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Attenuation of ultrasonic waves in rolled metals

Liyong Yang and Joseph A. Turner®

Department of Engineering Mechanics, Center for Materials Research and Analysis, W317.4 Nebraska
Hall, University of Nebraska—Lincoln,

Lincoln, Nebraska 68588-0526

(Received 12 March 2004; revised 31 August 2004; accepted 1 Septembegr 2004

Scattering of ultrasonic waves in polycrystals with texture is studied in this article. The attenuations
of the three wave modes are determined as a function of dimensionless frequency and propagation
direction, respectively, for given orientation distribution coefficie@DCg. The calculation is

done in the case of a statistically orthorhombic sample made up of cubic crystallites. The wave
propagation and scattering model is formulated by the Dyson equation using an anisotropic Green’s
function approach. Within the limits of the first-order smoothing approximation, the Dyson equation

is solved in the spatial Fourier transform domain. The results presented are shown to be directional
dependent, frequency dependent, and especially dependent on the texture coef@gsfor

the quasilongitudinal and two quasishear waves. The theoretical results presented may be used to
improve the understanding of the microstructure during recrystallization processe2004€
Acoustical Society of America[DOI: 10.1121/1.1810236

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35/G¢1B] Pages: 3319-3327

I. INTRODUCTION butions for cubic symmetry with uniformly distributed orien-
tations of grains were made by Hirseko(h982, 1983,
Metals and alloys are made of crystallite grains whoseStanke (1984, and Weaver(1990. The problem of wave
characteristics and arrangements can be changed by the gjtopagation and scattering in the case of polycrystalline
plication of heat processing, such as annealing. Microstrucgrains with an aligned001] axis has been examined by
tural parameters of metals determine the macroscopic mgshmed and Thompsoti1996 and Turner(1999. In that
chanical properties of a material and include the grain sizeparticular case, the average medium is statistically trans-
grain shape, and the orientation of the grains, or texture, angersely isotropic. Ahmed and Thomps¢h992, 1996 also
their distribution in the microstructure. Ultrasonic wavesstudied correlations defined by both equiaxed grains and
propagating in such aggregates lose energy due to scatterig@ains with elongation.
from the granular microstructure of these materials. This  During the recrystallization process of metals, such as
scattering is often characterized by the attenuation of th@nnealing, the microstructure may contain grains having pre-
medium. In general, the attenuation and wave velocity argerred crystallographic orientations. For rolling texture, there
dependent on the grain size, shape, and on the particulafe three orthogonal axes of symmetry which are defined as
orientation distributions of the grains. If the grains are ran-the rolling, transverse, and normal directions. Thus, the ma-
domly oriented such that the medium is statistically isotro-terial properties of this specific case may be assumed ortho-
pic, these propagation properties are independent of dire¢hombic due to the feature of the preferred orientation.
tion. However, the scattering attenuation and wave velocityHirsekorn (1985 also was one of the first to investigate the
are a function of the propagation direction if the grains haveyave scattering in polycrystals of cubic symmetry with roll-
a preferred orientation. The preferred orientation of grains, olhg texture as a function of frequency by using the perturba-
texture, is best quantitatively described by the orientationion approach. She then extended her theory to determine the
distribution function(ODF) defining a probability density directional dependence of the phase velocities and attenua-
function, which is usually expanded in a series of generaltions of the three wave types under the same assumption
ized spherical harmonicgRoe, 1965, 1966; Bunge, 1982 with fiber texture(Hirsekorn, 1986 Her discussions were
Often, most metallic materials with preferred orientation ofrestricted to waves propagating in the direction of an axis of
grains display anisotropy of material properties. Thereforesymmetry of the texture. The general formalism of the waves
knowledge of the anisotropic nature of the wave propagatiopropagating in any direction through polycrystalline metals
and scattering in textured materials such as attenuation angiith rolling texture, however, has not yet been reported. The
velocity is critical for use with ultrasonic nondestructive detailed wave velocities of the three wave types, inclusive of
techniques. Such information will provide valuable insightthe quasilongitudinal and two quasishear waves, have been
for modeling the microstructure of such complex materialsdiscussed elsewheréSayers, 1982; Johnson, 1985; Hirao
during processing. et al, 1987; Li and Thompson, 199@nder the assumption
The scattering of elastic waves by grains of polycrystalsof orthorhombic-cubic symmetry.
has received considerable attention. The most recent contri- |n this article, the more sensitive ultrasonic parameter,
scattering attenuation, is studied for waves propagating in
“Author to whom correspondence should be addressed. Electronic maifny direction through such textured media. The wave propa-
jaturner@unl.edu gation and scattering model is formulated using the Dyson
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equation studied by Frisoti968 and Weave1990 which  In Eq. (3), the quantityGP is the bare Green’s dyadic defined

is easily solved in the spatial Fourier transform domainas the ensemble average response of the medium without
within the limits of the first-order smoothing approximation fluctuations, namely, the solution to E@) when 5C;j (X)
(FOSA) or Keller (Karal and Keller, 196/ approximation. =0. The second order tensdt is the mass or self-energy
The problem is studied here using the anisotropic Green’'sperator. The Dyson equation, E®), is easily solved in the
dyadic, an approach not used previously for textured materiFourier transform domain under the assumption of statistical
als. The attenuations of the three wave types are calculatdgtbmogeneity. The assumption of statistical homogeneity en-
numerically as a function of dimensionless frequency andsures thatG®, M, and(G) are functions of a single wave
propagation direction, respectively, for given orientation dis-vector in Fourier space. The Dyson equation is then trans-
tribution coefficientgODC9 using the derived expressions. formed and solved to give the result #®(p)) of the form

The resulting attenuations are shown to be directional depen- -

dent, frequency dependent, and dependent on the texture co- (G(p))=[G°%p) *=M(p)]~ %, 4
efficients (ODCs9 for the quasilongitudinal and two quasis- ~ .
hear waves. The theoretical results presented may be usedvy(pereM is the spatial .transform of the self—engrgy. The self-
improve the understanding of the microstructure during theenergyM can be written as an expansion in powers of

recrystallization process. In addition, the present formulatior{ﬂOdull fluctuations. To first ordefFrisch, 1968; Karal and

may be used to study diffuse ultrasonic problems in aKeIIer, 1964 M is expressed aVeaver, 199p

straightforward manner. Although the present model is for, (y,2)
the case of orthorhombic-cubic symmetry, the formalism can IR
be easily modified to apply to other given symmetry cases. d a5 d
In the next section, the preliminary elastodynamics of  ~ E‘Scaﬂvﬁ(y)&_%Gyk(yvz)(9—Zi5cijk|(2)(9—zl )
elastic wave propagation and scattering is introduced in
terms of an anisotropic Green’s dyadic. The formalism of theSuch an approximation is assumed valid if the fluctuations,
attenuation is then developed for the anisotropic case ofC, are not too large. The components\fare employed to
orthorhombic-cubic symmetry. calculate the attenuation of the three wave modes. Further
details of the scattering theory can be reviewed by the reader
in the articles of Karal and Kelle1964), Frisch (1968,
Il. WAVE PROPAGATION AND SCATTERING MODEL Stanke and Kind1984), Weaver(1990, and Turner(1999.
The medium of oriented grains with rolling texture has
The equation of motion for the elastodynamic responsgythorhombic symmetry. When ultrasonic waves propagate
of an infinite, linear-elastic material to deformation is givenin sych media, the phase velocity and the associated polar-

in terms of the Green’s dyadic by ization vector are determined by the Christoffel equation.
= 5jkp<?[2+ %iCijra (X)X} Gya(X,X' ;1) The d|spers!on relations for the mean response are then given
by the solution of the Dyson equation, Bd), as
= 6,0 (x=x")8(1), (1)
95(P)=[gp(p) 1 —mg(p)]
where8%(x—x’) is the three-dimensional spatial Delta func- A p A
tion. The second-order Green’s dyad®,,(x,x’;t), defines =[w?=pic5;—mu(p)] (6)

the response at locationin the kth direction to a unit im-
pulse at locationx’ in the ath direction. The moduli are for each wave typeg, quasilongitudinal ¢P) and two qua-
considered to vary spatially and density is assumed uniforngishear S1 andqS2) waves. The expressions for the dis-
throughout. In the case of orthorhombic-cubic symmetry, thedersion relations of the mean response are written

moduli C are supposed to be spatially heterogeneous and 9 22 B

have the form Cjj(X)=Cfy +dCij(x). The material w”=p°cp—mg(p)=0, ()
properties might have global anisotropy such that the meap,
moduli are not necessarily isotropic. The covariance of th
moduli is characterized by an eighth-rank tensor

hich is solved for the wave vectqr. The attenuation of
%ach wave type is given by the imaginary partmpfThe
explicit expressions of the attenuation can be determined us-
(8C;ijki () 5Caﬁys(x’))=Eﬁﬁwﬂ(X—X')- 2 ing an approximation valid below the k}igh-frequency geo-
metric optics limit [mg(p)~mg((w/cg)p)] (Stanke and
Kino, 1984; Weaver, 1990 This approximation allows the
imaginary part ofp to be calculated directly from Ed7).
thus, the attenuations of the three wave types are calculated
as

The spatial and tensorial parts of the above covariaice,

and 7, are assumed independent. The correlation function

is also assumed a function of the difference between tw
vectors,x—x’. This assumption implies that the medium is
statistically homogeneous.

The mean respons€G), is governed by the Dyson A 1 o
equation(Weaver, 1990; Frisch, 1968 ag(p)=— 200,(0) Im mg(c—ﬁp). (8)
<Gia(X,X’)>:G?a(X,X’)+f f Gla(X.Y)Mg(y,2) The attenuations for the three wave types, which are
each defined in Eq8), are finally given in the general form
X(Gju(zX))d% d®z. (3)  (Turner, 1999
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1 {Wf e W ( o tions 775 ,(p,9) are then expressed in terms of the above

ag(P)=—51{7 S ~ 7 ~p dimensionless quantities as
TN cSa(® '\ cs(P) g
N - . L3
® kP 75— ,(P,S)= ; Y
—ms) 7 T L+ X5() +X5( ") = 2Xg( )X, (p")P-S)?
qst B, (12
- ot © for the incoming wave typ@ ang putgoing wave t_yp¢. _The
+— | d%s 7 —D inner product, p-S=C0S¢ cos¢’ sinfsin b’
4 5~ 7 p _ ) P X _ -
cop(8) | Ca(P) +sin¢gsing’ sindsin ¢’ +coshcosd’, if the unit vectorsp
o and S are generally defined byp=x;cos¢sing
_ Lg) o WP, +X, SiN ¢ SiN 6+x3 COSO and $=Xx, C0s¢' sind’
Cqp(9) o UkPsY +X,sing’ sinf +x3cosd’. The anglesd, ¢ and &', ¢’ are
4 respectively defined as Euler angles in a general coordinate
™ w w . — 5 i 4
+ _f d%s — 77< —~p system. The form of the eighth-rank tensezrﬁﬁy , Is dis-
4 Cax(9) Cs(P) cussed next for rolling texture made up of cubic crystallites.
@ A WPSy
— ~=S|= 0 9 IV. COVARIANCE AND ATTENUATION
Cqx2(S) e UPsyg

_ _ o To calculate the attenuations, the relevant inner products
whereK is defined as the polarization for the wave typ€l,  on the covariance of the moduli fluctuations are required.
2, or 3 for wave typeg|SL, qP, andqS2, respectively In The covariance of the moduli fluctuations is represented by
the above equation, the integrals are over the unit sphergn eighth-rank tensor which is given explicitly by
which is defined by unit vectas. The directionp defines the o B8 mikl nonoA oA
propagation directiors is the scattered direction, andand B p& T E aBysUpUKPaPISISsU 4 - (13
v are definedAas t@e poIariAzatioAn.dilrecti'o'ns. The dependengg,, polycrystals of cubic symmetry, the eighth-rank covari-
of tbg vectorsy onp and ofv onsis |rr'1pI|C|t.'The argument' ance,Eﬁf,“/‘s, is written as
of 7 is the difference between the incoming and outgoing
propagation directions. The inner products on the covariance 5eBY—(C.. C —{(CivMC
of the moduli fluctuations are given in terms of four unit 7= (Cuia Capyo) = (CipaX( Capyo)
vectors. In the next section, the correlation function is speci- 5 3 3
fied. =K n§=:1 ainajnaknalnnzl Aangn@yndsn

IIl. CORRELATION FUNCTION

N

3
. ) . ) —K <2 ainajnaknaln>
As shown in Eq.(2), the tensorial and spatial contribu- n=1

tions of the material covariance are assumed independent. 3
The spatial correlations are characterized jpyHere, it is _< > aanaﬁnaynaﬁn>, (14)
assumed thapy has an exponential form n=1

p(ry=e "'t (100  Where the bracketg, ), denote an ensemble average over all

orientations of grains, and=C%,— C9,— 2C9, is the single-
crystal anisotropy factor. If the polycrystal is of

g ) ah e ~ orthorhombic-cubic symmetry, only certain terms are non-
spatial correlation function is not exact for polycrystals with ;..o an example term necessary for calculating the attenu-
rolling texture for which there is grain elongation. For elon- 54415 is presented in the Appendix. Details of the other non-
gated grains, a more general spatial correlation function musta g terms may be found elsewheéang, 2003. For the

be usedAhmed and Thompson, 1982The influence of this  gacond term in Eq14), the results are given in the details of
choice of correlation function on the attenuations is left as gher articles(Sayers, 1982; Johnson, 1985: Hirabal,
subject of future investigations. In Fourier transform SPaceq9g7: Lj and Thompson, 1990

the correlation function is then given by

The correlation lengthl, is of the order of the grain radius
in polycrystals. In general, a simple exponential form of the

The forms of the attenuations presented in Ej).re-
L3 quire various inner products on the covariance tensor. These

D=5 (11)  inner products have the general form®f . ;5 , where the
m(1+L7%q7) vectorsp and S, respectively, represent the incoming and
The forms of the attenuation given above contain theoutgoing propagation directions. The vectarsand v are
difference  of two vectors, 7(q)=7([w/c,(f)]p  vectors defining the polarization directions of the particular
—[wlcy(8')]9) as the argument for covariance in B8).  waves. While waves propagate in arbitrary directions, the
Now the correlation functioné}ﬂ,y(ﬁ,é) are considered. If polarization vectors are found by the Christoffel equation.

the three nondimensional frequencies are then defined &@ubstituting the correlation function, EGL2), and the inner
Xg=wl/cg, using the expression of the spatial Fourierproducts into Eq(9), the resulting dimensionless attenua-
transform of the correlation function in E¢l1), the func- tions are given in the form
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2n

- Upsy
ag(p)L= 2 (p) f ar “KPS"i( P9 1
g 2p? 4w<1+xz<f>)+xqsl<s>—2x,g<b)xq51<§)ﬁ-é>2 Ca(d
GED)
J~ = GK’b"s’v(p! ) _ l dzé
4

w(1+x,;<p>+xqp<s) 2X4(p)Xqp(9)+)2 C3p(d)

(R

1 .
d?s g, (15)

N J‘ fJKpsAv3
4w<1+x2<ﬁ>+xqsz<s>—2xﬁ<r3>xq$(é>|6-é>2 N

whereK has the same definition as discussed in . It
should be noted that these inner products have unig.ofn
the long wavelength Rayleigh limikz;<1, Eq.(15) can be

simplified as
) = WPy
. ca(p S sy
ag(PLixi="20 % 02
B B 2 2 5
P 4m CqSl(S)
= WPy, = WPSyy
= psy, =0 psy,
+f %dszrf = S 4%
4m Cap(9) 4m Cus(9)

(16)

notationW,,,,, which are used in this discussion. In order to
carry out the calculations for the attenuations, Bdp), nu-
merical methods are employed. The procedure of numerical
methods for calculating the wave attenuations is now de-
scribed.

First, using the Christoffel equation, the eigenvalue-
eigenvector problem is solved for a given wave propagation
direction and scattering direction. Second, the covariance of
the moduli fluctuations is calculated by Ed4). Next, using
the known covariance and eigenvectors, the inner products of
each wave type are calculated numerically. Finally, the
double integration is implemented numerically by the ex-
tended trapezoidal method. Here, examples are presented to

In Eqg. (16), the dimensionless attenuation has been normaldescribe important features of the wave attenuations for sev-
ized by the fourth power of the dimensionless frequency foreral propagation directions. The examples are generated us-

the respective wave type.
In Egs. (15) and (16) the inner productsz

-upsv
“psy do

ing the methods discussed above. Since the orthorhombic
symmetry has three mutually orthogonal planes of symmetry,

not have simple analytical forms for arbitrary propagationall calculations are made for &%<90° and 0%6<90°.

direction in this orthorhombic-cubic case. Thus, these results

Convergence of the numerical integration was examined

must be calculated numerically. In the next section, examplérst. Wave attenuations of each wave type were examined

numerical results and discussions are presented.

V. NUMERICAL RESULTS AND DISCUSSIONS

for waves propagating in the rolling direction, thatg#s-0°
and#=90°, and at a dimensionless frequengy, = 1.0. The
results show fast convergence for each wave mode in nu-
merical integrations using the extended trapezoidal method

Numerical results are now presented for a 70% roIIeO(Yang, 2003. In order to achieve a balance between effi-

steel plate. The material constants of a single Crystal and th@ency and accuracy, the number of intervals in the integra-
texture coefficients of the orientation distribution function

with respect to the generalized spherical functions are given

by (Bunge, 1982

C9,=2.37x10'" Pa, C%=1.41x10" Pa,

CY%,=1.16x10" Pa, p=7850 kg/n, 17
and
=—1.47, c3°=0.46,

ci=0.50, c=2.69,

20=-1.20, cg’=0.46,
¢®=—0.14, ¢%=-0.07, (18)
c3=0.29, cg’=—0.45,
ce’=-0.47, c=-0.22.

The orientation distribution coefficient$ODC9 in

025

0.24f

0.231

4
qu

0.22f

:T%
B3 021
g
g oo .
g 0=60°
s 019} .
=
b
% 0.18 E
-4 0=0°

0.17 =

0=45'
0.16F

6=30°
0 10 20 30 40 50 60 70 80 90
Incidence angle ¢ (degrees)

FIG. 1. Rayleigh attenuatlomquL/xc|P as a function of propagation direc-

Bunge’s notatiorc]"" must be converted into those in Roe’s tion for P waves using the specified ODCs.
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0
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o Incidence angle ¢ (degrees)
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FIG. 4. Directional dependence of the normalizgelattenuationgpl., for

FIG. 2. Rayleigh attenuatio L/x, as a function of propagation di-
yeu Wasi-Xqs1 propag frequencyx,s; = 1.0.

rection forgSl waves using the specified ODCs.

tion N= 20 is chosen for calculating the attenuations for eacithe normalized quasilongitudinal wavegR) attenuation,
wave mode in the results shown here. aqpl, as a function of azimuthal directiosp for various
First, the attenuations within the Rayleigh limit are cal- polar angles). It is seen that the attenuation is dependent on
culated using Eq(16). It is known that the attenuations de- the propagation direction as expected. Here, the attenuation
pend on the fourth power of frequency in the Rayleigh re-variation with respect to polar angi¢is around 15-30%.
gime. Thus, the normalized Rayleigh attenuatijl/x of ~ The results for the normalized shear waegSt andqS2)
each wave mode is shown with the angular dependence igttenuations are presented in Figs. 5 and 6, respectively. The
Figs. 1-3 for various propagation directions, respectively. ldirectional dependence on the propagation direction for these
is observed that in this specific case the attenuations of eaditenuations is also significant. The percent variation of the
wave mode are considerably dependent on the wave prop&Sl andgS2 attenuations in terms of polar anglés about
gation direction. For waves propagating in different direc-10—50%. These results may be contrasted with the results in
tions, the curves of the attenuations have smoothly changingie Rayleigh limit. Comparisons of the Rayleigh attenuations
shapes. The percent variations of the, qS1, and qS2 with attenuations outside the Rayleigh regime show that the
attenuations in terms of polar angleshown in Figs. 1-3 are tendency of variation is quite different with each due to the
about 25—-40%, 20—-50%, and 15%, respectively. The variagffect of frequency. In Fig. 4, thgP wave attenuation is
tion of theqS2 attenuations is more uniform than that of the observed to have the maximumdt90° for given angles.
others. In Fig. 5, the curves of thgSl wave attenuations have
Outside the Rayleigh regime, the attenuation results arémoothly changing shapes. Figure 6 shows that for propaga-
calculated using the complete integrals, Etp). The direc-  tion at polar angle#=30°, 45°, and 60°, the maximum at-
tional dependence of the attenuation is presented first for &nuation is abou$=45°, and at polar anglé=90°, there is
given dimensionless frequencyys=1.0. Figure 4 shows a minimum attenuation approximately a=45°. Further-

0.066 T T T T T T T T 0.02 T r T T T T T T
0.019
g 0.064¢ S .
e 6-60 0.018
.
8 0062 1 o 0.017
£ 0=45° o
3 £ 0016
g 006 ] 2
= Q
) 6=30° E 0.015
(7} 1%}
2 oossl 1 T o014f 0=0° 2
9=0° 0.013
0.056
e=900 0.012
0.054 L L ; L . . ; L 0.011 . . . . . . . .
Y o 20 3 4 50 6 70 8 9% 0 0 20 30 40 50 60 70 8 90
Incidence angle ¢ (degrees) Incidence angle ¢ (degrees)

FIG. 3. Rayleigh attenuatiomqszL/xgsz, as a function of propagation di- FIG. 5. Directional dependence of the normalizg8l attenuationgyglL,
rection forqS2 waves using the specified ODCs. for frequencyxqs = 1.0.
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qP attenuation o qPL

qS2 attenuation aqszL

0.013

0.012

0.011 L L y L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Incidence angle ¢ (degrees)

Incidence angle ¢ (degrees)

FIG. 6. Directional dependence of the normalizgg? attenuationegol,

FIG. 8. Angular dependence of the normalizg# attenuationagel, for
for frequencyxqg = 1.0.

various frequenciessys, , at polar angleg=90°.

more, the asymmetry is observed in Fig. 6 for various polaitions as a function of frequency for several propagation di-
angles. rections. In Figs. 10-12, the normalized attenuations of the
Next, results are presented for the normalized attenua_‘hree wave modes are p|0tted versus dimensionless fre-
tion as a function of aximuthal direCtiQﬁ for four different quencylquJJ for propagation directions a|0ng the ro"ing,
frequencies at given polar angle=90°. The normalized normal, and transverse directions, respectively. For the ex-
shear wave S1) attenuationsegg L, are shown in Fig. 7 ample considered here, Fig. 11 shows @& wave attenu-
for #=90° for normalized frequencies;s;=1.0, 1.5, 2.0, ation for propagation in the rolling, normal, and transverse
and 2.5. It is seen that the attenuation curves show a Simila:ﬁrections with po'arization in the normaL transverse’ and
shape with increasing frequency for the respective polafoliing directions, respectively. Figure 12 shows th&2
angle. The results for the normalizgé attenuationseqpl,  wave attenuation propagated in the rolling, normal, and
are shown in Fig. 8 for the same frequencies. Figure 9 showgansverse directions and polarized in the transverse, rolling,
the normalizedqS2 attenuationspgsL, as a function of  and normal directions, respectively. It is observed that there
propagation direction for the same four frequenCieS. Itis Ob'is a transition region as the dimensionless frequency in-
served that the attenuation curves show a similar Shape Wifé\'eases_ ThUS, the relative order of the attenuation is
increasing frequency for each wave type as well. All curvesswitched in such a transition region for the three wave
of the attenuations have smoothly changing shapes for varinodes, respectively. The attenuations increase with the
ous frequencies. Figure 9 shows that at polar amg®0°  fourth power of frequency in the low frequency limit. After a
there is a minimum attenuation @t=45° for various fre-  transition region, the attenuations scale with the square of
quencies. There is no symmetry to be observed with increagrequency as expected. Moreover, the normalized attenuation
ing frequency as well in Fig. 9. of each wave type is plotted versus normalized frequency,
Finally, results are presented for the normalized attenquSL for propagation within thex;—x, plane for various
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FIG. 7. Angular dependence of the normalizg8l attenuationggg L, for FIG. 9. Angular dependence of the normalizggl attenuationgyslL, for
various frequenciessys; , at polar angleg=90°. various frequenciesys; , at polar angleg=90°.
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FIG. 10. NormalizedyP attenuationaqpl, as a function of dimensionless FIG. 12. Normalized)S2 attenuationegl, as a function of dimension-
frequencyx,s , for waves propagating in the rollin®RD), normal (ND) less frequencyx,s , for waves propagating in the rollingRD), normal
and transverseT(D) directions. (ND) and transverseT(D) directions.

azimuthal angles in Figs. 13—15. In the Rayleigh regime, it iopments such as this one will provide a firm basis for direct-
observed that the curves for each wave type mainly show thimg new experiments. Eventual process control of recrystal-
same shape. The variation of the attenuation of each wawézation that is quantitative will require modeling-directed
mode is about 10%. Outside the Rayleigh regime, the atteniexperimental methods. In addition to theoretical research,
ation of each wave mode in the rolling direction is about tennumerical methods will also be necessary for progress to be
times higher than that for propagation at=30°, 45°, and made. This work must also be expanded to include other
60°. This feature is thought to be the result of the weakfactors important to textured materials, such as grain size
texture for the case discussed here. distribution and grain shape.

The generalized attenuation results presented in this ar-
ticle fqr arb|trary propagation dwecfuon_ suggest that new UI_'VI. SUMMARY
trasonic techniques for characterization of texture coeffi-
cients may be possible. Further study is necessary to unravel In this article, the scattering of elastic waves in poly-
the complex relations between the ODCs and the angular arefystalline materials with texture was discussed. The en-
frequency dependence of the attenuations. Attenuation meaemble average response of the elastic waves is governed by
surements could ultimately be inverted such that the ODC#he Dyson equation within the limits of first-order smoothing
may be determined. However, such an approach must bapproximation. In contrast with previous work, here an an-
optimized by choosing measurement directions that are thisotropic Green’s dyadic approach was used. In order to cal-
most sensitive to the desired ODC. Thus, theoretical develeulate the attenuations, the relevant inner products on the

covariance of the effective moduli fluctuations were derived

10 T

- 450 6=90° . )_/"

qS1 attenuation, aqSIL

qP attenuation, o qPL

10 Dimension 10° 10 105 .
imensionless frequency, Xs1 107 10° 10

Dimensionless frequency, st
FIG. 11. NormalizedySl attenuationaggl, as a function of dimension-
less frequencyx,s, for waves propagating in the rollingR@), normal FIG. 13. Normalized) P attenuationggpel, as a function of dimensionless
(ND) and transverseT(D) directions. frequencyxqs; , for waves propagating within the, —x, plane.
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FIG. 14. NormalizedySL attenuationaggl, as a function of dimension-  FIG. 15. NormalizedqS2 attenuationpgsL, as a function of dimension-
less frequencyx,s, , for waves propagating within the, —x, plane. less frequencyx,s; , for waves propagating within the,—x, plane.

in polycrysta|s of CUbiC Symmetry W|th ro"ing texture. Com- ShipS between ultrasonic parameters such as ultrasonic at-
pact expressions for the attenuations of the quasilongitudindgnuation and materials texture must be investigated. If one
and two quasishear waves were then presented in terms kpows the relationships between the ODCs and the ultra-
integrations over the scattered directions. In general, attenigonic attenuation, the texture coefficients can be inverted
ations for each wave type are dependent on frequency, waJEom ultrasonic attenuation measurements. The ultrasonic at-
velocity, and wave propagation direction, as well as texturdenuations of sample specimens can then be measured during
coefficients which are the expansion coefficients of the oriannealing such that the ODCs can be determined during pro-
entation function with respect to the generalized spherica¢€SSIng.

functions. The results show that the attenuations of each

wave type can be comprehensively affected by those pararﬁalcK'\'OWLEDGMENTS

eters. The general formulation is also directly related to  The financial support of the U.S. Department of Energy
backscattering problems. The simple form of the result§Grant No. DE-FG02-01ER458%0s gratefully acknowl-
makes them particularly useful for nondestructive testing aneéédged. We also thank James C. Foley, R. Bruce Thompson,
materials characterization research. To use ultrasonic tecland David B. Rehbein at Ames Laboratory for their discus-
niques for monitoring texture during processing, the relationsions.

APPENDIX

For polycrystals of cubic symmetry, the nonzero terms of the eighth-rank covarlﬁﬁﬁé‘,9 in Eq. (14), are determined.
The first term within the brackets is given as

3 3
< El ainajnaknaln 21 aanaﬁnaynaén>
n= n=

3

1 27 (27 (+1 3
-, f J ( 2 ainajnaknaln) ( 2 aanaﬁnaynaﬁn> wW(& i, p)dédyde
47T 0 0 -1 \n=1 n=1

5

5
= 47%3 WogoT oot W4om{ Taoot —=(Ta04t Taoa)

+ W420{ Tazot Tazot ——=(Taoat Tazat Tazat Taza)

V70 V70

5 J14
+Waad Taaot Taaot ——=(Taaat Taza+ Tadat Taaz) | +Weod Teoo— BN (Teoat Teoa)

V70

J14 ' [ J14
+Weog Teoot Te20— > (Te2at Te2a+ Tezat Te2a) | +Weag Teaot Teao— - (Teast Teaat Teaat Teaa)

J14 ] [ J154 J1430

+Weeq Teso™ Teso— > (Teeat Tesat Togat Teea) | +Wgog Tsoot 33 (Tgoat Tgoa) + 66 (Tgogt Tgos)
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J154 V1430

+Wagoq Tgogt Tezot ?(T824+ Tgoat+ Tgoat Tgoa) + ?(Tszsﬁ Tg2s+ Teost Tezs)

J154 V1430

+Wgaq Taaot TgaoT 33 (Tgaat Tgaat+ Tgaat Tgaa) + 66 (Tgagt Tgag+ Taigt Tgas)

J154 V1430

+Weggq Tgeot Tgeot 33 (Tgeat Tgeat Tgeat Tgea) + 66 (Tgest Tgest Taeat Tses)

J154 V1430

+Weagq Tggot Tgaot ¥(T8847L Tggat Tggat Tgga) + ?(Tassﬁ Teest Tegst Tass) | (

where thew is orientation distribution functiofODF). It can be expanded in a series of generalized spherical harmonics, with
the coefficientsV,,,,, defining the orientation distribution coefficient®DC9. The notationsT,,, are defined as

3
1 27 (27 [+1
Tlmn:_zf f f (E ainajnaknaln)
47Jo Jo J-1\n=1

If the polycrystal is of orthorhombic-cubic symmetry, an example teimjEk=1=1 and a=B8=y=45=1) is given as
follows:

<§3: , i , > 41 2232272 2976|572 1448,/3572 12\/2672 64/2730m2
anl aml = T ENNE
m=1

lemn(f)eiimweiimpdf dyde.

3
2 aanaﬁnaynaﬁn
n=1
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n=1

128,/9172 64,/6006m2 561/3472 32,/119072 32,/130972 32\/14586r2
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. 164/1215572

12155 Weso-

The remaining nonzero terms necessary for the calculation are given in detail elsé\arege2003.
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