
IEEE SENSORS JOURNAL, VOL. 11, NO. 8, AUGUST 2011 1635

Effects of a Mass Layer With Gradually Varying
Thickness on a Quartz Crystal Microbalance

Nan Liu, Jiashi Yang, and Weiqiu Chen

Abstract—We study the effects of the nonuniform thickness of
a thin mass layer on a quartz crystal microbalance. A theoretical
analysis is performed on thickness-shear vibration of an AT-cut
quartz plate with a nonuniform mass layer. Mindlin’s two-dimen-
sional equation for thickness-shear vibration of a quartz plate is
used. Free vibration frequencies and modes are obtained. The ef-
fects of the mass layer nonuniformity are examined. It is shown
that resonant frequencies and energy trapping of thickness-shear
modes are sensitive to mass layer nonuniformity.

Index Terms—Mass sensor, plate, resonator, thickness shear.

I. INTRODUCTION

Q UARTZ CRYSTAL RESONATORS (QCRs) operating
with plate thickness-shear (TSh) modes have been used
for monitoring thin-film deposition and mass sensing

based on the inertial effect of the thin film or mass layer on the
resonant frequencies of the QCR, and are called quartz crystal
microbalances (QCMs) for these applications. The effects of a
thin film on a QCR are multifold, including the mass density,
elastic constants (stiffness), and thickness, etc., of the thin film.
In the simplest description (the well-known Sauerbrey equa-
tion), the inertia of a thin film lowers the resonant frequencies
of a QCR [1], [2]. This effect alone can be used to measure
the product of the thin-film mass density and thickness. Re-
searchers also developed more sophisticated one-dimensional
models based on pure TSh modes depending on the plate
thickness coordinate only, showing both the inertial and stiff-
ness effects of the mass layer [3], [4]. These thickness-mode
models are valid for uniform films on unbounded plates only,
without in-plane variations or boundary effects. Behaviors of
real devices are more complicated for several reasons and can
deviate, sometimes considerably, from the results predicted
by thickness-mode models. For example, due to the so-called
energy-trapping phenomenon, the TSh vibration is not uniform
and is mainly under the mass layer and decays exponentially
away from the mass layer edge. The in-plane variations of the

Manuscript received November 22, 2010; revised December 20, 2010; ac-
cepted December 22, 2010. Date of publication December 30, 2010; date of cur-
rent version May 25, 2011. This work was supported in part by the National Sci-
ence Foundation of China (NSFC) under Grant 11090333 and Grant 10725210
and the National Basic Research Program of China under Grant 2009CB623200.
The associate editor coordinating the review of this paper and approving it for
publication was Prof. Bernhard Jakoby.

N. Liu and J. Yang are with the Department of Engineering Mechanics, Uni-
versity of Nebraska, Lincoln, NE 68588-0526 USA.

W. Chen is with the Department of Engineering Mechanics, Zhejiang Uni-
versity, Hangzhou 310027, China (e-mail: chenwq@zju.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2010.2103360

Fig. 1. A quartz plate with a nonuniform mass layer.

TSh modes also cause deviation from the Sauerbrey equation.
There have been a few attempts considering the in-plane vari-
ations of TSh modes [5]–[7], but overall theoretical results are
few and scattered.

Recently, it has been pointed out that the mass layer on a
QCM is sometimes nonuniform and little is known about its
implications [8]. This is what the present paper is concerned
with. While there have been a few published results on nonuni-
form mass layers or nonuniform electrodes on QCRs either for
mass sensing [9], [10] or for energy trapping in resonator ap-
plications [11]–[14], these analyses are all for strip resonators
with modes and mass layer (or electrode) thickness variations
depending on one in-plane coordinate only. For an accurate un-
derstanding of the effects of nonuniform mass layers, a more
sophisticated analysis with the mass layer thickness and mode
variation depending on both of the in-plane coordinates is nec-
essary. In our previous paper [15], a mass layer with a piecewise
constant thickness on a QCR was analyzed. The results of [15]
showed that the variation of the mass layer thickness has signif-
icant effects on the frequencies and mode shapes of the QCR,
and further study is necessary. In this paper, we study the case of
a mass layer with a continuously varying thickness on a QCR,
which is a more realistic situation than the stepped thickness
variation considered in [15]. A theoretical analysis is performed
using Mindlin’s two-dimensional (2D) plate equation [16] for
TSh vibrations of a quartz plate.

II. GOVERNING EQUATIONS

Consider an AT-cut quartz plate, as shown in Fig. 1. The plate
has a uniform thickness and a mass density . There is a thin
mass layer with a varying thickness on the top of the crystal
plate. The density of the mass layer is . Its varying thickness
is . The mass layer is assumed to be very thin. Only its inertia
will be considered. Its stiffness will be neglected [1], [2]. Quartz
is a material with very weak piezoelectric couplings. For a fre-
quency analysis, we will neglect the small couplings as usual. In
general, TSh vibration may be coupled to flexural motion. This
coupling depends on the plate dimensions and is strong only for
certain aspect (length/thickness) ratios of the plate [16]. For thin
plates it is less likely to happen. For our purpose, it is sufficient
to assume that the coupling to flexure has been avoided through
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design. Therefore, we consider TSh vibration with one displace-
ment component only.

Pure TSh modes are functions of the plate thickness co-
ordinate and time . The fundamental TSh mode is used
most often in devices. It has a sinusoidal variation along the
plate thickness with one nodal (zero) point at the plate middle
plane. Higher order TSh modes have more nodal points along
the plate thickness. For a plate with a nonuniform mass layer,
these modes also have slow in-plane variations. In this paper
we focus on the fundamental TSh mode.

Exact analysis of TSh modes with in-plane variations in
anisotropic crystal plates using the three-dimensional equations
of elasticity is mathematically very challenging and in most
cases impossible. Mindlin proposed [16] to use simple and
known variations along the plate thickness to approximate
the modes and then obtain two-dimensional plate equations
governing the in-plane variations of the modes. The small error
due to the approximation can be minimized or removed using
a correction factor. Mindlin’s approach turned out to be very
successful and many researchers followed. Specifically, for
the most useful fundamental TSh mode we are considering,
Mindlin used a linear variation to approximate the sinusoidal
variation of the TSh displacement along the plate thickness, i.e.,

(1)

where is a slowly varying function of the in-plane
coordinates and . has one nodal point along the plate
thickness when which is the plate middle plane. In (1),
the variation along the plate thickness is already known. What
is needed to determine is a two-dimensional plate equation
governing the dependence of on and . Such an equa-
tion is obtained by multiplying the corresponding three-dimen-
sional equation of anisotropic elasticity by and integrating
it through the plate thickness (moment operation) [16]. When a
crystal plate carries a mass layer, the inertial effect of the mass
layer can be brought into the plate equation using the traction
boundary conditions at the plate top and/or bottom surface(s)
and Newton’s second law governing the motion of the mass
layer [17], [18]. For the specific case of a quartz plate carrying
a mass layer in free TSh vibration, the governing equation for

is [17], [18]

(2)

where is the free vibration frequency which is to be deter-
mined and

(3)

(4)

are the usual elastic compliances. For AT-cut quartz,
, . is the mass ratio between

the mass layer and the crystal plate which is very small. We are

interested in first-order effects of on resonant frequencies. is
the shear correction factor introduced by Mindlin. With the cor-
rection factor, the inaccuracy of resonant frequencies predicted
by (2) is higher order infinitesimals of . For small , (2) can
be approximately rewritten as

(5)

where

(6)

is the frequency of the fundamental TSh mode of the crystal
plate when the mass layer is not present. The difference between
(2) and (5) is of the order of , which is a higher order
infinitesimal because is of the order of and is
very small. We consider the case when the mass layer thickness
is varying according to

(7)

where is the mass layer center thickness, and are
slowly growing functions so that the mass layer is thick in the
center and thin away from the center. Therefore, (7) can physi-
cally describe a nonuniform mass layer. The specific choice of
the thickness variation in (7) is also for the mathematical con-
venience below so that the problem is solvable. Corresponding
to (7), from (3) , we have

(8)

where

(9)

Substitution of (8) into (5) gives

(10)

where we have denoted

(11)

is the frequency of the fundamental TSh mode of a crystal
plate with a mass layer of a uniform thickness . We are inter-
ested in the so-called energy-trapped modes with the frequency

within

(12)

These modes are large near the plate center and decay rapidly
away from the center.

III. FREE VIBRATION SOLUTION

As a partial differential equation, (10) is separable. Let

(13)
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Fig. 2. Distribution of the TSh displacement of the first six trapped modes in the order of increasing frequency. (a) �� � � � � ��� ��. (b) �� � � � � ��� ��.
(c) �� � � � � �����. (d) �� � � � � �����. (e) �� � � � � �����. (f) �� � � � � �����.

Then, using the standard method of separation of variables, from
(10) we can obtain

(14)

where the separation constants and must satisfy the fol-
lowing equation from (10) which gives the resonant frequencies
once and are determined

(15)

To be specific, we consider the case when

(16)

Correspondingly

(17)

Equations similar to (17) were also encountered in the study
of contoured resonators with varying thicknesses [19]–[22].
Eq. (17) is mathematically analogous to Schrodinger’s equation
for a quantum mechanical harmonic oscillator [23]. The two
equations in (17) have the same structure. Consider (17) first.
Introduce the following change of variable:

(18)

Then, it can be verified that when

(19)
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Fig. 3. Effects of� on the first mode, � � ������� . � � �������,
1 586 981, and 1 555 305 Hz when � � �	, 5%, and 7%. (a) � dependence.
(b) � dependence.

(17) is transformed into

(20)

where

(21)

(20) is the well-known Weber’s equation [21], [22]. Let

(22)

Eq. (20) becomes

(23)

For odd integers of , the solution of (23) are the Hermite poly-
nomials of different orders, i.e., [23]

(24)
where [23], [24]

(25)

Fig. 4. Effects of � on the first mode, � � 
	. � � �
����
,
1 586 981, and 1 595 538 Hz when � � �
��, 4444.4, and 10 000 � . (a) �
dependence. (b) � dependence.

Eq. (17) can be treated similarly. Substituting (11), (9), (6),
(21) , and a similar equation from (17) into (15) gives the res-
onant frequencies as

(26)

IV. NUMERICAL RESULTS

As a numerical example, consider an AT-cut quartz resonator
with , and . In real applications is
usually less than 1%. An exaggerated value of is chosen to
show its numerical effects more clearly. In this case the TSh
mode without a film has a frequency of

. The frequency when the plate is with a uniform
mass layer of is .

is used. For this value of ,
the film thickness decreases to zero when its radius is 15 mm, a
practically reasonable size. Calculations show that in this case
the operating mode of in fact essentially de-
cays to zero before it reaches the film boundary and thus does
not really feel the film boundary.

Fig. 2 shows the first six modes in the interval of in
the order of increasing frequency. , (0,1), (1,0),
(0,2), (1,1), and (2,0). , ,

, , ,
. The displacements of all these modes are
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essentially under the film. This is called energy trapping in TSh
resonators. The modes are with different numbers of nodal lines
in the and/or directions. Roughly, higher order modes
have higher frequencies.

Figs. 3 and 4 show the effects of and on the most
useful mode in devices with . Considering the
in-plane material anisotropy of the plate, both the mode varia-
tions along the and/or directions are shown separately. It
is seen that when becomes larger or the film becomes thicker,
the frequencies become lower and the modes are pushed toward
the center (Fig. 3). When becomes larger, i.e., the film thick-
ness variation is more rapid or the film becomes smaller, the
frequencies become higher and modes are also pushed toward
the center (Fig. 4).

V. CONCLUSION

When a thin mass layer is included into Mindlin’s 2D plate
equation for TSh modes of a quartz plate, the resulting equa-
tion is mathematically analogous to Schrodinger’s equation for
a particle in a potential field. Specifically, when the film thick-
ness varies quadratically, the plate equation is the same as that
of a quantum harmonic oscillator. There exist trapped modes
whose motion is mainly under the film. When the film becomes
thicker or smaller, the modes are pushed toward the center. In
addition to resonant frequencies, impedance is another impor-
tant property of a resonator-based sensor which needs to be ob-
tained from an electrically forced vibration analysis and is be-
yond the model in this paper.
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