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The objective of this study was to determine the effects of manure amendment 

and narrow grass hedges on the fate and transport of antimicrobials and ARGs in runoff 

and in soil following the land application of swine manure slurry.  Swine manure slurry 

was land applied to 0.75m wide by 4.0m long plots established on an Aksarben silty clay 

loam soil located in southeast Nebraska.  The treatment factor manure amendment 

consisted of two levels: no manure application and manure application to meet the 3 year 

nitrogen (N) requirements for corn.  The treatment factor of grass hedge was established 

for half of the test plots.  Runoff water generated during three 30 min simulated rainfall 

events was analyzed for antimicrobials and antimicrobial resistance genes (ARGs).  The 

grass hedge proved to be consistently effective in reducing antimicrobial tylosin in runoff 

(p=0.016), while the effect in reducing tylosin resistance gene erm(B) was not significant 

(p=0.2465). 
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Chapter 1: Introduction 

Antimicrobials in Agricultural Environments 

Livestock manure has been widely used as a soil conditioner due to its high organic 

matter and nutrient content.  Land applied manure can also improve the water infiltration 

properties of the soil, and consequently reduce runoff and erosion (Gilley and Risse 

2000).  However, livestock manure also contains contaminants such as antimicrobials.  

Antimicrobials are administered to animals at therapeutic levels for disease treatment and at 

sub-therapeutic levels for prophylaxis and growth promotion.  Commonly used 

antimicrobials in concentrated animal feeding operations (CAFOs) include tylosin, 

tetracycline, chlorotetracycline, sulfonamides, and, to a lesser extent, bacitracin (Sarmah 

et al. 2006).  A significant portion of these antimicrobials are not adsorbed in the animal gut.  

For example, up to 75% of tetracycline administered to the animals was not metabolized and 

was excreted into the environment (Chee-Sanford et al. 2009).  Antimicrobial residues 

released with animal wastes often end up in livestock waste management structures (Zhang et 

al. 2013).  Furthermore, one study showed that the levels of antimicrobials administered to 

the livestock had direct impacts on antimicrobial levels in the lagoons treating the wastes 

from the animals (Peak et al. 2007), suggesting that the dosage of antimicrobials in animal 

feed have direct impacts on antimicrobial levels in livestock waste management structures. 

Swine manure slurry is believed to be a major source of antimicrobials in the 

environment as land application of manure transfers antimicrobial compounds directly 

into agricultural soils.  It has been well documented that manure application was 

responsible for introduction of sulfamethazine, tetracycline, chlortetracycline, and tylosin 

in the environment (Heuer et al. 2011).  Several studies have been conducted to 
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understand the transport of antimicrobials in the environment following the application of 

manure from CAFOs (Halling-Sorensen et al. 1998; Lee et al. 2007; Sanders et al. 2008). 

A study detected veterinary antimicrobial agents such as sulfonamides, sulphamethazine 

and sulfachloropyridine in various environmental samples (Accinelli et al. 2007).  

Another study reported chlortetracycline concentration of 12ng/L in the animal waste 

water and 6ng/L sulfamethizole in aquatic environments (Diaz-Cruz and Barcelo 2005). 

A conceptual model describing the transport of antimicrobials in the environment is 

presented in Figure 1.1.   

 

 

Figure 1.1 Anticipated exposure pathways for veterinary antimicrobials in the 

environment (Sarmah et al. 2006). 
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Since antimicrobials administered to animals makes their way into the manure 

either as a metabolite or as a parent compound they are present in agricultural soils 

amended with animal manure (Patten et al. 1980).  In one study, soil fertilized with liquid 

manure, which contained 4.0 and 0.1 mg/kg of tetracycline and chlorotetracycline 

respectively, the resulting antimicrobial concentrations in the top soil (0-10 cm) were 

found to be 86.2 μg/kg and 4.6 μg/kg, respectively (Hamscher et al. 2002).  Another 

study reported plots amended with manure contained on average 27 μg/kg 

oxytetracycline, 443 μg/kg tetracycline, 93 μg/kg chlorotetracycline, and 4.5 μg/kg 

sulfamethazine in top soil (0–30 cm) (Hamscher et al. 2005).  Land application methods 

can influence the antimicrobial concentrations in soil.  In a recent study highest concentration 

of tylosin in top soil was reported for broadcast manure while incorporation resulted in 

highest top soil concentrations of chlorotetracycline (Joy et al. 2013). 

Multiple environmental factors may affect the persistence of manure-borne 

antimicrobials in soil, such as sunlight, temperature, humidity, rainfall, and the nature of 

soil (Donoho 1984; Sturini et al. 2012).  The degradation of fecal-borne antimicrobials 

(e.g., bacitracin, penicillin, streptomycin, tylosin, bambermycins, erythromycin and 

chlortetracycline) in sandy soil depended on their chemical structure and the incubation 

temperature (Gavalchin and Katz 1994).  Antimicrobials tend to adsorb onto the soil 

matrix, which can reduce the rate of degradation (Thiele-Bruhn 2003).  In a study to 

determine the persistence of oxytetracycline in soil after the application of 600 μg/mL 

oxytetracycline of liquid manure, concentrations of >25 μg/g were found for at least 40 

days after application and concentrations of < 1 μg/g could be detected in soil even after 

1.5 years since manure application (Gonsalves and Tucker 1977).  In another study to 
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determine the persistence of tetracycline and its degradation products in soil, samples 

were analyzed using enzyme-linked immunosorbent assays (ELISA).  Soil analyses 

revealed that there was no significant decline in the tetracycline concentrations 5 months 

following manure application (Aga et al. 2005). 

 

Antimicrobial Resistance Genes in Agricultural Environments 

Antimicrobial residues in the animal system and environment can lead to the 

emergence of antimicrobial resistance in the native bacteria.  Antimicrobial resistance 

genes (ARGs) are the genetic determinants that confer antimicrobial resistance to 

bacteria.  Under antimicrobial pressure, antimicrobial resistance may emerge in the 

animal gut or in the environment.  ARGs may be transferred to daughter cells through 

vertical gene transfer or to non-related cells through horizontal gene transfers in the 

presence of antimicrobials (Peak et al. 2007).  Vertical gene transfer occurs when the 

whole complement of intracellular DNA (iDNA) is transferred from parent cells to 

daughter cells.  Horizontal gene transfer takes place through three mechanisms: 

conjugation, transduction, and transformation (Davison 1999; Ochman et al. 2000).  

Antimicrobial resistance can be proliferated due to the presence of antimicrobials in 

environment.  Manure slurry from pigs fed tylosin, sulfacholorpyridazine, and 

oxytetracycline was land applied over a 2-year period.  Sulfonamide-resistant pathogens, 

including Shigella flexneri, Aerococcus spp., and Acinetobacter baumannii were found in 

the amended soil and soil leachate (Byrne-Bailey et al. 2009). 

ARGs tend to persist in livestock waste management structures and in agricultural 

environments.  The ARGs in livestock wastes could survive aerobic and anaerobic 
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digestions under mesophilic and thermophilic conditions in waste treatment facilities 

(Ghosh et al. 2009).  Once land applied, ARGs can persist in the environment for a 

considerable period of time.  In a study by Byrne-Bailey and coworkers, the level of 

sulfonamide resistant bacteria in soil was monitored for 290 days after the land application of 

manure from pigs on a tylosin-sulfacholorpyridazine-oxytetracycline feed (Byrne-Bailey et 

al. 2009).  It was found that the level of the resistant bacteria persisted in soil for the duration 

of the experiment.  Even after antimicrobial resistant bacteria die, intracellular ARGs will be 

released into the environment and become extracellular ARGs, which can still persist in 

soil (Zhang et al. 2013).   

 

Transport of Antimicrobials and ARGs 

Manure-borne antimicrobials and ARGs in soil can be transported to surface 

water through runoff (Chee-Sanford et al. 2009).  Although the occurrence of 

antimicrobials and ARGs in agricultural wastewater have been well documented 

(McKinney et al. 2010), there have been only a few studies to understand the fate and 

transport of antimicrobials and ARGs in soil and runoff after land application of manure.  

Antimicrobials may occur in the aqueous and the solid phase within runoff.  One study 

reported that the aqueous concentrations of chlorotetracycline and tylosin were 0.04 and 

0.09 μg/L, while the concentrations of chlorotetracycline and tylosin adsorbed on to 

runoff sediment were 1.5 and 8.0 μg/kg respectively (Davis et al. 2006).  Similarly, Kim 

and co-workers reported (Kim et al. 2010) the aqueous concentrations of 

chlorotetracycline and tylosin were 0.01-0.09 μg/L and 0.01-0.24 μg/L in runoff during a 
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1-hour rainfall simulation, while the concentrations of chlorotetracycline and tylosin on 

the runoff solids were 6 and 6-12 μg/kg dw runoff solids. 

Transport of antimicrobials in the environment is affected by the physicochemical 

properties of the compounds as well as the environmental conditions.  Different 

antimicrobials have vastly different solubilities in water (Salvatore and Katz 1993).  

Hydrophobicity, cation exchange, and cation bridging with the clay particles play a 

significant role in determining the partitioning coefficient and distribution coefficient 

(Kd, Table S1) of antimicrobials to soil particles (Tolls 2001) which can vary 

substantially.  With a Kd between 70 - 5000 L/kg, tetracycline is highly immobile in soil, 

whereas with a Kd between 7 – 300 L/kg, tylosin has intermediate mobility in soil (Tolls 

2001).  For antimicrobials that are highly sorptive, soil particles are believed to be the 

major carrier of these compounds in runoff (Davis et al. 2006; Dolliver and Gupta 2008; 

Kim et al. 2010). 

To limit the transport of sorptive antimicrobials, management practices should 

address the transport of sediment in runoff.  Controlling the flow of surface runoff can 

impede the transport of sediment and sediment associated contaminants in surface runoff.  

Vegetative barriers (VB) offer an inexpensive and easy solution to reduce surface runoff 

and sediment transport.  A VB can impede sediment transport by breaking the kinetic 

energy of the runoff, promote settlement of sediment by ponding of water upstream and 

improve infiltration properties of the soil (Meyer et al. 1995).  VBs, also termed as 

Vegetative filter strips (VFS) or vegetative buffer strips (VBS), are 5 – 15 meter wide 

strips of densely growing plants seeded next to croplands (Castelle et al. 1994).  VBs are 

typically placed at the bottom of hill slopes and along the water bodies.  VBs are reported 
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to be effective in removing dissolved and sediment bound chemical in the runoff.  VBs 

can reduce pesticide losses in runoff with trapping efficiencies of 50% and more (USDA-

NRCS 2000).  In a recent study, Lin and co-workers reported as much as a 70% reduction 

in dissolved and sediment bound herbicides and antibiotics by VBs (Lin et al. 2011).  

However under high flow conditions, VBs will no longer be effective because runoff may 

flow over the VB strips (Blanco-Canqui et al. 2006). 

One type of VBs, narrow grass hedges have been a prevalent conservation 

practice.  VFS consists of native plant materials, while narrow grass hedges often consist 

of stiff stemmed grass strips that are ~1.5 meter wide.  The hedges are often placed at 

relatively short intervals along the contour of the hill slope.  The spacing among grass 

hedges should be the lesser of either the horizontal distance for 2 m elevation change or 

the “L” – slope length value in RUSLE 2 (Renard et al. 1997) to limit soil loss from the 

field.  Grass hedge width should be greater of 1 m or 0.75 times the change in upslope 

vertical elevation (USDA-NRCS 2010).  The short intervals impede runoff sediments 

along the hill slope and present within concentrated flow (Meyer et al. 1995).  In one 

study, VFS performed poorly in reducing sediment and nutrients in concentrated flow 

while narrow grass hedges have been effectively used in combination with vegetative 

filter strips (Blanco-Canqui et al. 2004).  Narrow grass hedge were placed immediately 

upstream of the VFS and minimized soil and nutrient losses from interrill and 

concentrated flow.  The stiff stems and upright growth of the grass hedge provides a 

better filtering of the runoff and managing concentrated flow (Blanco-Canqui et al. 2006; 

Blanco-Canqui et al. 2004).  
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Narrow grass hedges are effective in reducing runoff and runoff sediment.  One 

study reported that narrow grass hedge could reduce runoff by 41% and soil loss by 63% 

(Gilley et al. 2008).  As the water pounds the upstream of the grass hedge, nutrients 

adsorbed to sediment gets deposited and is removed from the runoff.  Narrow grass 

hedges have also been reported to be effective in reducing soluble contaminants in runoff.  

Gilley and team reported grass hedges reduced the transport of total nitrogen in runoff 

from 7.62 kg/ha to 4.00 kg/ha and NO-
3-N from 0.62 kg/ha to 0.20 kg/ha (Gilley et al. 

2011).  Owino and coworkers reported grass hedges significantly reduced the nutrient 

runoff losses from a clay loam soil by plant uptake and soil infiltration (Owino et al. 

2006).  Improved soil hydraulic properties beneath grass hedges help to enhance 

infiltration of water into the soil and reduce runoff (Rachman et al. 2004; Rachman et al. 

2004).  By ponding runoff on the upper side, grass hedges increase the rate of infiltration 

thereby reducing the amount of runoff and consequently dissolved nutrients.  The effect 

of narrow grass hedges in combination with other soil conservation practices has also 

been studied.  A single narrow grass hedge in a no till plot reduced runoff concentrations 

of dissolved P (DP), bioavailable P (BAP), particulate P (PP), total P (TP) and NH4-N by 

47, 48, 38, 40 and 60% respectively when the plots were disked concentrations of DP, 

BAP, PP, TP, and NH4-N in runoff decreased by 21, 29, 43, 38, and 52%, respectively 

(Eghball et al. 2000). 

While narrow grass hedges have been demonstrated to be effective in reducing 

nutrients and chemical compounds in runoff, studies on their effectiveness in reducing 

microbiological contaminants are limited.  Coyne and co-workers reported that 9 meter 

long grass strips trapped more than 99% of the soil, 91% of fecal coliforms and 74% of 
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fecal streptococci in surface water runoff.  Whereas 4.5 m long VFS  trapped 75% fecal 

coliform and 68% fecal streptococci (Coyne et al. 1998).  Another study reported 60% 

reduction in fecal bacteria with various VBS formation on the watershed scale (Parajuli et 

al. 2008).   

There have been few studies performed to investigate the effects of a grass hedge 

on the transport of antimicrobials and ARGs in runoff.  Since other BMPs working on the 

similar principal have proven to be effective in reducing dissolved and sediment bound 

compounds and bacterial load in runoff, it is plausible to expect that narrow grass hedges 

would be effective in limiting the transport of antimicrobials and ARGs in runoff. 

The objective of this study was to determine the effects of manure amendment 

and narrow grass hedges on the fate and transport of antimicrobials and ARGs in runoff 

and in soil following the land application of swine manure slurry.  Swine slurry was 

applied at 0 and 3 times the annual nitrogen requirement of a corn crop and rainfall 

events were simulated once a day for three consecutive days.  Antimicrobial 

concentrations in manure, runoff, and soil were measured using high pressure liquid 

chromatography.  Antimicrobials measured in this study included tylosin, 

chloroteracycline and bacitracin.  The corresponding ARGs quantified included erm(A), 

erm(B), erm(C) and erm(F) using qPCR.   
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Chapter 2: Materials and Methods 

Manure Collection 

Manure was collected from the USDA Meat Animal research Center (MARC) in 

Clay Center, NE.  Manure slurry from finisher pigs, housed in a mechanically ventilated 

barn (14 m x 59 m), was collected each week from July 5, 2011 to July 28, 2011.  Pigs 

were fed a corn and soybean-based diet and received 39.7 mg of commercial Zinc 

Bacitracin (BAC) per kg of ration.  Underneath the slotted pen floor were pits, which 

were filled to an approximate depth of 0.5 m with well water.  Manure was pushed 

through slots on the pen floor and was drained once a week from the pits using a pull-

plug system.  After draining, the plug was replaced and well water was added to refill the 

pits.  In this study, slurry from the pits was pumped, using a submersible pump, into 20-L 

buckets and transported to the land application site every week.  A subsample of the 

swine slurry was collected in 250 ml amber jars and transported in a cooler to UNL for 

antimicrobials and ARGs quantification. 

 

Soil Sample Collection 

The field experiment was conducted by Dr. John Gilley of the USDA ARS in the 

summer of 2011.  The experiment site was located at University of Nebraska Rogers 

Memorial Farm, 18 km east of Lincoln, Nebraska.  The site was cropped using a long 

term no till management system with controlled wheel traffic.  Soil samples were 

collected from the top 2 cm of plots with and without grass hedges prior to the manure 

application and were air dried following collection.  Soil cores (8-10 cm deep) were also 

collected from the control and amended plots without grass hedge using acrylic tubes 
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after the manure application and after the rainfall simulations were completed.  Soil cores 

were transported to the lab at the University of Nebraska-Lincoln and were stored in -20 

ºC refrigerator until further analyses. 

 

Experimental Plot Setup 

Twenty four 0.75 m by 4 m plots were prepared at the Roger’s Memorial Farm: 12 plots 

without grass hedge and 12 with a narrow grass hedge (Figure 2.1).  Plots were 

established to provide triplicates of varying manure application rates in plots both with 

and without a narrow grass hedge.  Plots had a mean slope gradient of 3.6 % with 

overland flow in the direction of the 4 m dimension.  The narrow hedges at the end of the 

test plots were 1.4 m wide switch grass (Panicum virgatum), and they were established 

during 1998 in parallel rows following the contour of the land hedge and spaced at 

intervals along the hill slope that allowed multiple passes of tillage equipment.  The 

narrow grass hedges were part of a strip-cropping system and row crops were planted 

between the hedges.  Corn was planted during the 2010 season and glyphosate was 

applied to control the weeds; precautions were taken to protect the grass hedge from 

herbicide application.  A subplot treatment of varying rates of manure application was 

also included in this study.  Based on an annual nitrogen requirement of 151 kg N ha-1 yr-

1 for an expected yield of 9.4 Mg ha-1 of corn, swine slurry was applied to meet 0, 1, 2 

and 3 times the annual nitrogen requirement, assuming ~70% of the total N in manure 

slurry is available to crops (Gilbertson et al. 1979).  Slurry was weighed in the field and 

land applied accordingly.  Manure rates were applied according in a randomized block  



 

 

Figure 2.1 Schematic showing plot layout, hedge and no-hedge and manure application rates based on 0, 1, 2 or 3 year corn N 

requirements. Each row of plots was used each week of the experiment. 

1
9
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design to avoid any bias.  Plots were separated by 20 cm-wide sheet metal frames driven 

approximately 10 cm into the soil. 

 

Rainfall Simulation and Runoff Collection  

Rainfall simulations were done to test the effect of narrow grass hedge on the 

transport of antimicrobials and ARGs in runoff.  Water used in the rainfall simulation 

tests was obtained from an onsite irrigation well.  The irrigation water had a mean 

electrical conductivity (EC) of 0.77 dS m-1 and a pH of 7.2.  Procedures for rainfall 

simulation established by the National Phosphorus Research Project (Sharpley and 

Kleinman 2003) were followed in this study.  To ensure saturation and uniform 

antecedent soil moisture conditions in the plots, water was added to the plots using a 

garden hose prior to the rainfall simulations.  A portable rainfall simulator based on the 

design by (Humphry et al. 2002) was used to apply rainfall to paired plots.  Four rain 

gauges were placed on the outside edges of the plots and two in between the plots.  A 30 

minute rainfall event with an intensity of 70 mm hr-1was simulated (Humphry et al. 

2002).  Two additional rainfall simulation tests of the same duration and intensity were 

conducted at approximately 24-hour intervals. 

Runoff from the plot borders were channeled into a sheet metal lip that emptied 

into a collection trough located across the down gradient border of each plot, runoff was 

thereof diverted into plastic buckets.  Accumulated runoff was continuously agitated to 

maintain suspension of solids while being pumped into large plastic storage containers 

using sump pumps.  After each simulated rainfall event, storage containers were weighed 
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to determine the total mass of runoff collected.  Runoff samples were then transported in 

a cooler promptly to UNL and were stored at -20 ºC. 

 

Antimicrobial Analysis of Soil, Manure and Runoff Samples  

Properties of the antimicrobials analyzed in this study are shown in Table S.1. 

Solvent extraction method was utilized to extract antimicrobials from solid samples (soil 

and manure).  Samples of soil (10g) or manure (0.2g manure with 5g clean sand) were 

well mixed with 14 mL of 5 mM ammonium citrate, buffered to pH=6 using ammonium 

hydroxide and 6 mL methanol, in 50-mL polypropylene centrifuge tubes.  A surrogate 

(16 ng oleandomycin) was also added to each mixture to monitor the analyte recovery.  

Mixtures were shaken by hand briefly before putting them on a Burrell Wrist-action 

shaker for 30 min.  Mixtures were centrifuged to separate solids and supernatant, which 

was decanted into a glass evaporation tube (RapidVap, Labconco Corporation).   Extracts 

from the solids were obtained again using 4 mL of ammonium citrate and 16 mL of 

methanol and a third time with 20 mL of acetone.  Extracts of each sample from the three 

extractions were pooled and then concentrated, to half the volume, on a RapidVap N2 

sample concentrator at 30°C (90% rotation speed).  40 ng of Roxithromycin (internal 

standard for bacitracin A, bacitracin F, and tylosin) and 40 ng doxycycline (internal 

standard for chlortetracycline) were added prior to the concentration step.  A final volume 

of 100 mL was obtained by adding purified reagent water to the concentrate.  Resulting 

solutions were cleaned up using preconditioned 200 mg Oasis HLBTM solid phase 

extraction (SPE) cartridges.  SPE cartridges were then eluted into borosilicate test tubes 

with 130 mM ammonium citrate in methanol.  The volume of SPE elute was reduced to 
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approximately 200 μL by a stream of dry nitrogen. The concentrated elute was 

transferred quantitatively to an autosampler vial with silane-treated insert and mixed with 

200 μL reagent water.  Recovery of chlortetracycline, bacitracin A, bacitracin F, and 

tylosin, was determined from extraction and quantification of fortified soils.  Fortified 

blanks and method blanks were analyzed at a frequency of 1 in 20 samples. Method 

detection limits were determined by extraction and analysis of 8 replicates of clean sand 

fortified with antimicrobials.  Method detection limit of antimicrobials in soil were 0.3 

ng/g soil dry weight (dw) and 0.5 ng/g manure solid dw.  Recoveries determined using 16 

ng/g fortified soil were 57±13% for chlortetracycline, 78±6.5% for tylosin, and 12±46% 

for bacitracin (i.e., bacitracin A).   

Runoff water samples were filtered through a 0.5 μm Gellman A/E binderless 

glass fiber filters using a vacuum system. To ensure removal of any volatile solids in the 

filters they were combusted at 550 degree C prior to the filtration step.  SPE of the 

filtrates were performed using 200 mg Oasis HLB cartridges.  Cartridges were then 

stored at -20ºC till the analysis of the extracts. SPE cartridges were processed in a similar 

manner as those used for the solids, using 3 mL of 0.1% formic acid in methanol, instead 

of ammonium citrate, for elution.  To monitor analyte recovery a surrogate (16 ng 

oleandomycin) was also added to the methanol solution prior to the elution step.  Method 

detection limits for antimicrobials in runoff extracts were determined by extraction and 

analysis of 8 replicates of reagent water samples fortified with antimicrobials at 0.01 

μg/L.  Recoveries determined using 0.004mg/L fortified water were 137±8% for 

chlortetracycline, 53±7% for tylosin, and 28±2% for bacitracin (i.e., bacitracin A).  
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Electrospray ionization liquid chromatography-tandem mass spectrometry was used to 

analyze all the samples (Snow et al. 2003; Zhu et al. 2001).  

High pressure liquid chromatography was employed to analyze the antimicrobial 

concentrations.  Extracts from all the samples were analyzed with a Waters 2695 high 

pressure liquid chromatograph (HPLC) and thereafter with Waters Quattro Micro triple 

quadrupole mass spectrometer. Analytes were separated by placing them through a 

reverse phase (HyPurity C18, 250 mm x 2.1 mm, 5 μm particle size) column at 50°C.  

The column had an injection volume of 50-μL.  A gradient mobile phase (0.2 mL/min), 

for separating extracts from runoff, was maintained through the column using  A) 1 mM 

aqueous citric acid and methanol (97:3, v/v) and B) methanol and 1 mM aqueous citric 

acid (97:3, v/v).  Initial gradient conditions (95% A) were held for 2 min and then at 5% 

A for 16 min and finaly returned to 95% A for 5 min to equilibrate the column.  Soil and 

manure extracts were put through the same gradient with an addition of a constant 4% 

component of 10% aqueous ammonium hydroxide with adjustments to the gradient to 

replace the aqueous component of mobile phase B.  

Analytes were analysed using Multiple Reaction Monitoring (MRM) mode with 

positive electrospray ionization (ESI).  An infusion technique was used to determine the 

most intense MS/MS transitions (Appendix Table S2).   Each analyte was monitored and 

linear calibration curves, with r2 values of >0.99, were obtained for analytes and 

surrogates.  Bacitracin A has a tendency to rapidly hydrolyze and degrade in water at near 

neutral pH. Hence a standard for bacitracin F, degradation product of bacitracin A, was 

synthesized and used to quantify this compound in the runoff samples (Pavli and Kmetec 

2006).  
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ARGs in Soil, Manure and Runoff Samples  

The top 2 cm soil was collected from amended and control plots before manure 

amendments.  Soil cores were collected from the control plots after the manure 

amendment but before rainfall simulations, and after the 3rd rainfall simulation.  Soil 

cores (6-10” long) were extruded from acrylic sleeves and separated into top, middle, and 

bottom sections.  The top two inches of soil were homogenized and analyzed for ARGs.  

For the runoff samples, solids were extracted by centrifuging 500 mL of well-mixed 

sample for 5 min at 10,000×g at 4ºC in sterile 50-mL centrifuge tubes.  Supernatants 

were decanted and pellets were stored at -20ºC until DNA extraction.  Manure slurry 

samples were handled in the same fashion, but only 30 mL of manure slurry was utilized. 

DNA from runoff solids and soil was extracted using the MoBio UltraClean Soil 

DNA Isolation Kit (Solana Beach, CA) according to a high yield protocol except that a 

40-sec bead beating was used to lyse the cells.  Due to high protein contents in manure 

solids, DNA was extracted from these samples using the MoBio Power Soil DNA 

isolation kit (Solana Beach, CA) for higher DNA yields and higher A260/A280 ratios.  

DNA extracts were quantified using a NanoDrop 2000C spectrometer (Wilmington, DE).  

Regular PCR was run on manure samples for tylosin resistance genes erm(A), erm(B), 

erm(C) and erm(F) (S. Koike 2007).  Because erm(B) was the only ARG that was 

consistently detected in manure slurry and runoff samples, it was quantified using 

quantitative PCR (S. Koike 2007) and used as an indicator for all ARGs.  The detection 

limit of the qPCR protocol was determined as the minimum concentration in the linear 

range of the standard curve.  In addition to ARGs, the 16S rRNA gene in each sample 
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was also quantified using qPCR (Suzuki 2000).  Key qPCR parameters and the linear 

range for each primer set can be found in Table 2.1. 

 

Statistical Analysis  

Repeated measures analysis of variance (rANOVA) tests were conducted using 

SAS (Cary, NC) to determine the effects of manure amendment (control vs. amended 

plots), narrow grass hedge (with vs. without grass hedge), and rainfall event (#1, #2, and 

#3) on the concentrations of antimicrobial and microbial genes in runoff and soil.  If a 

treatment method was determined as significant (p ≤ 0.05), least significant difference 

(LSD) tests were conducted to determine the significance of the differences among the 

treatment levels.  To achieve a normal distribution data was transformed prior to 

ANOVA analysis.  Only soil antimicrobial data was required to be transformed to the 

base of log10. 



 

Table 2. 1 Relevant information of the qPCR reactions used in this study. 

Target 

Gene 
Primer Sequence (5'-3') 

Annealing 

Temp (oC) 

Linear Range 

(copies/20µL) 
R2 

Efficiency 

(%) 
Reference 

erm(B) 
ermB-F GGTTGCTCTTGCACACTCAAG 

65 101-109 0.996 94.4 
(Koike et al. 

2007) ermB-R CAGTTGACGATATTCTCGATTG 

16S rRNA 
1369 F CGGTGAATACGTTCYCGG 

56 103-109 0.979 82.4 
(Suzuki et al. 

2000) 1492 R GGWTACCTTGTTACGACTT 

 

2
6
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Chapter 3: Results  

Antimicrobials and ARGs in Manure  

Solids were collected from the manure slurry and examined for antimicrobials and 

ARGs.  Among the antimicrobials tested (i.e., bacitracin, chlortetracycline, and tylosin), 

tylosin was the only antimicrobial that was consistently detected in the manure samples.  

Manure solids had an average moisture content of 76.95 % wet weight (ww) basis.  The 

average tylosin concentration in the manure slurry was 11.4 g/kg ww or 49.40 g/kg dw 

basis (Table 3.1).  Consequently, only tylosin resistance genes were tested in the manure 

samples.  Of the 6 tylosin resistance genes investigated (i.e., erm(A), erm(B), erm(C), 

erm(F) and erm(G)), erm(B) was the only ARG that was consistently detected in all 

manure samples.  The average absolute abundance of erm(B) was 1.83 × 107 copies/mL 

manure slurry.  Hence, erm(B) was used as a representative to investigate the fate and 

transport of tylosin resistance genes in this study.  In addition, the average absolute 

abundance of the 16S rRNA gene in manure was 1.44 × 108 copies/mL manure slurry 

(Table 3.1).  

Table 3.1 Tylosin, erm(B), and the 16S rRNA gene concentrations (average ± standard 

error) in the swine manure slurries.  The averages and standard errors were calculated 

based on fresh weekly manure samples collected over the 4-week field experiment (n=4). 

Antimicrobial Microbial Genes 

(g/kg ww) (g /kg dw) (copy/mL) (copy/g ww) (copy/g dw) 

Tylosin erm(B) 

11.40±0.75 49.40±3.18 (1.83 ± 0.66)×107 (1.37 ± 0.47)×109 (5.81 ± 1.99)×109 

 
 16S rRNA gene 

 
 (1.44 ± 0.52)×108 (1.07 ± 0.38)×1010 (4.52 ± 1.60)×1010 
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Antimicrobials in Runoff  

Three treatment factors were tested for their effect on runoff water quality: 

manure amendment (manure application to meet 0 vs. 3 times annual nitrogen demand by 

corn, or control vs. amended plots), narrow grass hedge (with and without narrow grass 

hedge), and rainfall events (#1, #2, and #3).  Tylosin was detected in the runoff from the 

amended plots, but not in the runoff from the control plots (Table 3.2).  Among the 

amended plots, tylosin concentration in runoff decreased as the rainfall number increased 

(Table 3.2 and Figure 3.1).  In addition, concentration of tylosin in the runoff from the 

amended plots with grass hedges was significantly lower than that from amended plots 

without grass hedge (p = 0.0161, Table 3.3), demonstrating that grass hedge could 

effectively reduce tylosin transport in runoff (Figure 3.1).   

 

Table 3.2 Tylosin concentrations (average ± standard error) in runoff from control and 

amended plots with and without grass hedge.  The average and standard error were 

calculated based on triplicate field tests. 

Rainfall 

Event 

Control Plots Amended Plots 

w/o Grass Hedge 

(g/L) 

w/ Grass Hedge 

(g/L) 

w/o Grass Hedge 

(g/L) 

w/ Grass Hedge 

(g/L) 

1 <MDL <MDL 4.70 + 1.08 0.35 + 0.11 

2 <MDL <MDL 2.20 + 0.81 0.17 + 0.09 

3 <MDL <MDL 1.91 + 0.81 0.17 + 0.03 

* MDL – The method detection limit is 0.01 g/L 
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Figure 3.1 Concentration of tylosin in runoff from amended plots.  Error bars represent 

standard errors from triplicate field experiments. 

 

rANOVA results showed that the effects of the 3-way interaction term, manure 

amendment × grass hedge × rainfall event, was of high statistical significance (p < 

0.0001, Table 3.3).  Furthermore, all the 2-way interaction terms and the individual 

treatment factors also had significant effects on the antimicrobial concentrations in 

runoff.  According to the LSD analysis, the average tylosin concentrations in runoff were 

significantly different between the control and amended plots, and the plots with and 

without grass hedge. 
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Table 3.3 rANOVA tests on the effects of manure amendment, grass hedge, and rainfall 

events on the concentrations of antimicrobials and microbial genes in runoff. 

 

 

TYL erm(B) 16S rRNA gene 

  (μg/L) (copy/mL runoff) (copy/mL runoff) 

Manure Amendment*, #       

Control plots 0.003 a 3.43×102  3.19×106  

Amended plots 1.585 b 2.37×104  3.09×106 

Grass Hedge  
   

No Grass Hedge 1.47 a 2.22×104  5.66×106
 a 

Grass Hedge 0.12 b 1.89×103  6.12×105 b 

Rainfall Event 

   1 1.26 a 1.68×103 a 1.47×106 

2 0.60 ab 2.20×104 b 3.89×106 

3 0.52 b 1.57×104 b 4.06×106 

rANOVA values for Δ 

Manure Amendment  0.0075 0.1875 0.9240 

Grass Hedge 0.0161 0.2465 0.0014 

Rainfall Event <0.0001 0.0001 0.1132 

Manure × Grass 0.0161 0.2598 0.6160 

Grass × Rainfall <0.0001 <0.0001 0.0457 

Manure × Rainfall <0.0001 0.0001 0.8477 

Manure × Grass × Rainfall <0.0001 <0.0001 0.9130 
* Values reported under “Manure Amendment”, “Grass Hedge”, and “Rainfall Event” are 

treatment averages, which were calculated based on all the data for one particular treatment 

level.  For example, 0.003 µg/L was calculated using TYL concentrations of all runoff samples 

from control plots, regardless whether they were from the plots with or without grass hedge or 

from which runoff event. 
# Values followed by different letters are significantly different at the 0.05 probability level based 

on LSD tests. 
Δ rANOVA values are displayed as p values. 

 

ARG and the 16S rRNA gene in Runoff  

According to the rANOVA analyses, the 3-way interaction terms and two of the 

2-way interaction terms were significant (Table 3.3).  Rainfall event is the only main 

treatment factor that had a significant impact on the erm(B) concentration in runoff (p = 
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.0001).  According to the LSD test, the average abundance of erm(B) in the first rainfall 

event was significantly lower than that in the second and third rainfall event (Table 3.3).  

Effects of manure amendment, grass hedge, and rainfall events on the ARGs in 

runoff were analyzed by monitoring erm(B) in runoff solids.  The absolute abundance of 

erm(B) in runoff from all control plots was orders of magnitudes lower than that from the 

amended plots (Table 3.4 and Figure 3.2) (p = .1875).  Among amended plots, the 

absolute abundance of erm(B) in runoff from the plots with the grass hedge was 

substantially lower than that from the plots without grass hedge (Table 3.3 and Figure 

3.2) (p = .2465).  The abundance of resistance gene in the runoff increased after the first 

rainfall event (Figure 3.2). 

 

Table 3.4 The absolute abundance of erm(B) and the 16S rRNA gene (average ± 

standard error) in runoff from control and amended plots with and without grass hedge. 

Rainfall 

Event 

Control Plots Amended Plots 

w/o Grass Hedge 

(copies/mL) 

w/ Grass Hedge 

(copies/mL) 

w/o Grass Hedge 

(copies/mL) 

w/ Grass Hedge 

(copies/mL) 

 erm(B) 

1 (1.25 + 0.25) × 103 (4.00 + 1.40) × 101 (1.39 + 0.54) × 104  (8.65 + 2.87 ) × 103 

2 (4.47 + 1.56) × 102 (6.00 + 3.00) × 100 (8.57 + 2.55) × 104 (2.18 + 1.36 ) × 103 

3 (2.46 + 1.43) × 102 (3.30 + 1.60) × 101 (6.23 + 1.74) × 104 (4.13 + 1.96) × 102 

 16S rRNA gene 

1 (1.42 + 0.20) × 106 (1.12 + 0.28) × 106 (2.24 + 1.09) × 106  (4.67 + 1.54 ) × 105 

2 (6.77 + 0.87) × 106 (4.36 + 2.28) × 105 (7.96 + 2.27) × 106 (3.89 + 2.41 ) × 105 

3 (8.15 + 2.92) × 106 (8.17 + 2.66) × 105 (7.21 + 095) × 106 <MDL 
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Figure 3.2 The absolute abundance of erm(B) in runoff from control and amended plots 

with and without narrow grass hedge.  Error bars represent standard errors from triplicate 

field experiments. 

 

The effect of the narrow grass hedge on the absolute abundance of the 16S rRNA 

gene in runoff was also investigated.  The rANOVA analyses showed that for the 16S 

rRNA gene, the 3-way interaction term is not significant (Table 3.3, p=0.9130).  The only 
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2-way interaction term that is significant is Grass × Rainfall (p = 0.046).  Among 

individual treatment factors, Grass Hedge is the only significant factor (p= 0.0014).  This 

is confirmed by the LSD test results, in which the average abundance of the 16S rRNA 

gene in runoff samples from plots with and without grass hedge was 6.12×105 and 

5.66×106, respectively. 

The absolute abundance of the 16S rRNA gene in runoff from plots with grass 

hedge was at least one order of magnitude lower than that from plots without grass hedge 

(Table 3.4, Figure 3.3).  Similar to erm(B), among the amended plots, the 16S rRNA 

gene increased after the first rainfall event (Figure 3.3).   
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Figure 3.3 The absolute abundance of the 16S rRNA gene in runoff from control and 

amended plots with and without narrow grass hedge.  Error bars represent standard errors 

from triplicate field experiments. 

 

In addition to the absolute abundance of erm(B) gene, the relative abundance of 

erm(B) was also calculated by normalizing the ARG over the 16S rRNA gene (Figure 
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higher than that from the control plots.  Among amended plots, the presence of grass 

hedge led to a decreasing trend in the relative abundance of erm(B) over the rainfall 

events (Figure 3.4). 

 

 
Figure 3.4 The relative abundance of erm(B) in runoff from three rainfall events.  Error 

bars represent standard errors from triplicate field experiments. 
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Antimicrobial in Soil  

Soil from the control and amended plots were tested for antimicrobials.  No 

tylosin was detected in any soil sample collected prior to the land application of manure.  

In contrast, after land application of manure, the average tylosin concentration in the top 

soil of the amended plots was 8.70 + 5.81 g/kg of soil ww or 11.46 +g/kg soil 

dw.  After the three rainfall events, the average tylosin concentration in the top soil was 

7.27 +g/kg soil dw or 5.09 + 1.57 g/kg of soil ww (Figure 3.5).  No tylosin was 

detected in the soils from the control plots at the two sampling times (Figure 3.5).   

 

 

Figure 3.5 Concentration of tylosin in soils from control and amended plots.  Error bars 

represent standard errors from triplicate field experiments.  Method detection limit 

(MDL) was 0.3 ng/g soil dw. 
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application, after manure application, and after the three rainfall events), on the level of 

tylosin in top soil (Table 3. 5).  The tests showed that the 2-way interaction term of 

Manure × Event had a significant effect on the tylosin concentration in the soil (p=0.016, 

Table 3.5).  The two individual treatment factors also had significant impacts on the 

tylosin concentrations in soil.   

 

Table 3.5 rANOVA tests on the effects of manure amendment and events on the 

concentrations of antimicrobial and microbial genes in soil. 

 

TYL erm(B) 
16S rRNA 

gene 

  
(μg/g) (copy/g soil dw) (copy/g soil dw) 

Manure Amendment*, #       

Control plots 0.03 a 1.09×104  2.15×109 a 

Amended plots 4.10 b 1.24×107  3.00×109 b 

Event 

   Before Manure Application 0.01 a 4.13×103  2.87×109 

After Manure Application 0.98 ab 1.04×107  2.81×109 

After Rainfalls 3.17 b 8.30×106  2.04×109 

rANOVA values for Δ 

Manure Amendment  0.0141 0.2026 0.4494 

Event 0.0038 0.5831 0.6914 

Maure × Event 0.0163 0.5842 0.4681 
* Values reported under “Manure Amendment”, and “Event” are treatment averages, which were 

calculated based on all the data for one particular treatment level.  For example, 0.03 µg/g was 

calculated using TYL concentrations of all soil samples from control plots, regardless whether 

they were before manure application, after manure application or after the rainfall events. 
# Values followed by different letters are significantly different at the 0.05 probability level based 

on LSD tests. 
Δ rANOVA values are displayed as p values. 

 

ARG and the 16S rRNA gene in Soil  

rANOVA tests showed that neither manure amendment nor rainfall events had 

significant effects on the abundance of erm(B) and 16S rRNA gene (Table 3.5).  The 
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abundance of erm(B) increased in the top soil after manure application (p=0.2026) and 

decreased after rainfall events (p=0.5831) (Table 3.5).  Plots receiving no manure had an 

average abundance of erm(B) at 2.63 × 104 copies/g soil dw after manure application and 

at 8.16 × 103 copies/g soil dw after rainfall events.  Similarly, no significant change in the 

16S rRNA gene copy number were observed after manure application (p= 0.4494) or 

after rainfall events (p = 0.6914, Table 3.5). 

The absolute abundance of erm(B) in most of the triplicate field plots prior to the 

manure application were outside or at the lower end of linear range (Figure 3.6).  The 

absolute abundance of erm(B) was back calculated from the Ct values of the qPCR 

results.  Absolute abundance of erm(B) in the control and amended plots prior to manure 

application at 3.57 × 103 and 9.34 × 103 copies/g soil dw.  Among amended plots, the 

absolute abundance of erm(B) in top soil increased to 2.07 × 107 copies/soil dw after 

manure application, and then dropped to 1.09×107 copies/soil dw (Table 3.6, Figure 3.6).  

The 16S rRNA gene, prior to manure application, was detected at 2.67 × 109 

copies/g soil dw, in the amended plots.  There was no change in the 16S rRNA gene level 

in soil after manure application and after rainfall events (Figure 3.6, Table 3.6). 

 

Table 3.6 Absolute abundance of erm(B) and the 16S rRNA gene (average ± standard 

error) in top soils of the amended plots, before manure application, after manure 

application and after three rainfall events.  Standard errors were calculated based on 

triplicate field experiments. 

Gene 

Before Manure 

Application 

(copies/g soil dw) 

After Manure 

Application 

(copies/g soil dw) 

After 3 Rainfall 

events 

(copies/g soil dw) 

erm(B) (9.34 + 2.18) × 103 (2.07 + 0.84) × 107 (1.09 + 0.86) × 107 

16S rRNA (2.67 + 0.52) × 109 (3.96 + 0.89) × 109 (2.38 + 0.97) × 109 
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Figure 3.6 The absolute abundance of erm(B) and the 16S rRNA gene in soil (copy/g 

dw) before manure application, after manure application and after three rainfall events in 

control and amended plots.  Error bars represent standard errors from triplicate field 

experiments. 
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abundance, the relative abundance increased substantially after the manure application 

and remained at a high level after the rainfall events.   

 

 

Figure 3.7 Relative abundance of erm(B) genes in soil before manure application, after 

manure application, and after three rainfall events in control and amended plots.  Error 

bars represent standard errors from triplicate field experiments. 
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 Chapter 4: Discussion 

Manure slurry was analyzed for bacitracin, tylosin, and chlorotetracycline.  

Although bacitracin was administered to animals, it was not detected in any manure 

samples collected over the 4-week period.  Bacitracin is known to have a short half-life 

and loses its antimicrobial activities at room temperature (Sarmah et al. 2006).  Various 

microbiologically active components of bacitracin (bacitracin A) and their degradation 

products such as bacitracin F (Pavli et al. 2004) were also tested in the chemical analysis 

but none of them were detected in the manure samples.  As the only antimicrobial 

compound that was detected consistently in all manure samples, tylosin had an average 

concentration of 11.4 g/kg manure wet weight (ww).  In another study conducted with 

manure from the same source, the tylosin concentration was reported at 290 g/kg ww 

(Joy et al. 2013).  Antimicrobial concentration in animal wastes is dependent on the 

dosage and frequency of antimicrobial being administered to the animals, it is also 

effected by how and when the manure was collected. 

It is difficult to compare the ARG levels in manure with the data reported in the 

literature, because ARG concentrations in manure are affected by various factors such as 

antimicrobial conditions, moisture content, and the age of manure.  Presence of ARGs in 

swine manure have been reported in the literature as copies per gram of wet manure or 

fresh manure, which makes it even more difficult to compare the absolute abundance of 

ARGs as water content may vary widely.  Using the same qPCR protocol, a recent study 

reported erm(B) at 1.6 x 104 copies/mL of manure slurry (Joy et al. 2013).  The erm(B) 

level measured in this study was within the tylosin resistance genes range, 104 and 109 
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copies/mL fresh swine manure, reported in other studies (Chen et al. 2010; Chen et al. 

2007).    

Land applied manure is often considered as the main source of antimicrobials and 

ARGs in agricultural runoff.  In this study, tylosin concentrations in the runoff from the 

amended plots were considerably higher than those in the runoff from the control plots, 

which were largely below the MDL.  Among amended plots, tylosin concentration in the 

runoff ranged between 0.081 and 6.111 g/L, which are similar to previously reported 

values of 0.01 and 6 μg/L (Davis et al. 2006; Dolliver and Gupta 2008; Kim et al. 2010).  

For runoff from the amended plots, the tylosin concentration in the runoff decreased in 

subsequent runoff events.  As much as 47 % of the total antimicrobial load from the plots 

without a grass hedge were carried off in the initial rainfall event (Table 4.1).  

 

Table 4.1 Mass loadings of tylosin exported in runoff from the amended plots with and 

without grass hedge during three rainfall events (average ± standard error).  Averages and 

standard errors were calculated based on triplicate field experiments. 

Rainfall 

event 

Tylosin 

w/o Grass Hedge 

(μg/m2) 

w/ Grass Hedge 

(μg/m2) 

1 48.47 ± 23.25 2.74 ± 1.77 

2 33.69 ± 13.41 3.61 ± 3.29 

3 20.50 ± 12.63 2.48 ± 0.59 

Sum 102.65 8.87 

Fraction 

from #1 
0.47 0.31 

 

The narrow grass hedge was very effective in reducing the dissolved 

antimicrobial load from the runoff.  Narrow grass hedge lowered total antimicrobial 
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loading in runoff by an order of magnitude (Table 4.1).  Our results are comparable to the 

results from a study investigating the effects of narrow grass hedge on the runoff nutrient 

load which  found that dissolved phosphorous load  were reduced by an order of 

magnitude from 0.69 to 0.08 kg/ha (Gilley et al. 2008).  The dissolved antimicrobial load 

could have likely been reduced because of the enhanced infiltration and water holding 

capacity of the soils resulting from grass roots and plant evapotranspiration (Rachman et 

al. 2004; Rachman et al. 2004).  Since the total runoff from both the plots with and 

without the narrow grass hedge were approximately the same reduction in mass loading 

was due to the lower concentration of tylosin in runoff from the plots with a grass hedge 

(Table 3.2, Figure 3.1).  Tylosin has an affinity towards soil particles and directly adsorb 

to the surface and clay content of the soil (Sassman et al. 2007) and as the runoff pass 

thru the grass hedge the aqueous phase antimicrobial had a higher surface contact with 

soil and vegetative surfaces in the grass hedge and got adsorbed to them and is removed 

from runoff.      

Although this study did not quantify tylosin bound to runoff solids, the grass 

hedges were thought to be effective in lowering solid bound tylosin in runoff because of 

their effectiveness in retaining runoff solids.  Gilley et al. found that grass hedge reduced 

the runoff significantly; consequently soil erosion and nutrient transport (DP, TP NO3-N, 

NH4-N and TN) were also reduced by the use of the grass hedge. (Gilley et al. 2008).  A 

study by Hussen et al. found that the stiff grass hedge reduced the sediment loading in the 

outflow to 3.2 to 6.0% of the inflow concentrations (Hussein et al. 2007). 

In contrast to the trend observed for antimicrobial, the abundance of ARG did not 

decrease as rainfall events proceeded: the absolute abundance of erm(B) increased in the 
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second rainfall event and leveled off in the third rainfall event (Figure 3.2).  While Joy et 

al. reported that the absolute abundance of ARGs (tet(Q), tet(X) erm(B), erm(F)) in 

runoff from plots applied by broadcast method decreased with rainfall events (Joy et al. 

2013).  Runoff appears to provide a liquid medium for an increased horizontal and 

vertical transfer of resistance genes following the first rain fall event.   

The grass hedge significantly reduced the amount of 16S rRNA gene in the runoff 

(Table 3.4 and Figure 3.3).  rANOVA results suggests that the narrow grass hedge had a 

significant statistical effect (p = 0.0014) on microbial genes in runoff.  Narrow grass 

hedge reduces the amount of suspended and dissolved solids in the runoff.  Microbial 

population and DNA is adsorbed to the surface of solids and reduction of solids in runoff 

leads to lower absolute abundances of the microbial genes in the runoff.  The grass hedge 

were able to remove more than 90% microbial DNA from runoff.  We are not aware of 

another studies on the effects of narrow grass hedges on the microbial genes in runoff.   

However some studies were conducted to investigate the effect of vegetative filter strips 

on pathogen content in runoff.   One study has shown that grass filter strips (15 to 30 feet 

in length) remove 75 to 91% of fecal coliforms and 68 to 74% of fecal streptococci in 

runoff from manure amended plots (Coyne et al. 1998).  Another study showed that there 

was no decline in the total and fecal coliform numbers in the water as it moved 

downslope through the vegetative filter (Entry et al. 2000).  While it has been suggested 

that animal confinement areas should have a 66 to 99 foot vegetative filter strip between 

animals and surface water in order to minimize the contaminant load in runoff (Entry et 

al. 2000), our results show that a series of narrow grass hedges will be as effective with 

less loss of cultivable land. 
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Reporting genes with low abundance in the samples was challenging, because the 

MDL for each qPCR protocol depended on the sample preparation procedure.  DNA 

extracts with Ct values outside of linear ranges (Table 2.1) were counted as the half of the 

lowest value on the linear range.  While calculating the absolute abundance in a specific 

sample, the amounts of original samples (i.e., manure slurry [manure solids], runoff 

[runoff solids], and soil) from which the DNA extract were obtained were also taken into 

consideration, leading to varied detection limits.  For example, the absolute abundance of 

erm(B) in the runoff from the control plots did not fall in the linear range, whereas the 

absolute abundance of ARGs in the first runoff from amended plots were on the order of 

104 copies per mL of runoff.   

Other than the loss through runoff, the degradation may also contribute to the 

decrease of tylosin concentration in soil after the rainfall events.  Tylosin has a short half-

life of 7 – 8 days in soil (Hu and Coats 2007), and 4.5 days in manure amended soils 

(Carlson and Mabury 2006) suggesting it may be degraded over the 4-day field tests.  

Tylosin A may hydrolyze into various compounds, such as tylosin A adol, tylosin D, and 

isotylosin A, under alkaline and acidic conditions between pH 2.0 and 12.8 (Paesen et al. 

1995; Sassman et al. 2007).  Both abiotic and microbial processes contribute to the 

degradation and transformation of tylosin.    Abiotic processes are much slower while the 

microbial degradation is very rapid during the first 3 days (Carlson and Mabury 2006) 

Furthermore, the variation among soil tylosin concentrations following manure 

application (7.60 g/kg) was larger than the variation among soil tylosin concentrations 

after the rainfall events, suggesting that the rainfall events led to more homogeneous 

distribution of tylosin in soil.   
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Similarly, erm(B) increased from below MDL before manure application to 107 

copies/g of soil dw after the manure application and remained at the same level after the 

rainfall events.  One study reported an increase in the level of ARGs in soil amended with 

cattle manure: tet(B), tet(C), tet(L), and tet(M) increased over the first 50 days after land 

application and then returned to initial levels, while tet(W) decreased an order of 

magnitude over the course of the 175-day experiment (Alexander et al. 2011).  Joy et al. 

also reported that absolute abundance of tet(Q), tet(X), erm(B) and erm(F) genes 

increased in the top soil following rainfall simulations over a period of 3 days (Joy et al. 

2013).   

 In contrast, there was no change in the soil 16S rRNA gene abundance with the 

application of manure or the rainfall events (i.e., at the order of 109 copies/g soil dw 

throughout the experiment).  This is understandable, as all bacteria contain the 16S rRNA 

gene and the indigenous soil bacteria outnumbered the manure-borne bacteria introduced 

with land application.   

The chemical compounds and organic matter trapped in the grass hedges and 

adsorbed onto the vegetative surfaces may act as a biofilm reactor.  Grass hedges have 

been reported to adsorb chemicals in runoff and improve the pH and EC of the runoff 

water (Gilley et al. 2011), hence it is plausible that grass hedge itself may provide for a 

good breeding ground for the microbes.  Also with high organic matter trapped in the 

grass hedge zone and high liquid gas interface provided by the vegetative surfaces it 

provides for a perfect breeding ground for microbes to multiply.  In retrospection a 

chemical and microbiological  analysis of the soil samples and vegetative surfaces from 

the narrow grass hedge region, where most of the solids were trapped and adsorbed, 
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would have complemented the results of this study and should be included in the future 

studies. 
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Appendix 

Table S.1 Properties of the antimicrobials used in this study. 

Antimicrobial Chemical Structure Properties 

Chlortetracycline 

 

Kd = 501-3715 L/kg  

(Teixido et al. 2012) 

Solubility = 500 mg/L 

t1/2 = 21 days (Carlson 

and Mabury 2006) 

Tylosin 

 

Kd = 1,300 L/kg (Clay et 

al. 2005) 

Solubility = 6,000 mg/L 

t1/2 = 6-8 days  (Carlson 

and Mabury 2006; Hu 

and Coats 2007) 

Bacitracin  

(Bacitracin A) 

 

Environmental fate data 

for Bacitracin A are not 

available in the literature 
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Table S.2 Molecular weight, retention times, and MRM transition of antimicrobials, 

internal standards (IS), and surrogate (S) compound. 

Analyte 

Molecular 

weight 

Retention time 

(min) 

MRM 

Transition (m/z) 

Bacitracin A 1422.7 9.82 712.10->86.20 

Bacitracin F 1419.64 10.05 710.19->281.26 

Chlortetracycline 478.88 8.71 478.90->444.00 

Fenbendazole 299.35 10.63 300.20->268.20 

Tylosin 916.10 10.40 916.9->174.2 

Doxycycline (IS) 444.4 8.63 445.05->428.05 

Oleandomycin (S) 687.86 10.51 688.35->544.10 

Roxythromycin (IS) 837.05 11.58 837.55->679.50 
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