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Abstract A condition for the emergence of a
discontinuity in an elastic peridynamic body is pro-
posed, resulting in a material stability condition for
crack nucleation. The condition is derived by deter-
mining whether a small discontinuity in displace-
ment, superposed on a possibly large deformation,
grows over time. Stability is shown to be determined
by the sign of the eigenvalues of a tensor field that
depends only on the linearized material properties. This
condition for nucleation of a discontinuity in dis-
placement can be interpreted in terms of the dynamic
stability of plane waves with very short wavelength.
A numerical example illustrates that cracks in a peri-
dynamic body form spontaneously as the body is
loaded.
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1 Introduction

Common experience tells us that if a brittle solid body
is loaded sufficiently, eventually it fails due to crack-
ing. This paper addresses the following question: How
does a crack appear spontanteously in a continuous
body? For purposes of this discussion, this spontane-
ous appearance of such a discontinuity will be called
the “nucleation” of a crack.

The field of fracture mechanics is primarily
concerned with the evolution of pre-existing defects
within a body, rather than the nucleation of new defects.
It is frequently noted that real materials, now matter
how perfect they seem at the macroscale, invariably
contain many defects at the microscale. Therefore, it
could be claimed that the nucleation of a macroscale
crack never really occurs; instead the seemingly sudden
appearance of a discontinuity is merely the growth and
coalescence of a large number of pre-existing defects
at the smaller scale. However, as a practical matter,
an engineering model would require an impractically
detailed spatial resolution to capture such a distribu-
tion of tiny defects, even if the fundamental mechan-
ics of these defects were adequately understood. So,
it is desirable to have a practical mathematical model,
applicable at the macroscale, that reproduces the spon-
taneous emergence of discontinuities.

The classical theory of solid mechanics, because
of the requirements for smoothness of the deforma-
tion that are built into the fundamental assumptions
of the theory, cannot be considered an ideal tool for
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220 S. A. Silling et al.

the study of this problem. However, the peridynamic
theory (Silling 2000; Silling et al. 2007) has been pro-
posed as a reformulation of solid mechanics whose
basic equations remain applicable regardless of the pos-
sible emergence of discontinuities in the deformation.
In this paper, the nucleation of discontinuities is studied
within the peridynamic theory from the point of view
of material stability.

Material stability conditions have been investigated
within the classical theory as possible criteria for
nucleation of discontinuities. For hyperelastic materi-
als in the classical theory, loss of ordinary ellipticity
(Knowles and Sternberg 1975, 1978) provides a condi-
tion for the presence of static discontinuities in the first
spatial derivatives of displacement in a homogeneous
body. Material stability conditions with a structure
similar to loss of ordinary ellipticity have also been
considered as criteria for localization in elastic-plas-
tic materials, particularly for shear bands (Hill 1962;
Rudnicki and Rice 1975; Leroy and Ortiz 1989). Klein
and Gao (1998) consider a criterion similar to loss of
ordinary ellipticity as a condition for crack nucleation.
Klein and Gao base this condition on the acoustic ten-
sor corresponding to a material whose response is local
but is derived from the response of a network of virtual
independent bonds (VIB).

Bazant and Belytschko (1985) conclude that if loss
of hyperbolicity (the analogue in the dynamic case
of loss of ellipticity in the static case) occurs, then
deformations can localize to a discontinuity. However,
Belytschko et al. (2003), while adopting this condi-
tion as an indicator of crack growth, correctly include
the following note of caution: “It must be stressed that
these are empirical inferences and that little appears to
be known about the morphology and evolution of such
surfaces in multi-dimensions.”

Although loss of ellipticity has been investigated by
many authors as a localization criterion, the mechanical
argument connecting it with nucleation of strong dis-
continuities such as cracks is indirect at best. The rea-
son is that when a discontinuity in displacement forms
spontaneously, it is difficult to argue that the fourth
order elasticity tensor provides an adequate descrip-
tion of how material on one crack face interacts with
material on the other face. This interaction is precisely
what should, in a properly formulated mathematical
model of a continuum, determine whether a disconti-
nuity grows or does not grow. The ability to model this
type of interaction explicitly is one feature that the peri-

dynamic theory offers for purposes of modeling crack
nucleation. In this paper, a material instability condi-
tion is derived that corresponds to the ability of a dis-
continuous perturbation in the deformation to grow in
amplitude over time. The condition involves only the
incremental material properties at each point.

Propagation, as opposed to nucleation, of cracks
within the peridynamic model has been described else-
where (Silling and Askari 2005) and has been applied
to a number of problems involving complex patterns of
fracture (Silling 2003; Silling and Bobaru 2005; Askari
et al. 2006; Bobaru 2007; Xu et al. 2007; Colavito et al.
2007; Gerstle et al. 2007; Xu et al. 2008; Agwai et al.
2008a,b; Kilic and Madenci 2009; Kilic et al. 2009;
Agwai et al. 2009). Crack growth occurs through the
irreversible breakage of bonds as they stretch in the
vicinity of a crack tip. The damage condition that gov-
erns bond breakage is treated as part of the constitutive
model. As shown in Silling and Askari (2005), if bond
breakage occurs at a prescribed value of bond stretch,
then cracks advance according to the Griffith criterion,
consuming a definite amount of energy per unit area.
The nucleation and motion of phase boundaries, includ-
ing material stability aspects, was investigated by Dayal
and Bhattacharya (2006).

In Sect. 2 of this paper, the fundamentals of the peri-
dynamic theory are reviewed. In Sect. 3, the linearized
equations are discussed that represent the superposition
of a small displacement field on a large equilibrated
deformation. In Sect. 4, the evolution of such a super-
posed displacement field containing a jump disconti-
nuity is investigated, resulting in a material stability
condition. The relationship between this condition and
the wave speeds in the material is discussed in Sect. 5.
A computational example illustrating the nucleation of
a crack at a stress concentration in a plate is presented
in Sect. 6.

2 Basic equations of peridynamics

In the peridynamic model, the strain energy density at a
point x in an elastic body B is determined by the collec-
tive deformation of all the points within a predefined
interaction distance of x. This interaction distance is
called the horizon and denoted δ. The relative position
vector in the reference configuration from x to any point
q within the horizon is called a bond, denoted ξ = q−x.
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Crack nucleation in a peridynamic solid 221

The set of all bonds connected to x is called the family
of x and denoted H.

In the constitutive modeling of a peridynamic elastic
material, the basic kinematical quantity that determines
the strain energy density W (x, t) is called the deforma-
tion state at x and t , defined by

Y[x, t]〈ξ 〉 = y(x + ξ , t) − y(x, t) (1)

where y is the motion. The deformation state is a
mapping that associates with any bond ξ its image
under the motion. The bond that Y operates on is writ-
ten in angle brackets, 〈ξ 〉.

The deformation state is an example of a vector state,
which is simply a mapping from bonds to vectors in R

3.
The dot product of two vector states A and B is defined
by

A • B =
∫
H

A〈ξ 〉 · B〈ξ 〉 dVξ

where the integrand is the usual scalar product in R
3 of

the two vectors A〈ξ 〉 and B〈ξ 〉. The norm of a vector
state is defined by

||A|| = √
A • A.

If � is a scalar valued function of a vector state A, then
its Fréchet derivative ∇�(A), if it exists, is defined by

�(A + a) = �(A) + ∇�(A) • a + o(||a||)
for any vector state a.

A double state D is a mapping from pairs of bonds
to second order tensors; thus the value of D〈ξ , ζ 〉 is a
second order tensor. The adjoint of a double state is
defined by

D
†〈ξ , ζ 〉 = D

T 〈ζ , ξ 〉
for any bonds ξ and ζ , where the superscipt T indicates
the tensor transpose. The dot product of a double state
D with a vector state A is a vector state defined by

(D • A)〈ξ 〉 =
∫
H

D〈ξ , ζ 〉 A〈ζ 〉 dVζ

for any bond ξ . If S is a vector state valued function of
a vector state, its Fréchet derivative ∇S(A), if it exists,
is defined by

S(A + a) = S(A) + ∇S(A) • a + o(||a||)
for any vector state a.

In the constitutive modeling of an elastic material,
the strain energy density W (x, t) is, in general, deter-
mined by the collective deformation of all the bonds

Fig. 1 An incremental displacement field u containing a jump
across the surface � is superposed on an equilibrated, possibly
large deformation y0

connected to x, not merely by the individual bonds
independently of each other. It is this collective depen-
dence that leads to the need for W to be considered
a function of Y. Thus, the constitutive model for an
elastic material is written

W (x, t) = Ŵ (Y[x, t], x),

in which the explicit dependence of Ŵ on x reflects pos-
sible heterogeneity. The functional for total potential
energy of a bounded body B in terms of the motion y
is given by

�y =
∫
B
(Ŵ (Y[x], x) − b · y) dVx,

where b is a prescribed body force density field.
Deriving the Euler-Lagrange equation associated with
stationary values of �y, and applying d’Alembert’s
principle, leads to the peridynamic equation of motion:

ρ(x)ÿ(x, t) =
∫
B

{
T[x, t]〈q − x〉 − T[q, t]

〈x − q〉} dVq + b(x, t) (2)

where T is the force state, a vector state defined by

T[x, t] = T̂(Y[x, t], x) = ∇Ŵ (Y[x, t], x), (3)

in which ∇ denotes the Fréchet derivative with respect
to Y. T̂ is the constitutive model that gives the force
state as a function of the deformation state. The force
state is the work conjugate of the deformation state:

Ŵ (Y + dY) − Ŵ (Y) = T • dY.

3 Linearized form of peridynamics

Consider an equilibrated, continuous deformation y0

corresponding to time-independent external body force
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222 S. A. Silling et al.

density field b. Let u be a small variation in the defor-
mation (Fig. 1). Linearizing the function T̂ near y0 leads
to

T = T0 + K • U + o(||U||) (4)

where

T0[x] = T̂(Y0[x], x), U[x]〈p − x〉 = u(p) − u(x)

(5)

for all points x and p in B. K is a double state called
the modulus state defined, through the second Fréchet
derivative of the strain energy density function, by

K[x] = ∇∇Ŵ (Y0[x], x). (6)

The modulus state is analogous to the fourth order
elasticity tensor in the standard theory, because it con-
tains the material properties that give the internal forces
within a body in terms of small changes in the defor-
mation. From the properties of Fréchet derivatives, and
from (6), it can be shown that K is self-adjoint (Silling
2010):

K
† = K. (7)

Using (4), and neglecting terms of higher order than
||U||, the equation of motion (2) becomes

ρ(x)ü(x, t) =
∫
B

{
(K[x] • U[x])〈p − x〉

−(K[p] • U[p])〈x − p〉} dVp+ b(x, t).

Writing this out in terms of the displacements using (5)
yields

ρ(x)ü(x, t)

=
∫
B

C0(x, q)u(q, t) dVq − P0(x)u(x, t) (8)

where C0 is the tensor valued function defined by

C0(x, q)

=
∫
B

(
K[x]〈p − x, q − x〉 − K[p]〈x − p, q − p〉

+K[q]〈x − q, p − q〉) dVp (9)

and where P0 is the tensor field defined by

P0(x) =
∫
B

∫
B

K[x]〈p − x, q − x〉 dVq dVp. (10)

By integrating (9) with respect to q, it follows that

P0(x) =
∫
B

C0(x, q) dVq.

In practice, the expressions for C0 in many materials
of interest contain Dirac delta functions centered at x.

It is convenient to move this term outside the integral
in the equation of motion (8) by rewriting it as

ρ(x)ü(x, t) =
∫
B

C(x, q)u(q, t) dVq − P(x)u(x, t)

+b(x, t), (11)

for all x and t , where

C(x, q) = C0(x, q) + λ(x)�(q − x), (12)

P(x) = P0(x) + λ(x) =
∫
B

C(x, q) dVq, (13)

λ(x) = − lim
ε→0

∫
Sε

C0(x, q) dVq, (14)

where Sε is the interior of a sphere of radius ε centered
at x, and � is the Dirac delta function in R

3. For an
elastic material, it can be shown (Silling 2010) that C
and P have the following symmetries:

CT (x, q) = C(q, x), PT (x) = P(x).

As discussed in Silling (2010), the condition for line-
arization of the peridynamic equations is

min
q∈H

|u(q) − u(x)| << δ ∀x ∈ B.

This is a weaker condition than the corresponding
requirement in the classical linear theory of elasticity,

|grad u(x)| << 1 ∀x ∈ B.

The weaker requirement in the linear peridynamic the-
ory permits us to consider perturbations containing
jump discontinuities in u, a property that is used in the
next section. The linearized equation of motion (11)
is essentially the same as the fundamental equation of
motion in Kunin’s nonlocal theory (Kunin 1983), but
with the additional constitutive structure of the peridy-
namic model.

4 Perturbation by a jump

Now consider a piecewise-continuous variation u that
contains a small step discontinuity across a surface �.
Assume that � divides B into two open sets R+ and
R−. Let C be continuous on B × B. Let the jumps
in displacement and acceleration at some x ∈ � be
denoted

[[u]] = u(x+) − u(x−), [[ü]] = ü(x+) − ü(x−)

where x− ∈ R− and x+ ∈ R+ represent points arbi-
trarily close to x. Then from (11),

ρ(x)[[ü]] =
∫
B
[[C(x, q)]]u(q) dVq − [[Pu]].
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Crack nucleation in a peridynamic solid 223

Since C, and therefore P, are continuous, it follows that

[[C]] = 0 and [[P]] = 0,

therefore

ρ(x)[[ü]] = −P(x)[[u]]. (15)

The small discontinuity at x ∈ � introduced by the
variation is considered unstable if it gets larger with
time. This means it is unstable if

[[ü]] · [[u]] > 0. (16)

Taking the scalar product of [[u]] with both sides of
(15), and using (16), the conclusion is that instability
occurs if

(P(x)[[u]]) · [[u]] < 0. (17)

If there is some [[u]] such that (17) holds at some x, then
the material is unstable with respect to amplification of
a discontinuity.1 Since P(x) is symmetric, it has three
real eigenvalues, which will be denoted {P1, P2, P3}.
(17) implies that if P(x) has a negative eigenvalue, then
the material is unstable with respect to amplification of
the jump. The condition for crack nucleation is then

Z(x) < 0, (18)

where

Z(x) = min {P1, P2, P3} . (19)

Z(x) is called the stability index.
If P is positive definite on B, then in the terminol-

ogy of Silling (2000), single-point stability holds. In
this case, then clearly (18) cannot hold, since P has no
negative eigenvalues. In Silling (2000), it is shown that
single-point stability is a necessary but not sufficient
condition for local minimization of potential energy.
Therefore, it follows that if the nucleation condition
(18) is met, then the configuration cannot be a local
minimizer of potential energy.

A result closely related to (18) was also obtained in
Weckner and Abeyaratne (2005) in a more restrictive
setting. In this reference, it was shown that in a homo-
geneous, bond-based, linear microelastic bar, jumps in
an initial displacement field grow exponentially over
time if

∞∫

−∞
C(ξ) dξ < 0

1 The word “amplification” is used instead of “growth” here to
avoid confusion with advance of a crack tip.

where C is the micromodulus function. This integral is
the specialization of P in (13) to a linear, homogeneous
bar.

To interpret P mechanically, note that from (11), it
follows that −P(x)e is the restoring force density expe-
rienced by x if it is displaced by a vector e, holding all
other points in B fixed. In the next section, a connection
between P and the stable propagation of certain types
of plane waves is demonstrated.

5 Relation to wave speeds

An alternate interpretation of (18) may be obtained by
considering plane waves in the interior of a large, homo-
geneous, homogeneously deformed body. In this case,
P is independent of position. Since C is also indepen-
dent of position, we write C(ξ). The condition for prop-
agation of a plane wave may be obtained by substituting
the assumed form of the displacement field

u(x, t) = a ei(κx·n−ωt)

into (11), where i = √−1, a is a unit vector in the
direction of particle motion, n is the unit vector in the
direction of propagation of the wave, κ is the wave
number, and ω is the angular frequency. The result is
that waves can exist if there exist a, n, κ , and ω(κ, n)

such that

ρω2(κ, n)a =
(

P −
∫
H

C(ξ) cos (κξ · n) dVξ

)
a.

(20)

The quantity in parentheses is a tensor. The dispersion
relation for the waves is obtained by evaluating the
eigenvalue ω of this tensor for a given κ and n. The
eigenvectors a give the direction of particle motion.

Now consider the limit κ → ∞ in (20). Because
C is bounded and continuous, the integral vanishes in
this limit, for any choice of n. Therefore, the eigenvalue
equation (20) can be written as

ρω2(∞, n)a = Pa.

Taking the scalar product of both sides of this equation
with the unit vector a,

ρω2(∞, n) = a · Pa. (21)

Comparing this result with (17) and (18), it follows that
the condition for nucleation of discontinuities is met if
and only if the frequency of plane waves in the limit of
zero wavelength is imaginary.
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224 S. A. Silling et al.

Note that it is possible for waves with finite wave
number to be unstable even if this limiting frequency
is real. In other words, long waves might be unstable
while short waves are stable. This is in contrast to the
standard theory, in which the stability of plane waves
is independent of the wavelength.

The interpretation of the crack nucleation condition
(18) given in this section in terms of imaginary fre-
quencies of very short waves should not be taken too
literally, because this interpretation assumes a homo-
geneously deformed, homogeneous body. In contrast,
(18) makes no such assumptions, and is therefore more
general.

6 Example

This computational example illustrates the nucleation
of a crack at a point at which the condition (18) is first
met as the body is loaded. The body is a nonlinearly
elastic plate containing a hole and stretched from the
ends. The constitutive model is a nonlinear peridynam-
ic elastic model of the following form:

T〈ξ 〉 = 1

2
f (η, ξ)M, M = Y〈ξ 〉

|Y〈ξ 〉| , (22)

for any bond ξ , where f is a function and the bond
extension η and bond length ξ are given by

η = |Y〈ξ 〉| − |ξ |, ξ = |ξ |.
The unit vector M is in the direction of the deformed
bond. The scalar valued function f is the bond force
density, which has dimensions of force/volume2. The
direction of the force state T〈ξ 〉 is parallel to the
deformed bond vector Y〈ξ 〉. For the particular mate-
rial in this example, f is given by

f (η, ξ)

=
⎧⎨
⎩

cs if 0 ≤ s ≤ s1

cs1 − c′(s − s1) if s1 ≤ s < s0

0 if s0 < s,
s = η

ξ
(23)

where c, c′, s1, and s0 are constants related by

c′ = cs1

s0 − s1
, 0 < s1 < s0, c > 0.

(See Fig. 2). The scalar s is the bond strain, i.e., change
in bond length divided by reference bond length. Eval-
uating the Fréchet derivative of (22), one easily finds
that

K〈ξ , ζ 〉
= 1

2

(
1 − M ⊗ M

|Y〈ξ 〉| f + (M ⊗ M)
∂ f

∂η

)
�(ξ − ζ )

Fig. 2 Properties of a plate composed of the material in the
example problem under uniaxial strain. Top: bond force as a func-
tion of bond strain. Bottom: stress-strain curves in a plate under
homogeneous, uniaxial strain. The peak stress occurs before the
crack nucleation condition is met

where � denotes the Dirac delta function in three
dimensions.

The top curve in Fig. 2 shows the bond force as a
function of bond strain for the material. Also shown are
the normal stress in the vertical direction and the sta-
bility index Z as a function of bulk strain, both assum-
ing homogeneous deformation of a homogeneous plate.
The stability index starts dropping when some bonds
pass the peak in the curve of bond force vs. bond strain.
As the plate is stretched more, the stability index even-
tually becomes negative, thus satisfying the condition
(18) for nucleation of a discontinuity. (This condition
occurs at a strain greater than the peak in the bulk stress-
strain curve.)

The geometry of the plate is shown in Fig. 3.
Figure 4 shows contours of u2 and Z near the stress
concentration for three values of global strain, defined
by ε = ��/�. The displacement field is computed
with the Emu peridynamic computer code (Silling and
Askari 2005). A small crack appears at a global strain
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Crack nucleation in a peridynamic solid 225

Fig. 3 Geometry of the plate in Example 1

of approximately ε = 0.0049, by which time Z has
become small at the stress concentration. The crack
immediately grows dynamically toward the outer free
edges. The contours in the plot on the lower right show
that Z becomes strongly negative ahead of a dynami-
cally growing crack tip. Figure 5 shows the values of Z
at the point x0, which is located 54 mm from the center

of the hole as a function of global strain. The figure also
shows the crack tip position a as a function of global
strain. The crack first appears at a ≈ 54 mm, at the time
when Z at that location first becomes negative. As soon
as the crack nucleates, Z at this location becomes pos-
itive again, because the material is no longer unstable
there.

7 Discussion

Even though the peridynamic theory is a nonlocal the-
ory, the crack nucleation condition (18) is a local con-
dition, because it involves only the value of the tensor
field P at x. This P(x) can be evaluated anywhere in
the body in terms of the incremental properties of the
constitutive model evaluated following the large equil-
ibrated deformation y.

The crack nucleation condition (18) is not related
to the maximum of any bulk stress-strain curve for a
homogeneous body or to any tangent modulus. To see
this, consider the form of (19) for a one-dimensional
homogeneous bar:

Z =
δ∫

−δ

C(ξ) dξ. (24)

Fig. 4 Contours of vertical
displacement u2 (left
column) and stability index
Z (right column) at three
times. The global stretch of
the plate ε = ��/� at these
times takes on the values
0.0047, 0.0049, and 0.0061.
Crack nucleation occurs at
approximately ε = 0.0049.
The stability index first
becomes negative near this
time and becomes more
strongly negative in front of
the growing crack tip
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226 S. A. Silling et al.

Fig. 5 Time histories of
stability index Z (top) and
crack tip position a (bottom)
at the point x0, located at
radius r0 = 0.054 mm.
Nucleation occurs at near
this point as Z becomes
negative

On the other hand, the tangent modulus (Weckner and
Abeyaratne 2005) is given by

E =
δ∫

0

ξ2C(ξ) dξ.

Evidently E < 0 is neither a necessary or sufficient
condition for Z < 0. Therefore, the tangent modulus
is unrelated to the crack nucleation condition.

Another observation from (24) is that in one dimen-
sion, there must be some bonds that are softening if
the crack nucleation condition is met. In other words,
in one dimension, Z < 0 implies C(ξ) < 0 for some
bonds ξ . This is not true in two or three dimensions,
since geometrical nonlinearities due to a large defor-
mation y0 could reduce the eigenvalues of P.

For the material considered in the example problem
in Sect. 6, it was noted that under the assumption of
homogeneous deformation of a homogeneous plate, the
crack nucleation condition occurs after the maximum
in the bulk stress-strain curve (Fig. 2) as the plate is
extended in uniaxial strain. Under these conditions, one
would expect some sort of instability to occur as soon
as the stress-strain curve starts to decline. Why does
such an instability not appear in the example problem?
The reason is that in the example problem, the defor-
mation is not homogeneous. On the contrary, the strain
concentration creates a small region where strains are
high enough for the crack nucleation criterion to be
met.

The eigenvector of P(x) that first becomes nega-
tive as the body is deformed, resulting in the condition
(18) first being met, gives the direction of the displace-
ment jump [[u]]. However, we have not been able to
obtain any information about the orientation of a crack
that is nucleated. Another currently unresolved issue is
the status of bodies in which Z = 0. It is not known
whether this condition, as opposed to Z < 0, represents
a type of neutral stability with respect to the formation
of discontinuities, or whether closer examination would
reveal a different condition for nucleation in this case.

As demonstrated computationally in the example in
Sect. 6, there is a subregion ahead of a dynamically
growing crack within which Z is strongly negative. It
seems possible that future investigation will establish
a link between the values of Z ahead of such a crack,
the crack growth velocity, and [[ü]] near the crack tip.
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