
which did not include Amarrendia grandispora,
yielded similar results.

Taxonomy of ‘‘Torrendia arenaria’’.—During the
revision of the original collections of T. arenaria the
existence of a different species, here described as
Amanita pseudoinculta (see TAXONOMY), was discov-
ered. A. pseudoinculta is placed in the Amarrendia
clade, while A. arenaria is placed, in a distant
position, in the Arenaria clade (FIG. 1).

Amarrendia clade. The separation of A. pseudoin-
culta and its closest relative, A. inculta, is supported by
the nLSU analysis (FIG. 1) and the ML analysis of the
ITS dataset (FIG. 2), however in the MP analysis of the
ITS data A. inculta sequences are paraphyletic
(SUPPLEMENTARY FIG. 2). This is probably caused by
the high level of intragenomic variability observed in

the secotioid and gasteroid taxa from Australia that
overlaps with the interspecific variability between pairs
of closely related species. High intragenomic variability
in the ITS region has been observed in other groups of
ectomycorrhizal fungi such as Lactarius (Nuytinck and
Verbeken 2007) and Xerocomus (Taylor et al. 2006). In
Lactarius similar problems with overlapping intrage-
nomic and interspecific ITS variation had been detected
in pairs of closely related species, and this situation has
been linked to recent speciation events. So far no high
levels of intragenomic ITS variability have been
reported in the agaricoid members of Amanita; they
also seem to be not present in A. torrendii.

Arenaria clade includes the type collection of
Amanita arenaria (VPI 679), another collection from
the same locality and date (VPI 412), and collections
from two different localities, Kalamunda (VPI 364,

FIG. 2. Best tree from the ML analysis of the ITS dataset of subgenus Amanita. Thick branches are supported by bootstrap
values . 90% in the ML and MP analyses. Other bootstrap values . 70% are shown on the branches (ML/MP). An asterisk
indicates that the branch collapses in the strict consensus tree of the MP analysis.

684 MYCOLOGIA



365, 551) and Julimar Forest (VPI 363, see TABLE II).
The collection VPI 364 was identified as ‘‘Torrendia
arenaria f. lutescens’’. In all analyses of the nLSU
dataset there are two subgroups in the Arenaria clade,
one with the two collections from the type locality and
the other with the remaining collections (FIG. 1). In
the ITS dataset one collection from each subgroup
was included and the number of differences between
the two ITS sequences was similar to, or even greater
than, the number of differences between pairs of
closely related species in Amanita (FIG. 3).

These results suggest either the existence of a
cryptic species among the collections of A. arenaria or
relatively high genetic divergence among populations
from different localities. From a morphological point
of view the collections from Kalamunda and Julimar
Forest have spores with slightly lower values of avQ
(1.28–1.36) than the collections from Two Peoples
Bay (1.55–1.72), however they all share similar macro-
and micromorphological characteristics, including
the absence of clamp connections and the absence

or scarcity of oleiferous hyphae. One of the collec-
tions from Kalamunda (VPI 364) has yellowing flesh
and was identified as ‘‘forma lutescens’’, but other
collections with unchanging flesh have been collected
in the same locality (VPI 365, 551), indicating that
this character is not sufficiently constant to make
taxonomic distinctions based on it. A more detailed
molecular and morphological study that takes into
account collections of A. arenaria from different
localities, including those mentioned by Bougher
(1999), is necessary to establish whether the divergent
nLSU and ITS sequences of A. arenaria from
localities other than Two Peoples Bay represent an
undescribed cryptic species and whether this genetic
variation is correlated with some morphological
characters such as spore shape.

Evolution of secotioid and gasteroid forms in Amani-
ta.—Thiers (1984) suggested that the gasteroid forms
in many groups of Basidiomycetes evolved from an
agaricoid ancestor via secotioid intermediates and

FIG. 3. Best tree from the ML analysis of the ITS dataset of subgenus Lepidella. Thick branches are supported by bootstrap
values . 90% in the ML and MP analyses. Other bootstrap values . 70% are shown on the branches (ML/MP). An asterisk
indicates that the branch collapses in the strict consensus tree of the MP analysis.
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provided examples of this sequential process, both
complete series such as Cortinarius (agaricoid),
Thaxterogaster (secotioid) and Hymenogaster (gas-
teroid) and incomplete series such as Agaricus
(agaricoid) and Endoptychum (secotioid). He pos-
tulated that incomplete series (the Amanita/Tor-
rendia was an example at that time) could be
caused by the extinction of the missing stage or simply
reflect the incomplete documentation of fungal
diversity.

Two incomplete series are present in the Amanita
lineage, including secotioid forms without additional
gasteroid forms (Torrendia clade) and gasteroid
forms without known secotioid relatives (Pseudoa-
marrendia clade). It is possible that further explora-
tion of fungal diversity in Australia and the Mediter-
ranean region of Europe and Africa will reveal the
missing stages. Also one example of a complete series
is present in the Amarrendia clade, with secotioid
forms related to agaricoid forms (A. umbrinella) with

additional radiation into other secotioid (A. inculta/
A. pseudoinculta) and also gasteroid forms (A.
grandis/A. oleosa).

Despite the independent origins of the secotioid
morphology in Amanita all species share a great
similarity in their general characteristics both macro-
and microscopical. Morphological differences among
taxa are reduced to basidiome size, structural integrity
of the gleba, spore size and shape, and presence or
absence of sclerobasidia, oleiferous hyphae and
clamp connections. While the majority of secotioid
and gasteroid forms presumably have evolved from
ancestors with nonamyloid spores in subgen. Amani-
ta, A. arenaria probably has evolved from an amyloid-
spored ancestor in subgenus Lepidella but this
character was lost during the gasteromycetization
process.

Influence of Mediterranean climate in the gasteromyce-
tization process in Amanita.—The distribution of the

FIG. 4. Amanita pseudoinculta. a. dried basidiomes (bar 5 1 cm). b. spores. c. basidia. d. volva tissue. Bars 5 10 mm. All from
holotype (VPI 555).
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secotioid and gasteroid species of Amanita around
the Mediterranean Basin and Western Australia (with
the exception of Amanita grandispora known from
Victoria and Tasmania) suggests a direct link between
the gasteromycetization process in Amanita and the
Mediterranean climate that these areas share. Ama-
nita arenaria, A. grandis, A. inculta, A. oleosa and A.
pseudoinculta are endemic to Western Australia and
in fact are known only from a few localities each.
Speciation events under Mediterranean conditions
seem to be the origin for the taxa in the Amarrendia
clade. If the existence of a cryptic species among A.
arenaria is confirmed it would be another example.
The distribution pattern of these related endemic
species of fungi in relatively close geographic areas
closely matches the distribution pattern of endemic
plants in Mediterranean areas (Cowling et al. 1996).

Amanita torrendii has a larger number of popula-
tions that range from northern Africa to southern
France, spreading eastward to Turkey (Watling and
Isiloglu 1991), but the great majority of the records
(Calonge 1996) are concentrated in the Mediterra-
nean region of the Iberian Peninsula. It appears that
A. torrendii has remained a single, relatively wide-
spread, secotioid species, in contrast to the Australian
taxa, which have radiated into multiple species,
including secotioid and fully gasteroid forms. More
research on the population level is needed to gain
further understanding of the speciation and gaster-
omycetization events in the Amanita lineage.
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