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Abstract 
Personalization has become a popular solution to today’s Ecomerce challenges. 
Various personalization techniques have been researched and marketed. But, one 
technique may not suit all businesses. What is required is a mechanism to enable 
different policies based possibly on different personalization techniques. The Ebroker 
architecture presented here provides a mechanism to enable different policies with 
minimal effort. We present here the various components of the architecture as well as 
the features that the architecture provides. The details of a prototype design and 
implementation are also discussed. 

1. Introduction 
With the economic slowdown, companies have begun to reinvent the way business is carried 
out. Ecommerce, which has been particularly affected with the economic slowdown, has been 
posed with new challenges. These include attracting customers, converting browsers to 
buyers, maintaining customer loyalty, and preventing customer defection.  A study by 
Forrester Research detailed in [3] claims, 70 percent of all E-commerce sites convince less 
than 2% of their visitors to buy and nearly 80 percent of retailing newcomers (those selling 
online for less than 18 months) turn less than 2 percent of their browsers into buyers. 62 
percent of the seasoned retailers were found to fare no better.  
 
Retaining customers has been a challenge in business from times immemorial. A report on 
customer defection [6] claims that companies can boost profits by almost 100% by retaining 
just 5% more of their customers. In Ecommerce, the effects of losing customers might be 
proportional but the challenge of retaining them is higher. This is due to the inherent nature of 
how business is conducted on the Internet. The absence of human intervention by which one 
can counteract the customer’s disinterest is a vital aspect. Customer defection at the shopping 
cart level, which has become popularly known as the case of the abandoned shopping carts 
has become a threat to online business. The study detailed in [1] claims that, 65 percent of 
online consumers bail out and abandon the shopping carts before the final purchase 
transaction takes place. 
 
Personalization has become one of the answers to these challenges as business researchers 
claim that a personalized experience leads to more sales. Personalization is about matching 
content with users’  interests or targeting content based on the services the vendor wants to 
provide. Existing online personalization systems work by constructing customer profiles and 
using these profiles to provide a personalized experience. These systems are reactive in nature 
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to the user’s interest. Moreover, these systems have business policies embedded within the 
system making them less flexible to policy changes. In this paper, we propose an architecture 
to detect the customer’s behavior and provide ways of pro-action so as to retain the 
customer’s interest in the transaction. In some ways, the Ebroker is analogous to a sales agent 
in a person-to-person transaction that is able to detect when a customer is losing interest and 
take pro-action to close the sale.  
  
The goal of this project is to provide a flexible and scalable mechanism that is independent of 
policy. It provides support to implement various Ecommerce policies with minimal effort. 
These goals are realized through the Ebroker architecture. This paper makes contributions in 
the following areas: we present an architecture with a mechanism for personalization that is 
independent of policy; we also present the implementation details of a prototype. The 
prototype makes use of dynamic instrumentation with user monitoring code, which offers 
flexibility at various levels. 
 
Section 3 details the Ebroker architecture while Section 4 discusses the design of the 
prototype. Section 5 illustrates the implementation of the Ebroker prototype. Finally, Section 
6 presents our conclusions and describes future work. The following section, however, 
presents related work on personalization systems in detail. 

2. Related Work 
Existing personalization systems fall into two main categories: rule-based and 
recommendation systems. Rule-based systems personalize content based on defined business 
rules. For example, if it was detected that a particular product was surplus in stock, policies 
can be defined to offer discount on the product when a customer added something to his 
shopping cart. These rules are independent of the customer’s interest but still fall within the 
definition of personalization since web content is personalized based on the services the 
vendor wants to provide. Examples of existing rule-based systems are those provided by 
Broadvision [2], and Vignette [10]. 
 
Recommendations systems are based on matching content with users’  interests. Two popular 
techniques are currently being used: collaborative filtering to cluster user’s interests and data 
mining to cluster users based on similar navigation paths. Collaborative filtering [8] to cluster 
users of similar interests can be done either by explicit ranking by the user or through implicit 
inference.  Much work has also been done on user navigation pattern discovery based on web 
logs [7] [9]. In both these techniques, users’  profiles are constructed and these profiles are 
used to group users into categories. Amazon’s “  people who bought this book also bought”  
feature makes use of this technique of collaborative filtering. Although this technique has its 
merits, it fails to detect the user’s current interest as opposed to his past behavior. If, for 
example, you were buying a book for a friend, the personalization technique would 
recommend books based on this. The next time you were buying books for yourself, the 
personalization system would recommend books based on your previous purchase.  
 
The eGlue Server described in [4] provides an architecture that removes this drawback by 
constructing dynamic user profiles. The user’s current interest is combined with his past 



behavior to generate hints and predict the user’s next action. The next action is then cached to 
improve the response time. Business logic is embedded within the system to generate hints. 
 
But, which personalization is best for your business? The success of a personalization 
technique is inherent to the nature of the online business. Recommendation systems, which 
have been effective for amazon.com, have not been so successful with Levis Stylefinder [5]. 
Rule-based systems, which are easier to setup, are best for small companies and not for large-
scale retailers. Making recommendation based on collaborative filtering or personalization 
based on defined business rules are affected by the policies involved within a personalization 
system. They should not affect the mechanism with which these policies are used to 
personalize web content. What is required is a mechanism or an architecture that is 
independent of policy. The policy could be recommendation based, rule-based, inference-
based or based on any other new technique. The Ebroker technique offers an architecture that 
satisfies just this. It provides a scalable and flexible to support maximum policies with 
minimal effort. Several features like dynamic instrumentation with user monitor code helps to 
capture user behavior as the web page is being viewed. An event is triggered in response to a 
specific behavior from the user like scrolling or clicking a link. The actions to these events 
can be dynamically adjusted based on the policy. They can be used to generate personalized 
responses or can be geared towards preventing customer defection.  

3. Ebroker Architecture 
The Ebroker architecture is mainly aimed towards providing a mechanism that is independent 
of policy. The architecture has several components, which are discussed below. In addition, 
an outline of the features that are enabled as a result of this architecture is presented. 

User Behavior Monitoring 
The architecture captures user behavior in the form of events. The various behavioral patterns 
captured are: clicking on a text link or an image link, navigating the mouse outside the 
browser area a certain number of times, having a small screen size, clicking on the scroll bar a 
specific number of times, staying on a particular page for a certain amount of time, 
abandoning the page within a specific time, aborting the download of an image, and aborting 
entire page download itself. These are some of the events we are capturing with the 
implemented prototype although we can capture some more events like form fields, form field 
completion times, back and refresh buttons, drop down box selections, etc. Since these 
behaviors are all captured at the client side when the user is actually navigating through the 
Ecommerce site, the data that we gather is more current as compared to his past purchase 
behavior or his past navigation path. This behavioral data can be used to infer whether the 
customer is interested in buying or is losing interest within the Ecommerce site. 

Dynamic Instrumentation 
The Ebroker’s architecture involves dynamic instrumentation of web pages with user behavior 
monitoring code on the client side. Instrumentation involves inserting hooks or additional 
code into the web page content. In the Ebroker’s context, instrumentation refers to the 
insertion of the behavior monitoring code into the web page that is generated from the web 
server. Instrumentation is dynamic since it is done on the fly before the web content reaches 
the client. In addition, instrumentation of the web page after it is generated from the web 



server enables the Ebroker architecture to support dynamic web content. This is essential as 
current Ecommerce sites are popularly based on dynamic web content rather than static web 
pages.  

Event-action Trigger Mechanism 
When the user at the client side exhibits a specific behavioral pattern, an event is triggered. 
The action is the Ebroker’s response to this triggered event. The action to this event is based 
on the business policy that is specified at that instant. For example, if the user is interested in 
a web site and is reading a lengthy page by scrolling, this behavior can be detected from the 
embedded code within the page. An event is triggered when this behavior is detected. At this 
specific instant, if a rule-based policy was used, and free shipping on a particular product was 
specified, this would be used to personalize the web content. This personalized content would 
be provided to the user as the action to the event. The event-action trigger mechanism enables 
the architecture to be policy independent as the actions can be dynamically modified based on 
the specified policy. Since the action corresponding to a particular event can be changed 
dynamically, for the same event triggered at time t1 and t2, different policies could be enabled. 
This also makes the system less predictable and less prone to the users guessing the policies 
available to them. 

Features 
The uniqueness of this architecture enables several features such as: easy setup and short 
customer behavior learning time. Easy setup comes from the concept of dynamic 
instrumentation. Since the web content that is at the web server side is unaffected, no pre-
coding at the server side is required to generate personalized web content. Customer behavior 
learning time is the time required by the personalization system to learn about the customer’s 
behavior. Since only session behavior is observed, this learning time is small. This is 
advantageous since the system does not require repeated visits from the customer to learn 
about his behavior. The personalization system can also be used for a new customer using 
only his sessional behavior.  
 
Another important attribute provided by this architecture is flexibility. Flexibility itself is at 
different levels: in terms of Ebroker location, changing actions based on different policies, 
and action handling location. In concept, the Ebroker architecture can be implemented in 
either the client side, between the client and the ecommerce server, within the web server, or 
even behind the web server. The policy independence feature provides the ability to 
dynamically change policies. Section 5 discusses the policy changer GUI to dynamically 
change actions based on changing business policies. Flexibility of action handling location 
arises since the action can be implemented at three locations. The action can be content 
obtained from the web server, the Ebroker by issuing HTTP requests from the client side or 
the action can be embedded within the web page during instrumentation providing different 
levels of transparency. This specifies the transparency from the company perspective, as the 
policies are not visible to the public. The user is provided the transparency that his behavior is 
implicitly monitored. Specific ranking of web content is not necessary and there is nothing to 
disrupt his normal navigational behavior. To preserve his privacy, only session ids are utilized 
to enable the user to remain anonymous. Cookies are not used to retain any client-side 
information and the user can be less worried about protecting his privacy. 



4. Ebroker Prototype Design 
This section describes the design issues that came up during the prototype implementation and 
the assumptions we made to resolve them. We also describe the various options that we had to 
make a design decision, the choice that we finally made and the reason for it. 

Identifying the WebPages to be intercepted for instrumentation 
The vendor could specify a list of URLs, identifying the web pages to be instrumented. Tags 
could then be used to distinguish the web pages that need to be instrumented from the ones 
that don’ t need to be. Although this would work for static web content, dynamic pages could 
have the same URLs, so the problem of uniquely identifying a page would arise. Moreover, 
this solution increases the specifications required by the vendor to setup the Ebroker. We 
needed to make the setup of Ebroker with minimum requirements from the vendor. A specific 
“NO_INST”  tag could be inserted on top of pages while dynamically creating them or have to 
be inserted manually if they’ re already static to indicate that instrumentation for these pages is 
not required. Pdf(s), images, doc(s), etc. can be filtered out by looking at the “ text/html”  tag in 
the HTTP header. For the prototype, all vendor text/html pages except the action pages will be 
intercepted and instrumented. If more granularity is required, the vendor has to specify the list 
of URLs and distinguishing between dynamic web pages with same URLs need to be 
considered. A better solution would be obtain a product catalog and identify the locations 
within this catalog to be instrumented. The use of a product catalog is described in detail in 
Section 6 as future work. 

Identifying the events to be instrumented 
To identify which events have to be instrumented in which pages was another issue. Here 
again, the obvious solution was to extend the URLs to be instrumented specification sheet 
with the corresponding events to be captured. A better choice would be identify the events 
along with the product catalog. 
For the prototype, while integrating with an experimental Ecommerce site, all pages were 
instrumented with all events.  

Policy Specification 
An event-action table was designed to specify the correspondence between the events and 
actions. The business policy specified at that instant had to be translated to a specific action, 
which would be taken in response to an event. For the prototype, a policy changer was 
implemented which would enable the vendor to change the action on any event based on the 
change in the business policy. In concept, any external process could dynamically change the 
actions. The external process itself could be a policy engine geared towards finding the 
optimal business policy and change the actions based on this algorithm. 

5. Implementation 
For the prototype, the Ebroker was implemented by integrating it in the dispatcher of the 
LSQoS described in [11]. This enabled us to easily implement dynamic instrumentation by 
gathering all the packets that corresponds to a particular web page. The data within these 
packets was extracted and the behavior-monitor code was inserted before forwarding these 
packets to the client. An experimental Ecommerce web site was then setup and integrated 



with the Ebroker prototype. Initially, all pages had all events instrumented to capture user 
behavior. We first describe here the changes that were made to the LSQoS code to implement 
the Ebroker, which is then followed by details unique to the Ebroker prototype 
implementation. This includes the implementation of the log analyzer as well as the policy 
changer GUI. 

Capturing the web page 
One of the major changes made to the LSQoS was to store the data in the packet as it is 
captured from the web server till the entire web page is constructed. The TCP protocol was 
also extended to send acknowledgements to the server independent of those received from the 
client. This prevented retransmissions from the web server while waiting for 
acknowledgement, as packets were not transmitted to the client till the entire web page was 
constructed. The req_st structure that is used in the LSQoS was extended to enable the 
provide information for the Ebroker logging such as user agent, referrer, the status message 
returned from the web server along with the status code, the response line that can be obtained 
from the first response packet from the web server, etc. Fig. 1 shows the extended structure. 
The eTag is used to indicate whether the web page is to be captured and then instrumented. If 
this is set, only then is the data in the packet buffered to construct the web page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 

 
The dynamicPage field is used to support dynamically generated web content. In HTTP 1.1, 
dynamically generated data is sent as packets with the HTTP header containing "Transfer-
Encoding: chunked" field to indicate that data is chunked. Packets with chunked data do not 
have the “Content-Length field”  in the HTTP header. Since the Ebroker code and the basic 
LSQoS code keeps a track of this to detect the last packet, the packets had to be “dechunked”  
to obtain the chunk size. This meant examining the data within the packet to detect a chunk 
size and gathering all the chunks based on this size. The last chunk could be indicated with a 

typedef struct req_st req; 
struct req_st 
{   time_t   arrive_time;   
  bool   conn_close;    
 uint32_t   dtoc_start_seq;   
 uint32_t   c_start_seq;   

uint16_t   req_num;          
       float      req_file_priority;          
       unsigned char   * req_data;   
       int   req_size; 
  char  * req_line;  
       ulong  remotehost; 
  int   response_size; 

int  status;   
       char  *status_msg;  
 char  * response_line;  
       char  *user_agent;                           
 char   * referrer; 
 char  *ebrokerFile; 
 bool  eTag; 

bool  dynamicPage; 
int  eventIndex; 

       req         *next;    
 } ; 



specific terminating sequence as specified in HTTP 1.1. The dynamicField is used to indicate 
that dechunking is required. 

Implementation of Dynamic Instrumentation 
The captured web page is then instrumented with event capture code. The event capture code 
is implemented in JavaScript. The HTTP_request structure described above has an “eTag” 
field, which is indicated with the tag “TAG-I”  to indicate that instrumentation is to be done, 
and “TAG_NI”  to indicate that no instrumentation is required. As discussed in Section 4, all 
text/html web content was tagged for instrumentation. The type of data is gathered by 
examining the field "Content-Type: " in the HTTP header of the packet. Once the entire web 
page is captured, instrumentation process is started. When the instrumentation is over, the 
entire page is broken into packets and sent to the client in appropriate packet sizes. The TCP 
sequence of the packet that is sent is adjusted to indicate the extra data added by the 
instrumentation process so that the client honors the packets. 

Event Action Table 
The Event Action Table is the data structure through which the event-action trigger 
mechanism is implemented. The table is indexed into every time an event is triggered, to 
determine the action to be taken.  In addition, this table is looked up during instrumentation to 
access the behavior capture code to insert. The structure of the table is given in Table. I.  
 

Event Capture Code Action Type Action Action Code 
 

Table. I 
 
The capture code points to a library where the capture code is defined. The action type 
indicates where the action is to be handled. If the action is handled within the client, the action 
code is embedded during the instrumentation phase so that the action is triggered 
appropriately in response to the event. The action entry in the event-action table specifies the 
action that is to be instrumented. If however, the action content is to be retrieved from the 
Ebroker or the web server, the action type will indicate this and when the event is triggered, 
the action field indicates the action content to be requested. The action code is a pointer to a 
function where the action content is requested. 

Policy Changer GUI 
The event action table is also the data structure through which the policies are translated into 
actions. The entire table is stored in shared memory so that actions can be updated in 
accordance with changing policies by external processes. For the prototype, we implemented 
a Policy Changer GUI through which the actions can be changed as policies change. The 
policy changer accesses this shared memory to update the Event-Action table to change the 
appropriate fields. The policy changer can also specify the Ebroker not to take any action for 
an event through this mechanism. Semaphores are used for synchronization between the 
Ebroker and the GUI accessing the Event-Action table at the same time. Conceptually, the 
Policy Changer can be extended to change policies and hence actions, based on an algorithm 
which maximizes returns. We discuss this in future work. Fig. 2 shows the tree structure of 
the events, and the actions that can be taken when these events are triggered. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 

Event-Action Logging 
A field in the Ebroker configuration file enables logging. The Ebroker log captures the 
request-reply associations. In addition, the log captures the event that was captured and the 
action that was taken. The format of the Ebroker log is as given in Table. II. The format is in 
compliance with the extended log format as specified by the w3 consortium except for two 
additional fields. These two extra fields are Event Triggered and Action Taken, which are 
relevant to the Ebroker architecture. In fact, it is these two fields in conjunction with the other 
fields that help us determine various statistics from the Ebroker log. The Ebroker Online Log 
analyzer describes in the next section uses this log to display these statistics.  
 
Host User 

Login 
Time of 
Request 

HTTP 
Request 

HTTP 
Response 
Status 

Bytes 
Transferred 

Referrer User 
Agent 

Event 
Triggered  

Action 
Taken 

 
Table. II 

 
The Host field in the log specifies the host machine of the web client, which is issuing the 
HTTP request. The user login is used to log authenticated users. Although this field is 
specified in the log, this is not logged by the Ebroker to allow the users to remain anonymous. 
The time of request is the time at which Ebroker gets the request packet from the client. The 
HTTP response status is the return code from the Web Server in response to the request. The 
Referrer field indicates from which link the user was previously viewing. The User Agent 
field indicates the type of browser on the client side. The Event Triggered specifies if a 
particular event was triggered from the current page and the Action Taken specifies the action 
that was taken in response to the event. 

Ebroker Log Analyzer 
The functionality of the Ebroker Log Analyzer was based on a GNU licensed tool awstats 4.1. 
The tool was redesigned to collect information based on the Ebroker log structure and 
evaluate statistics that are more relevant to the Ebroker. A perl script was used to display the 



statistics obtained from the analysis. The GUI opens a client socket to obtain the Ebroker log 
which is then used to extract information such as inter-action time, the number of times a 
particular event was triggered, the events triggered by a specific user and the corresponding 
actions to these events, and the time at which an event was triggered. The GUI is also pseudo 
real-time as fresh updates of the log are obtained every 50 seconds from the Ebroker system 
to analyze and display the statistics. Fig. 3 shows the events that have occurred for a particular 
user, the time at which the event was triggered and the actions that have been taken based on 
the policy at that time. The number of times an event has been triggered in a specific time 
that’s set in the GUI configuration file is also displayed. 

 

 
Fig. 3 

6. Conclusions and Future Work 
We have presented in this paper an architecture to implement ecommerce policies with 
minimal effort. The mechanism was presented though which policies can be translated to 
action in response to triggered events. The future work involves finding a method to evaluate 
the Ebroker mechanism independent of the policy. Also, the current method of storing the 
entire page before the instrumentation phase could be time-consuming. A method of stream 
parsing or even instrumenting packets with event capture code needs to be researched. 
Scalability of the Ebroker architecture also needs to be evaluated to a wide variety of events 
and also with a large number of clients. Classifying behavioral patterns and associating 
relative weights to events to give a qualitative measure to user’s interest or disinterest is also 
an area we will focus on in the future. The significance of the capture behavioral pattern needs 
to be examined. 
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