
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

1-1-1989

Testability Analysis of Synchronous Sequential
Circuits Based On Structural Data
Raghu V. Hudli
University of Nebraska - Lincoln

Sharad Seth
University of Nebraska - Lincoln, seth@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Hudli, Raghu V. and Seth, Sharad, "Testability Analysis of Synchronous Sequential Circuits Based On Structural Data" (1989). CSE
Journal Articles. Paper 76.
http://digitalcommons.unl.edu/csearticles/76

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/76?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages

Testability Analysis of Synchronous Sequential
Circuits Based On Structural Data

Circuit

Raghu V. Hudli and Sharad C. Seth
Department of Computer Science

University of Nebraska
Lincoln NE 68588-0115

#gates # FFs Bound Test Gen.
(Emerhentall CPU sec.

Abstract

Bounds on test sequence length can be used as
a testability measure. We give a procedure to com-
pute the upper bound on test sequence length for
an arbitrary sequential circuit. We prove that the
bound is exact for a certain class of circuits. Three
design rules are specified to yield circuits with lower
test sequence bounds.

1 Introduction
The automatic generation of test sequences for sequen-
tial digital systems has proven to be a hard problem to
solve. Unlike combinational circuits for which test gen-
eration algorithms exist[8, 9, 17, 181 to mention a few,
that use only structural information to generate a test for
any fault in the circuit, no complete algorithm is avail-
able for sequential circuits. While some recent progress
is evident and promising [2, 12, 141, the best current im-
plementations still spend several CPU hours on circuits
of moderate size. Neither does a theoretical basis exist
for sequential circuits comparable to the theory of fault
detection and diagnosis in combinational circuits. Effec-
tive testability analysis techniques have been developed
for combinational circuits and testability measures based
on controllability/observability considerations have been
used to speed up the test generation process. No effective
testability measure exists for sequential circuits. Miczo
[15] has proved a bound on the synchronizing sequence
[ll] which may be used as a measure of testability. He
has shown that circuits that have synchronizing sequences
longer than 3" - 2" - 1 , where n is the number of flip-flops
in the circuit, are untestable by an ATPG program which
uses only structural data. The result however does not
tell how circuits can be designed that are ATPG-testable.

It is known that sequential circuits may require a very
long input sequence to detect a fault in the circuit. Scan
design techniques [20] are used to reduce the test sequence
length. However, scan designs incur area overhead and
speed penalties. Some manufacturers therefore still make

Paper 18.1
364

chips that have no scan paths. In such a scenario, it
is necessary to design circuits so that the length of the
longest test is minimal.

Consider the following circuits [4] mentioned in the
table 1 below.

Table 1. Test Generation for Two Sequential Circuits

I . -
TLC I 355 1 21 I 243 I 1245.65

CHIP-A I 1112 I 39 1 102 I 268.80

The column labeled "Bound" gives the length of the longest
test to detect a fault. The CPU time was obtained on
VAX 8650. Even though CHIP-A is three times larger
than the Traffic Light Controller(TLC) circuit, it requires
one-fifth the time for test generation. TLC has a bound
on test sequence length of 243, which is almost 2.5 times
the bound for CHIP-A.

In literature, test sequence length is usually used to
specify the number of test patterns that need to be ap-
plied to achieve a particular fault coverage. Here, we use
the phrase in the context of the worst-case fault. It de-
notes the longest sequence needed to detect a fault in a
sequential circuit. Test sequence length is an effective
measure of testability of a sequential circuit as demon-
strated by the above table. We obtain an upper bound'
on the test sequence length to detect a fault. We also
prove that the upper bound is exact for a certain class
of circuits. As a by-product of the bound, we show that
our results can also be used to design circuits that re-
quire shorter sequences to test. A graph model is used for
the circuit to derive the upper bound. We first partition
the circuit into subcircuits, each of which is treated as an
independent machine. The upper bound for testing the
independent machines is computed. We then compute the
bound on test sequence length in terms of the bound of
the independent machines.

'In this paper, the terms "bound", "upper bound" and "upper
bound on the test sequence length" are used interchangeably.

1989 International Test Conference

CH2742-5/0000/0364$01 .OO 0 1989 IEEE

Proceedings. Meeting the Tests of Time., International Test Conference, 1989.
doi: 10.1109/TEST.1989.82320

2 Interconnections of Sequential
Machines

In this section, we look at two simple interconnection
schemes of sequential machines from a test generation
point of view. The series connection and the parallel con-
nection of machines are examined. In a later section, we
show that any circuit can be analyzed for upper bound
using the analyses carried out in this section. Intercon-
nection of machines has been studied in a different context
earlier [l l] for behavioral analysis. But here the intention
is to find an upper bound for the interconnection in terms
of the upper bounds of the constituent machines.

2.1 Series Connection of Machines
Two machines may be connected in series as shown in Fig.
1. The primary inputs feed M1, whose outputs feed M2.
Both M1 and M2 are driven by a single master clock.
Let the bounds for machine M1 be B1 and for M2 be
B2. For the present, one may assume that B1 and B2
are the number of states in M1 and M2 respectively.

Fig. 1 Series Connection

Claim: The upper bound on test length
for series interconnection is B1 + B2.

Proof: A fault could be in either M1 or
M2. Consider the case when the fault is in
M1. It requires in the worst case B1 clock
pulses to propagate the effect of fault to the
output of M1. Once the fault is visible at the
output of M1 (or equivalently at the input of
M2), B2 is the bound on the number on the
clock pulses needed to propagate the effect of
the fault to the output of M2. Hence we need
B1 + B2 clock pulses. In other words, we
need a test sequence of length B1 + B2.

Consider the case when theie is a fault in
M2. It requires at most B2 clock pulses to
propagate the effect of the fault to the primary
output and set up line justification problems
for the input lines of M2. The input lines of
M2 are the output lines of M1. It requires
a maximum of B1 input vectors to solve the
line justification problems at the input of M2.
Hence to detect a fault in M2, at most B1 +
B2 input vectors are needed.

Hence for the series connection of two ma-
chines, in the worst case B1 + B2 input vec-
tors are needed to detect a fault.

A typical example of series connected machines is the
shift register. We can think of each flip-flop as a primitive
sequential machine, whose upper bound for test genera-
tion is l , since any fault in the flip-flop can be detected
by applying one test vector. Only input/output faults
are being considered here. A shift register consists of sev-
eral flip-flops serially connected. The upper bound on the
length of test sequence is the sum of the upper bounds
of each flip-flop. Hence the upper bound is equal to the
number of flip-flops in the register.

Note however that the number of states of the equiv-
alent machine of a series interconnection, is equal to the
product of the states of each machine [I l l . For Fig. 1 , we
would have B1 * B2 states. But we do not have to visit
all the B1 * B2 states to detect a fault. Also, consider
the circuit shown in Fig. 2, which is the circuit for a mod
256 counter constructed from two mod 16 counters. Each
counter is a ripple counter. Since the interconnection has
two asynchronous machines, our analysis does not apply.
For the ripple counter, 256 clock pulses are needed to test
for a fault.

2.2 Parallel Connection of Machines
We consider the connections shown in Fig. 3 as parallel
connections of machines. In parallel connections of ma-
chines, there are some inputs that fan out to more than
one machine and there is a reconvergence of the inputs.
Let the bounds on the test length for M1 and M2 be B1
and B2 respectively.

U U

(a1 (VI
Fig. 3 Parallel Connection 01 Machmes

Paper 18.1
365

Claim The upper bound for the parallel
interconnection is B1* B2.

Proof: In Fig. 3(a), consider the case
when there is a fault in M1. In order for the
fault to be detectable, the effect of the fault
has to be propagated to the output of M1 and
also the output of M2 has to have propagat-
ing values. Since the two constraints have to
be solved simultaneously, by a common input,
in the worst case we have to visit all the states
of the equivalent machine. Hence the upper
bound for detecting the fault will be B1* B2.
The case in which there is a fault in M2 is
identical to the case we have discussed.

Similarly in Fig. 3(b), since the input can
simultaneously change the state of M1 and
M2, we require in the worst case B1* B2 vec-
tors to detect a fault in either M1 or M2.

3 Bound for an Arbitrary Circuit
In this section, we describe a scheme for computing the
upper bound on the test sequence length for an arbitrary
circuit. In [16], a bound for the search space is obtained.
The search space bound is 2"'+", if there are m latches in
the circuit and n inputs. Implicitly, the bound on the test
sequence length is 2". However, if ATPG is used and the
initial state is assumed to be unknown then the bound will
have to be modified as 3", since ATPG uses three logical
values viz. 0,1, and X. This is a very pessimistic bound.
Consider for example a 4-bit shift register. The bound on
the test length given by the above formula would be 3',
but since the shift register is a series connection of 4 flip-
flops, each of which has a bound of unity, the upper bound
on test sequence length would be 4 and not 3'. We give a
tighter bound on test sequence length and prove that the
bound is exact for a certain class of circuits. From the
previous section, it is obvious that our method gives an
exact bound on shift registers and the class of synchronous
circuits which can be recursively decomposed it to a series
or parallel connection of sub-machines.

The circuit is represented as a directed graph. There
is an edge for each line in the circuit. The primary inputs,
gates, flip-flops and fanout stems are represented as nodes
in the circuit graph. The graph for a general sequential
circuit is a cyclic graph because of feedback lines in the
circuit. Fig. 4 shows an example sequential circuit and
its graph representation is shown in Fig. 5.

As a first step in computing the bound we partition
the circuit into strongly connected components, that is,
within each component every node is reachable from any
other node. Each strongly connected component is col-
lapsed into a single supernode. The supernode represents
the submachine. The graph thus transformed will be an

1 - I

Fig. 4 A Sequential Circuit Example

Fig. 5 (a) A directed graph representation of circuit in Fig. 4

Bound - 3
Bound - 1

- 1 1

I I
Bound - 0

5 u n d - 1

Fig. 5(b) Graph after condensation and collapsing cominational elements

acyclic graph representing connections between indepen-
dent submachines. Finding the strongly connected com-
ponents and transforming the graph into an acyclic graph
is the standard problem of finding the condensation of
a cyclic graph [e, 101. All the strongly connected com-
ponents of a graph can be found in polynomial time. A
linear algorithm exists [19], which uses depth-first search
on the graph for finding the strongly connected compo-
nents. It can be proved that the condensation of a cyclic
graph is unique.

After the condensation graph is found, the following
collapsing is done for combinational elements. Combi-
national elements that form a fanout free region [I] are
collapsed into a single combinational element with bound
of zero and merged into a sequential machine that is fed
by the combinational gates. If no sequential machine is
driven by the fanout free region, then the region is left as
is, with a bound of zero. Fanout nodes are merged into
machines that feed the fanout nodes. This processing is
illustrated in Fig. 5(c). F2 is merged into machine a, b
and c are merged into f. F1 is merged into X.

Paper 18.1
366

The upper bound for each submachine in the graph is
3", where n is the number of latches in the submachine.
Since each flip-flop influences every other flip-flop - in
a strongly connected in the circuit graph - in order to
generate a test sequence, in the worst case, we have to
go through all the states of the machine. There are 3"
possible states, since each flip-flop can be either in the
0,l or X (unknown or uninitialized) state. Flip-flops by
themselves not contained in any machine have a bound of
1. In addition, we do series collapsing of sub-machines; if
two sequential machines are in series, we combine them
as one and add the bounds of the two machines.

An example of this graph transformation is shown in
Fig. 6. The circuit [14] is an implementation of a sequen-
tial machine [15] where it is claimed to pose a formidable
task for an ATPG program. In Fig. 6, each submachine
has an upper bound of 3. Since the transformed graph
has a parallel connection of machines, it is clear from our
discussion in the previous section that the upper bound
for the entire circuit is 3 9 = 9.

Qo

Fig. 7 A series Parallel Structure

Applying the reduction rules of the previous section,
i.e., adding bounds of machines in series and multiplying
bounds of machines in parallel, we will be able to compute
the bound for the overall circuit. For example the circuit
corresponding to Fig. 8, which is series-parallel graph has
a bound of 32. We now give a general procedure for find-
ing the bound for a circuit whose condensation graph is
arbitrary. We prove that the procedure gives exact bound
for circuits whose condensation is series-parallel. The
problem we are faced with in a non-series parallel graph
is the arbitrary reconvergence structure of submachines
whose outputs fanout to more than one sub-machine.

U

Bound Consists of G2 and FFl r I lL + ai

Fig 6. An example sequential circuit and its collapsed
schematic corresponding to its condesation graph

It is highly improbable that all circuit graphs reduce to
one of the three forms discussed in the previous section.
Some circuits may reduce to series-parallel structure as
shown in Fig. 7.

Total Bound is 32

Fig. 8 Computing the bound for a Simple
series-parallel stem

We use the idea of stem regions [13] to analyze such
reconvergence structures. A reconvergent point that is
not driven by any other reconvergent point is called a
closing reconvergent point of a stem. We are concerned
only with closing reconvergences of stems for finding the
bound. The stem regions can be found in O(nlog(n))
time[7]. The region of a stem X, which lies in the region
of stem Y is properly contained in the stem region of stem
Y.

In the condensation graph, we identify each node with
a level. Primary inputs are at level 0. A node is at level
i+ l , where i = max{ level of predecessor nodes}. We
maintain a list of stems, ordered by level. Within a stem
region of stem s, we define the (relative) depth of each
node as the difference between the levels of the node and
the stem 8 . The depth of a stem region corresponding
to a closing reconvergence is defined as the difference in
the levels of the reconvergent node and the stem. The
number of submachines in any path from the stem to its
reconvergence is at most equal to the depth of the stem

Paper 18.1
367

region corresponding to that reconvergence node. The
procedure to find the bound for an arbitrary stem region
is describe below.

1.

2.

3.

4.

5 .

6.

Consider the stem at the lowest level, that is still
unprocessed.

i = 1. For all closing reconvergent points do steps 3
- 6

Starting at depth i, find the minimum set of ma-
chines (nodes) that when removed from the circuit,
will isolate the stem and the reconvergent point -
i.e., find the cutset for the two nodes in the graph.
The level of any machine has to be at most i, also
it has to be as close to i as possible. If any machine
is a stem, mark it as processed. The stem region of
this machine is enclosed in the region of the stem in
question.

The set of machines found in step 3, are machines
that are in different paths from the stem to its recon-
vergence point. In other words, they are in parallel
and can therefore be reduced to a single machine
whose bound is equal to the product of the bounds
of each machine.

If reconvergence is not reached, increment i and goto
step 3.

We get an equivalent machine at each depth follow-
ing the processing described in steps 3 and 4. The
equivalent machines at depth i, i + 1, i + 2, ... are
in series. The bounds of the equivalent machine at
each depth are added. Finally the bound of the re-
convergence is added.

For combinational elements in the condensation graph,
the following processing is done. If a stem region has only
combinational elements, the bound is 0. If a combina-
tional element occurs in a cutset, the bound is considered
to be 1. If the combinational element occurs by itself,
then the bound is considered to be 0.

Consider Fig. 9(a), which shows a stem region of ar-
bitrary structure. The stem A has two closing reconver-
gence points F and K. Each box is a submachine. The
depths are indicated above the boxes. The bound for each
submachine is indicated in the corresponding box. Con-
sider the reconvergence F. The stem region has a depth of
2. At level 1, the cutset is { B,C} with the bound of 27.
At level 2, the bound is again 27, with D and E forming
the cutset. The overall bound is therefore 27+27 = 54, to
which we add the bound of F to get 56. This equivalent
connection is shown in Fig. 9(b). Similarly, we compute
the bound for the region corresponding to K as the recon-
vergence. Note in this case I is an element of the cutset
at depths 1, 2, and 3. The equivalent structure is shown
in Fig. 9(b).

2

Fig. 9(a) An arbitrary stem region

86 3'9'3'2 + 9'6'2 +S2 + 6 %
Fig. 9(b) Equivalent Structure

After the above processing is done, the corresponding
circuit graph becomes a forest. Some of the nodes may
be shared between two or more trees as shown in Fig. 10.
The overall bound can be computed by finding the path
with the most weight, where the bound of each node is
considered as the weight. This can be done using depth
first traversal for each tree in the forest.

~ i ~ , 10 Equivalent Structure Of the overall circuit

To summarize the procedure for finding the upper
bound on test sequence length for an arbitrary circuit,
we restate the steps involved and give the complexity of
each step.

1. Find the condensation of the circuit graph. This
can be done in O(n,e) , where n is the number of
nodes and e is the number of edges in the graph.

2. Find the stem regions for the condensed graph. This

3. Find the equivalent machines using cutsets. In the
complexity of this step is O(n1og n).

worst case, this needs O(nz) time.

4. From the forest, find the bound for the overall cir-
cuit. The time complexity of this step is O(n2).

The overall complexity of the algorithm is therefore
O(n2) .

Paper 18.1
368

Theorem: When the condensation graph
is series-parallel, series-parallel reduction and

B

n

1.

the procedure described for arbitrary circuit8
give the same bounds.

Proof: The proof is by induction on the
depth of the stem region.

Fig. l l (a) A series-parallel stern of depth 1.
Assume the depth is 1, as shown in Fig.
Il(a). Without loss of generality, we may
assume that there are only two parallel
paths. According to the algorithm de- t

scribed, the bound for the stem region is
a + b * c + d , since there is only one cut-
set {B,C}. But also, if we apply series-
parallel reduction on the graph, we can
collapse the machines B and C into a sin-
gle machine whose bound is b * c. This
machine is in series with A and D. Hence
the bound for the stem region is a + b *
c + d , which is also the bound given by
Drocedure.

. Depth
n

Cn-1 Cn

An

2. Assume that the procedure gives an iden-
tical bound if the stem region is of depth
n. Again without any loss of general-
ity, we may assume that the stem region
of depth n has the form shown in Fig.
ll(b). The equivalent structure is shown
in Fig. ll(c). The bound for machine E
is

3. We now prove that the procedure gives
an identical bound for a stem region of
depth n + 1. We can get a stem region
of depth n + 1 from a region of depth n
by adding machines An+l and Cn+l, as
shown in Fig. Il(d). Using the equiva-
lent structure of Fig. ll(c), we get an al-
ternate structure for Fig. l l (d) as shown
in Fig. ll(e). This is similar to the struc-
ture shown in Fig. l l (a) . Hence the
proof. We can also prove by analyzing
stem region shown in Fig. Il(d), that
the procedure gives an exact bound.

Using series parallel reduction, the bound
is

+G+l
which can be written as

Fig. 11 (b) A series-parallel stem of depth n

m.-=
BO E

Fig. l l(c) Equivalent structure of fig. l l (b)

Fig. 11 (d) A series-parallel stem of depth n +1

.

an+l
U

Fig. l l (e) Equivalent structure of fig. l l (d)

Paper 18.1
369

bo+ C &*%+I *bi * + +
i=1.3,6. ...

n

* %+I* ci + %+I* cn + cn+1.
i=l

We will now use the procedure described
to compute the bound for Fig. Il(d).
The cutsets have B’s and C’s alternately,
but always have An+1. All cutsets up to
depth ‘n’ also have An. So the cutsets
are

{ B1 1 B2 An An+1}, {CI An, An+l}i

(B3iB4,An,An+l},{C2,An,An+l},

{Cni An+,}

Taking the product of the bounds of ele-
ments in each cutset and summing them,
we get

bl * b 2 * a , * a , + 1 + ~ i * a , * ~ + l + b 3 * b 4 * ~ * a , + l

+cz * a, * a,+l + ... + c, * an+1

Rearranging, we get,

Adding to this the bounds of BO and Cn+l,
we get

bo + *%+I * bi * bi+l+
k1.3.5, ...

Q.E.D

3.1 Results
In Table 2 the results of the bound calculations for the
various benchmark circuits [3] are given. Also shown in
the table are the number of sub-machines into which the
circuit can be partitioned and the maximum and mini-
mum bounds of the sub-machines. In a recent paper [5]
cycle analysis of the benchmark circuits was proposed for
testability assessment. The result of that analysis is the
product of the number of cydes in a circuit with the av-
erage cycle length. These values are reproduced in the
last column of Table 2. Our bounds calculations correlate
very well with the cycle analysis of Cheng and Agrawal.
But s526 is an anomalous case where the cycle analysis
measure grows at a much greater rate than the bounds.
It is worth noting that s420 and s526 require about the
same time for test generation per fauZt. But the jump in
the cycle measure for the two circuits is significant. The
bounds are however not that apart. The large numbers
for s641 and s5378 are due to the presence of large con-
nected components. The bounds and the cycle measure
are very high; they are not very indicative of the test gen-
eration effort. The reason may be because the worst case
scenario is considered for calculating the bounds. This
simplistic approach may not suffice when the components
are very large. A more detailed structural analysis of the
individual sub-machines may yield a better bound.

Apart from the testability measure, the bounds have
application in test generation. The bounds of individ-
ual sub-machines can be used for choosing the elements
through which we want to propagate the fault effect or
justify a line value. A similar approach based on tem-
poral logic parameters has been used in a new test gen-
eration algorithm for sequential circuits [12]. Also the
bounds of the individual sub-machines can be used to de-
termine which components (sub-machines) should be cho-
sen to have scan flip-flops. Components that have higher
bounds should have scan flip-flops. Cheng and Agrawal
have proposed an algorithm that uses heuristics to choose
which flip-flops should be made scan flip-flops [4]. Once,
the component, is chosen, their analysis can be used to
choose flip-flops using their method.

Table 2 Structural Profile and Testability Measures of Benchmark Circuits

Paper 18.1
370

4 Design Rules
We can now state the design rules for minimizing the up-
perbound on the test sequence length. The design rules
can be obtained based on the procedure described in the
previous section. The design rules are intuitive and obvi-
ous from the procedure.

The bound of each independent submachine grows ex-
ponentially with the number of flip-flops it has. Therefore
the first step should be to minimize the bound on the in-
dependent submachines. Hence the following design rule.

Design Rule 1:
Minimize the number of latches in strongly

connected components in the circuits.
In other words, the components should be

small, and the feed back chains should be short.
This reduces the bound for each submachine
which in turn reduces the bound on test length
for the entire circuit.

The bound on the stem can be minimized if circuits
are designed using the following two rules. These rules
are based on the girth of stem regions, which is defined as
the size of the largest cutset for the stem region, and the
depth of stem regions, which was defined in the previous
section.

Design Rule 2:
The girth of the stem region should be as

narrow as possible.
If the girth is wide, there will be more ma-

chines in each cutset, which will increase the
bound for test sequence length.

Design Rule 3: The depth of the stem
region should be as small as possible.

A single machine that connects the recon-
vergent point to the stem will be present in
cutsets at all depths. Hence the bound of this
machine multiplies the bounds of other ma-
chines at different depths. If the depth is min-
imized, it is clear that the overall bound will
be minimized.

5 Conclusions
Test sequence length is an effective measure of testability
of a sequential circuit. The lower the bound on the length,
the more testable the circuit is. In this paper we have used
graph theoretic approach to compute the bound on test
sequence length for any sequential circuit. We first found

the condensation of the graph, by collapsing the strongly
connected components into single nodes. Analyzing each

stem region, we can compute the bound on test sequence
length for the entire circuit. The time complexity of the
procedure is O(n2) where n is the number of nodes in the
circuit graph. The bounds of the individual sub-machines
can be used in test generation, scan design and built in
self test (BIST) design. Since the test sequence length
indicates the testability, it is important to design circuits
with lower test length bounds. We have given three design
rules that will yield circuits whose test sequence bounds
are lower.

References
[l] ABROMOVICI, M., MENON, P., AND MILLER, D.

Critical Path Tracing: An Alternative to Fault Sim-
ulation. IEEE Design and Test of Computers 1 , 1
(Feb. 1984), 83-93.

[2] AGRAWAL, V. D., CHENG, K. T., AND AGRAWAL,
P. CONTEST: A Concurrent Test Generator For Se-
quential Circuits. In Proc. ACM/IEEE Design Au-
tomation Conference (1988), pp. 84-89.

[3] BRGLEZ, F., BRYAN, D., AND K O ~ M I ~ K I , K.
Combinational Profiles of Sequential Circuits. In
Proc. of the Intl. Symposium on Circuits and Sys-
tems (1989).

[4] CHENG, K., AND AGRAWAL, V. An Economical
Scan Design for Sequential Logic Test Generation.
In Proc. of the lgth Fault Tolemnt Computing Sym-
posium (FTCS-19) (1989).

[5] CHENG, K., AND AGRAWAL, v. Concurrent Test
Generation and Design For Testability. In Proc. of
the Intl. Symposium on Circuits and Systems (1989).

DEO, N. Graph Theory with Applications to Engi-
neering and Computer Science . Prentice Hall, 1974.

FRIEDMAN, M., HAREL, D., MAAMARI, F., AND
RAJSKI, J. A Dominators View of Stem Regions
in Combinational Logic and its application to Fault
Simulation. Tech. Rep. CR 87-50, CRL Tektronix
Laboratories, 1987.

FUJIWARA, H., AND SHIMONO, T. On the Acceler-
ation of Test Generation Algorithms. IEEE Trans.
Comput. (Dec. 1983), 1137-1144.

GOEL, P. An Implicit Enumeration Algorith to
Generate Tests for Combinational Circuits. IEEE
Trans. Comput. (Mar. 1981), 215-222.

(lo] HARARY. Graph Theory. John Wiley, 1972.

[ll] HENNIE, F. Finite-State Models for Logical Ma-
chines. John Wiley & Sons, Inc., 1968.

Paper 18.1
371

[12] HUDLI, R., AND SETH, S. Temporal Logic Based
Test Generation for Sequential Circuits . In Proc. of
IFIP Conference on CAD Systems Using AI Tech-
niques (1989).

[13] MAAMARI, F., AND RAJSKI, J. Reconvergent
Fanout Analysis and Fault Simulation Complexity
of Combinational Circuits. Tech. Rep. TR-87-3R1
VLSI Design Lab, McGill University, 1987.

[14] MARLETT, R. An Effective Test Generation System
for Squential Circuits. In Proc. ACM/IEEE Design
Automation Conference (1986), pp. 250-256.

[15] MICZO, A. The Sequential ATPG: A Theoreti-
In Proc. I d . Test Conference (1983), cal Limit.

pp. 143-147.

[16] MICZO, A. Digital Logic Testing and Simulation.
Harper Row, 1986.

[17] ROTH, J. Diagnosis of Automata Failures. IBM
Journal of Research and Development (July 1968),
278-291.

[18] SCHULTZ, M. , TRISCHLER, T., AND STARFET, T.
SOCRATES: A Highly Efficient Automatic Test Pat-
tern Generation System. In Proc. ACM/IEEE De-
sign Automation Conference (1987), pp. 1016-1025.

[19] TARJAN, R. Depth First Search and Linear Graph
SIAM Journal of Computing (June Algorithms .

*1972), 146-160.

[20] WILLIAMS, T., AND PARKER, K . Design For Testa-
bility - A Survey. IEEE Transactions on Comput-
ers (Jan. 1982), 12-30.

Paper 18.1
372

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-1989

	Testability Analysis of Synchronous Sequential Circuits Based On Structural Data
	Raghu V. Hudli
	Sharad Seth

