If the polycrystal is of
orthorhombic-cubic symmetry, only certain terms are non-
zero. An example term necessary for calculating the attenu-
ations is presented in the Appendix. Details of the other non-
zero terms may be found elsewhere~Yang, 2003!. For the
second term in Eq.~14!, the results are given in the details of
other articles~Sayers, 1982; Johnson, 1985; Hiraoet al.,
1987; Li and Thompson, 1990!.

The forms of the attenuations presented in Eq.~9! re-
quire various inner products on the covariance tensor. These
inner products have the general form ofJ

••••ûp̂ŝv̂
••••ûp̂ŝv̂ , where the

vectors p̂ and ŝ, respectively, represent the incoming and
outgoing propagation directions. The vectorsû and v̂ are
vectors defining the polarization directions of the particular
waves. While waves propagate in arbitrary directions, the
polarization vectors are found by the Christoffel equation.
Substituting the correlation function, Eq.~12!, and the inner
products into Eq.~9!, the resulting dimensionless attenua-
tions are given in the form

3321J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 L. Yang and J. A. Turner: Scattering in polycrystals with texture



ab~ p̂!L5
xb

4cb~ p̂!

2r2
3H E

4p

J
••••ûKp̂ŝv̂1

••••ûKp̂ŝv̂1 ~ p̂,ŝ!

~11xb
2~ p̂!1xqS1

2 ~ ŝ!22xb~ p̂!xqS1~ ŝ!p̂"ŝ!2

1

cqS1
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2 ~ p̂,ŝ!

~11xb
2~ p̂!1xqP

2 ~ ŝ!22xb~ p̂!xqP~ ŝ!p̂"ŝ!2

1

cqP
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3 ~ p̂,ŝ!

~11xb
2~ p̂!1xqS2

2 ~ ŝ!22xb~ p̂!xqS2~ ŝ!p̂"ŝ!2

1

cqS2
5 ~ ŝ!

d2ŝJ , ~15!

whereK has the same definition as discussed in Eq.~9!. It
should be noted that these inner products have units ofk2. In
the long wavelength Rayleigh limit,xb!1, Eq. ~15! can be
simplified as

ab~ p̂!L/xb
45

cb~ p̂!

2r2
3H E

4p

J
••••ûKp̂ŝv̂1

••••ûKp̂ŝv̂1

cqS1
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2

cqP
5 ~ ŝ!

d2ŝ1E
4p

J
••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3

cqS2
5 ~ ŝ!

d2ŝJ .

~16!

In Eq. ~16!, the dimensionless attenuation has been normal-
ized by the fourth power of the dimensionless frequency for
the respective wave type.

In Eqs. ~15! and ~16! the inner products,J
••••ûp̂ŝv̂
••••ûp̂ŝv̂ , do

not have simple analytical forms for arbitrary propagation
direction in this orthorhombic-cubic case. Thus, these results
must be calculated numerically. In the next section, example
numerical results and discussions are presented.

V. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results are now presented for a 70% rolled
steel plate. The material constants of a single crystal and the
texture coefficients of the orientation distribution function
with respect to the generalized spherical functions are given
by ~Bunge, 1982!

C11
0 52.3731011 Pa, C12

0 51.4131011 Pa,
~17!

C44
0 51.1631011 Pa, r57850 kg/m3,

and

c4
00521.47, c4

2050.46,

c4
4050.50, c6

0052.69,

c6
20521.20, c6

4050.46,
~18!

c6
60520.14, c8

00520.07,

c8
2050.29, c8

40520.45,

c8
60520.47, c8

80520.22.

The orientation distribution coefficients~ODCs! in
Bunge’s notationcl

mn must be converted into those in Roe’s

notationWlmn , which are used in this discussion. In order to
carry out the calculations for the attenuations, Eq.~15!, nu-
merical methods are employed. The procedure of numerical
methods for calculating the wave attenuations is now de-
scribed.

First, using the Christoffel equation, the eigenvalue-
eigenvector problem is solved for a given wave propagation
direction and scattering direction. Second, the covariance of
the moduli fluctuations is calculated by Eq.~14!. Next, using
the known covariance and eigenvectors, the inner products of
each wave type are calculated numerically. Finally, the
double integration is implemented numerically by the ex-
tended trapezoidal method. Here, examples are presented to
describe important features of the wave attenuations for sev-
eral propagation directions. The examples are generated us-
ing the methods discussed above. Since the orthorhombic
symmetry has three mutually orthogonal planes of symmetry,
all calculations are made for 0°<f<90° and 0°<u<90°.

Convergence of the numerical integration was examined
first. Wave attenuations of each wave type were examined
for waves propagating in the rolling direction, that isf50°
andu590°, and at a dimensionless frequencyxqS151.0. The
results show fast convergence for each wave mode in nu-
merical integrations using the extended trapezoidal method
~Yang, 2003!. In order to achieve a balance between effi-
ciency and accuracy, the number of intervals in the integra-

FIG. 1. Rayleigh attenuation,aqPL/xqP
4 , as a function of propagation direc-

tion for qP waves using the specified ODCs.
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tion N520 is chosen for calculating the attenuations for each
wave mode in the results shown here.

First, the attenuations within the Rayleigh limit are cal-
culated using Eq.~16!. It is known that the attenuations de-
pend on the fourth power of frequency in the Rayleigh re-
gime. Thus, the normalized Rayleigh attenuationabL/xb

4 of
each wave mode is shown with the angular dependence in
Figs. 1–3 for various propagation directions, respectively. It
is observed that in this specific case the attenuations of each
wave mode are considerably dependent on the wave propa-
gation direction. For waves propagating in different direc-
tions, the curves of the attenuations have smoothly changing
shapes. The percent variations of theqP, qS1, and qS2
attenuations in terms of polar angleu shown in Figs. 1–3 are
about 25–40%, 20–50%, and 15%, respectively. The varia-
tion of theqS2 attenuations is more uniform than that of the
others.

Outside the Rayleigh regime, the attenuation results are
calculated using the complete integrals, Eq.~15!. The direc-
tional dependence of the attenuation is presented first for a
given dimensionless frequency,xqS151.0. Figure 4 shows

the normalized quasilongitudinal wave (qP) attenuation,
aqPL, as a function of azimuthal directionf for various
polar anglesu. It is seen that the attenuation is dependent on
the propagation direction as expected. Here, the attenuation
variation with respect to polar angleu is around 15–30%.
The results for the normalized shear wave (qS1 andqS2)
attenuations are presented in Figs. 5 and 6, respectively. The
directional dependence on the propagation direction for these
attenuations is also significant. The percent variation of the
qS1 andqS2 attenuations in terms of polar angleu is about
10–50%. These results may be contrasted with the results in
the Rayleigh limit. Comparisons of the Rayleigh attenuations
with attenuations outside the Rayleigh regime show that the
tendency of variation is quite different with each due to the
effect of frequency. In Fig. 4, theqP wave attenuation is
observed to have the maximum atf590° for given anglesu.
In Fig. 5, the curves of theqS1 wave attenuations have
smoothly changing shapes. Figure 6 shows that for propaga-
tion at polar angleu530°, 45°, and 60°, the maximum at-
tenuation is aboutf545°, and at polar angleu590°, there is
a minimum attenuation approximately atf545°. Further-

FIG. 2. Rayleigh attenuation,aqS1L/xqS1
4 , as a function of propagation di-

rection forqS1 waves using the specified ODCs.

FIG. 3. Rayleigh attenuation,aqS2L/xqS2
4 , as a function of propagation di-

rection forqS2 waves using the specified ODCs.

FIG. 4. Directional dependence of the normalizedqP attenuation,aqPL, for
frequencyxqS151.0.

FIG. 5. Directional dependence of the normalizedqS1 attenuation,aqS1L,
for frequencyxqS151.0.

3323J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 L. Yang and J. A. Turner: Scattering in polycrystals with texture



more, the asymmetry is observed in Fig. 6 for various polar
angles.

Next, results are presented for the normalized attenua-
tion as a function of aximuthal directionf for four different
frequencies at given polar angleu590°. The normalized
shear wave (qS1) attenuations,aqS1L, are shown in Fig. 7
for u590° for normalized frequenciesxqS151.0, 1.5, 2.0,
and 2.5. It is seen that the attenuation curves show a similar
shape with increasing frequency for the respective polar
angle. The results for the normalizedqP attenuations,aqPL,
are shown in Fig. 8 for the same frequencies. Figure 9 shows
the normalizedqS2 attenuations,aqS2L, as a function of
propagation direction for the same four frequencies. It is ob-
served that the attenuation curves show a similar shape with
increasing frequency for each wave type as well. All curves
of the attenuations have smoothly changing shapes for vari-
ous frequencies. Figure 9 shows that at polar angleu590°
there is a minimum attenuation atf545° for various fre-
quencies. There is no symmetry to be observed with increas-
ing frequency as well in Fig. 9.

Finally, results are presented for the normalized attenu-

ations as a function of frequency for several propagation di-
rections. In Figs. 10–12, the normalized attenuations of the
three wave modes are plotted versus dimensionless fre-
quency,xqS1 , for propagation directions along the rolling,
normal, and transverse directions, respectively. For the ex-
ample considered here, Fig. 11 shows theqS1 wave attenu-
ation for propagation in the rolling, normal, and transverse
directions with polarization in the normal, transverse, and
rolling directions, respectively. Figure 12 shows theqS2
wave attenuation propagated in the rolling, normal, and
transverse directions and polarized in the transverse, rolling,
and normal directions, respectively. It is observed that there
is a transition region as the dimensionless frequency in-
creases. Thus, the relative order of the attenuation is
switched in such a transition region for the three wave
modes, respectively. The attenuations increase with the
fourth power of frequency in the low frequency limit. After a
transition region, the attenuations scale with the square of
frequency as expected. Moreover, the normalized attenuation
of each wave type is plotted versus normalized frequency,
xqS1 , for propagation within thex12x2 plane for various

FIG. 6. Directional dependence of the normalizedqS2 attenuation,aqS2L,
for frequencyxqS151.0.

FIG. 7. Angular dependence of the normalizedqS1 attenuation,aqS1L, for
various frequencies,xqS1 , at polar angleu590°.

FIG. 8. Angular dependence of the normalizedqP attenuation,aqPL, for
various frequencies,xqS1 , at polar angleu590°.

FIG. 9. Angular dependence of the normalizedqS2 attenuation,aqS2L, for
various frequencies,xqS1 , at polar angleu590°.
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azimuthal angles in Figs. 13–15. In the Rayleigh regime, it is
observed that the curves for each wave type mainly show the
same shape. The variation of the attenuation of each wave
mode is about 10%. Outside the Rayleigh regime, the attenu-
ation of each wave mode in the rolling direction is about ten
times higher than that for propagation atf530°, 45°, and
60°. This feature is thought to be the result of the weak
texture for the case discussed here.

The generalized attenuation results presented in this ar-
ticle for arbitrary propagation direction suggest that new ul-
trasonic techniques for characterization of texture coeffi-
cients may be possible. Further study is necessary to unravel
the complex relations between the ODCs and the angular and
frequency dependence of the attenuations. Attenuation mea-
surements could ultimately be inverted such that the ODCs
may be determined. However, such an approach must be
optimized by choosing measurement directions that are the
most sensitive to the desired ODC. Thus, theoretical devel-

opments such as this one will provide a firm basis for direct-
ing new experiments. Eventual process control of recrystal-
lization that is quantitative will require modeling-directed
experimental methods. In addition to theoretical research,
numerical methods will also be necessary for progress to be
made. This work must also be expanded to include other
factors important to textured materials, such as grain size
distribution and grain shape.

VI. SUMMARY

In this article, the scattering of elastic waves in poly-
crystalline materials with texture was discussed. The en-
semble average response of the elastic waves is governed by
the Dyson equation within the limits of first-order smoothing
approximation. In contrast with previous work, here an an-
isotropic Green’s dyadic approach was used. In order to cal-
culate the attenuations, the relevant inner products on the
covariance of the effective moduli fluctuations were derived

FIG. 10. NormalizedqP attenuation,aqPL, as a function of dimensionless
frequency,xqS1 , for waves propagating in the rolling (RD), normal (ND)
and transverse (TD) directions.

FIG. 11. NormalizedqS1 attenuation,aqS1L, as a function of dimension-
less frequency,xqS1 , for waves propagating in the rolling (RD), normal
(ND) and transverse (TD) directions.

FIG. 12. NormalizedqS2 attenuation,aqS2L, as a function of dimension-
less frequency,xqS1 , for waves propagating in the rolling (RD), normal
(ND) and transverse (TD) directions.

FIG. 13. NormalizedqP attenuation,aqPL, as a function of dimensionless
frequency,xqS1 , for waves propagating within thex12x2 plane.
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in polycrystals of cubic symmetry with rolling texture. Com-
pact expressions for the attenuations of the quasilongitudinal
and two quasishear waves were then presented in terms of
integrations over the scattered directions. In general, attenu-
ations for each wave type are dependent on frequency, wave
velocity, and wave propagation direction, as well as texture
coefficients which are the expansion coefficients of the ori-
entation function with respect to the generalized spherical
functions. The results show that the attenuations of each
wave type can be comprehensively affected by those param-
eters. The general formulation is also directly related to
backscattering problems. The simple form of the results
makes them particularly useful for nondestructive testing and
materials characterization research. To use ultrasonic tech-
niques for monitoring texture during processing, the relation-

ships between ultrasonic parameters such as ultrasonic at-
tenuation and materials texture must be investigated. If one
knows the relationships between the ODCs and the ultra-
sonic attenuation, the texture coefficients can be inverted
from ultrasonic attenuation measurements. The ultrasonic at-
tenuations of sample specimens can then be measured during
annealing such that the ODCs can be determined during pro-
cessing.
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APPENDIX

For polycrystals of cubic symmetry, the nonzero terms of the eighth-rank covariance,J i jkl
abgd in Eq. ~14!, are determined.

The first term within the brackets is given as
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FIG. 14. NormalizedqS1 attenuation,aqS1L, as a function of dimension-
less frequency,xqS1 , for waves propagating within thex12x2 plane.

FIG. 15. NormalizedqS2 attenuation,aqS2L, as a function of dimension-
less frequency,xqS1 , for waves propagating within thex12x2 plane.
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where thew is orientation distribution function~ODF!. It can be expanded in a series of generalized spherical harmonics, with
the coefficientsWlmn defining the orientation distribution coefficients~ODCs!. The notationsTlmn are defined as
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If the polycrystal is of orthorhombic-cubic symmetry, an example term (i 5 j 5k5 l 51 and a5b5g5d51! is given as
follows:
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The remaining nonzero terms necessary for the calculation are given in detail elsewhere~Yang, 2003!.
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