Is it still science if you don’t call it ‘science’? Discovery orientation and science identity among middle school youth.

Patricia Wonch Hill
University of Nebraska - Lincoln, phill3@unl.edu

Julia McQuillan
University of Nebraska - Lincoln, jmcquillan2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/dberspeakers

Part of the [Curriculum and Instruction Commons](http://digitalcommons.unl.edu/circ/), and the [Science and Mathematics Education Commons](http://digitalcommons.unl.edu/smed/)

Wonch Hill, Patricia and McQuillan, Julia, "Is it still science if you don’t call it ‘science’? Discovery orientation and science identity among middle school youth." (2015). *DBER Speaker Series*. 73.
http://digitalcommons.unl.edu/dberspeakers/73
Abstract for DBER Group Discussion on 2015-02-26

Presenter(s), Department(s):
Trish Wonch Hill
Research Assistant Professor
Department of Sociology
University of Nebraska-Lincoln

Julia McQuillan
Professor and Department Chair
Department of Sociology
University of Nebraska-Lincoln

Title:
Is it still science if you don’t call it ‘science’? Discovery orientation and science identity among middle school youth.

Abstract:
To investigate the role of friendships in science identity formation, we are conducting a longitudinal survey of 441 students in an ethnically diverse Title I Middle School. This research-based approach, framed within a sociological conceptual model, will provide depth in our understanding of how to motivate and engage youth from groups underrepresented in biomedical science, and will contribute to the sociological literature on identity formation. Science educators assume most youth have a natural propensity toward science and inquiry, and will engage with science activities and ideas if they are presented in fun and appealing ways. We call this natural propensity “discovery orientation.” We have designed and piloted a measure of “discovery orientation” by asking about science propensities without using the word “science.” The label science in our culture is imbued with stereotypes, mostly as “white” and “male”. By not using the word science in survey questions and by separately measuring explicit science identity, we are able to investigate whether labeling science makes a difference in youths’ identification as a science kind of person. Preliminary findings indicate that although discovery orientation does not vary by race or gender, science identity does. White boys have higher science identity than minority boys, minority girls and white girls. Minority boys and girls also have significantly lower science enjoyment and science competence than white boys. Minority boys and girls, and white girls are less likely to say that others see them as a ‘science kind of person’. Using structural equation modeling, we explore multiple pathways to science identity.
IS IT STILL SCIENCE IF YOU DON’T CALL IT ‘SCIENCE’?

DISCOVERY ORIENTATION AND SCIENCE IDENTITY AMONG MIDDLE SCHOOL YOUTH

Trish Wonch Hill & Julia McQuillan
Department of Sociology

Supported by the National Institutes of Health
The STEM Pipeline is Leaking Badly

Approximately, 4 million 9th graders entered high school in 2001... Four years later, 2.8 million of them graduated and 1.9 million then went to either two- or four-year colleges; however, only 1.3 million were actually prepared for college. Less than 300,000 majored in STEM fields and only about half graduated college with a STEM degree by 2011.

for African-Americans the STEM yield is ~1-2%; we need to increase the yield 10X!

Source: NCES Digest of Education Statistics; Science & Engineering Indicators 2008
Background

Study of 800 9th and 10th graders – student randomly assigned to an essay about a virus or a ‘World of Viruses’ comic to assess whether students would be engaged with the materials and have more knowledge about viruses (Spiegel, et al., 2013).
Background Continued

• Latent class analysis showed that youth with lower science identity were as engaged with comics as youth with high science identity. Knowledge gained from the comics was the same for both groups.
Science Identity Should Matter

• Youth with higher science identities are more engaged with science and more likely to persist in STEM careers (May & Chubin, 2003; Carlone & Johson, 2007; Chemers, et al., 2011; Spiegel, et al., 2013).
The Scientist in the Crib

- All humans have curiosity, a capacity to learn about the world through trial and error, and a tendency to develop theories about how the world works.

- An array of research studies with infants and toddlers have shown that, in fact, children have sophisticated methods that can be compared with those used by scientists (Gopnik, Meltzoff, & Kuhl, 1999).

This idea, that everyone is born a scientist, is counter to pervasive stereotypes that only some (usually men) are born with “genius” abilities to excel in particular science fields (e.g. Physics) (Leslie et al., 2015).
Identity Theory

Most Salient Identity
(Across situations, easily activated, most aware of)

Next salient identity

Least salient identity

Commitment increases with salience
Identity Theory

Types of Identities (Burke & Stets, 2009)
• Science identities might be particularly difficult to maintain if they conflict with other more salient identities (race or gender).

• From a Sociological Identity Theory perspective, the implicit associations attached to science kind of person (e.g. white, male), social interactions (e.g. significant others and peers treating one or labeling one as a science kind of person or not) also contribute to developing a science identity or not.
Self-Verification

• Self-identifying as a science kind of person, or claiming to be a “science kind of person” occurs in interaction with others and is informed by images of scientists in popular cultures, text books, and news media (Newton and Newton, 2008).

• Science identity should depend on not only one’s own actions, but also by how those actions are recognized and acknowledged by others.

• Implicit Biases/Stereotype Threat
Looking Glass Self

The Looking Glass Self

How my mom and dad see me.
How my girlfriend sees me.
How my older brother sees me.
How my ex-girlfriend sees me.
Generalized Other

The “I” and the “Me”

The “I”

The “Me”

The “Generalized Other”
Aferschool Alliance – Key Components to Science Identity

- “I like it” – Affect/Enjoyment
- “I’m good at it” – Achievement/Competence
- “It’s Important” – Salience/Relevance, I use it to make decisions that affect me.

Questions we answer:

• Do “Science Identities” exist at the Middle School level?

• Do science identities differ by race and gender? If so, how?

• Do implicit assumptions about gender & science influence explicit labeling of science identities for boys and girls, or white and minority students, differently?
Discovery Orientation

1. How much do you like taking things apart to learn more about them?

2. How much do you like learning about new discoveries?

3. How curious are you about the world?

4. How much do you like learning about how the human body works?

5. How much do you like exploring nature?
Science Enjoyment/Competence

Science Enjoyment ‘I like it’
1. How much do you like science?
2. How boring are science classes for you?
2. How much would you like to join a new after school science club?

Science Competence ‘I’m good at it’
1. How good are you at science?
2. How well do you usually do in science classes?
3. What grades do you usually get in science classes?
Identity Variables

Science Salience “It’s Important”

1. How often do you use science to solve daily problems?
2. How much does science help you make decisions that affect your body?
3. How much, if at all, does science help people?
4. How much, if any, do you think studying science will help you in the future?

Science Self-Verification

1. How much do you teachers make you feel like you are good at science?
2. How much do you parents tell you that you are good at science?
Identity Variables

Generalized Other
1. How much do other people think you are a **science** kind of person?

Science Identity
1. How much do you think you are a **science** kind of person?
2. How much, if at all, do you want to become a **scientist**?
3. What kind of job do you want as an adult? (A job with a lot of **science** -> A job with no **science** at all.)
The Context

A Title I Middle School in a Midsized Midwestern City

Wave I Survey – N=441 participants

6th, 7th and 8th graders in a Science Classroom

63% Minority Students
Descriptive Statistics by Race/Gender

Figure 1. Science Identity by Gender and Race
N=441
Correlations among Science Identity Dimensions, Midwest Middle School Youth, N = 441

Table 1. Bivariate Correlation Matrix (N=441)

<table>
<thead>
<tr>
<th></th>
<th>Science Identity</th>
<th>Discovery Orientation</th>
<th>Science Competence</th>
<th>Science Relevance</th>
<th>Science Enjoyment</th>
<th>Self Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Orientation</td>
<td>.47***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Competence</td>
<td>.44***</td>
<td>.29***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Relevance</td>
<td>.54***</td>
<td>.40***</td>
<td>.32***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Enjoyment</td>
<td>.64***</td>
<td>.55***</td>
<td>.44***</td>
<td>.46***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self Verification</td>
<td>.41***</td>
<td>.30***</td>
<td>.47***</td>
<td>.30***</td>
<td>.45***</td>
<td></td>
</tr>
<tr>
<td>Generalized Other</td>
<td>.45***</td>
<td>.29***</td>
<td>.29***</td>
<td>.27***</td>
<td>.32***</td>
<td>.35***</td>
</tr>
</tbody>
</table>
Structural Equation Model N=441

Model Fit
- Estimation: MLR
- Chi-Squared: 350.639***
- CFI: .95
- TLI: .93
- RMSEA: .04
- SRMR: .04

R-Squared
- Science Identity: .86
- Enjoyment: .72
- Salience: .43
- Competence: .23
- Self-Verification: .23

Correlations
- Enjoyment <-> Competency: .50 ***
- Enjoyment <-> Self-Verification: .31 ***
- Competency <-> Salience: .31 ***
- Competency <-> Generalized Other: .17 **
- Salience <-> Self-Verification: .17 **
- Self-Verification <-> Generalized Other: .27 ***
Structural Equation Model N=441

- Discovery Orientation
 - Science Enjoyment
 - Science Salience
 - Science Competence
 - Science Verification
 - Generalized Other – Do other people think you are a science kind of person?

- Science Identity
 - Self-label & Commitment

Correlation coefficients:
- .84
- .63
- .42
- .37
- .45
- .81
- .42
- .19
Structural Equation Model N=441 Direct

![Diagram of the Structural Equation Model]

Correlations

- Enjoyment <-> Competency: 0.50 (***)
- Enjoyment <-> Salience: 0.37 (*)
- Enjoyment <-> Self-Verification: 0.52 (***)
- Enjoyment <-> Generalized Other: 0.09
- Competency <-> Salience: 0.31 (***)
- Competency <-> Self-Verification: 0.49 (***)
- Competency <-> Generalized Other: 0.17 (**)
- Salience <-> Self-Verification: 0.31 (***)
- Salience <-> Generalized Other: 0.17 (**)
- Self-Verification <-> Generalized Other: 0.27 (***)
Structural Equation Model N=441 Direct

-14

-22

-23

-15

-14

-17

-20

Science Enjoyment

Science Salience

Science Competence

Science Verification

Science Identity
Self-label & Commitment

Generalized Other – Do other people think you are a science kind of person?
Structural Equation Model N=441 Indirect

- Discovery Orientation
 - White Boys
 - Minority Boys
 - White Girls
 - Minority Girls

- Science Enjoyment
- Science Salience
- Science Competence
- Science Verification

- Science Identity Self-label & Commitment

- Generalized Other – Do other people think you are a science kind of person?
Structural Equation Model N=441 Direct

Model Fit
- Estimation
- Chi-Squared: 350.639***
- CFI: .95
- TLI: .93
- RMSEA: .04
- SRMR: .04
- R-Squared
 - Science Identity: .86
 - Enjoyment: .72
 - Salience: .43
 - Competence: .23
 - Self-Verification: .23

Correlations
- Enjoyment <-> Competency: .50 ***
- Enjoyment <-> Salience: .37 *
- Enjoyment <-> Self-Verification: .52 ***
- Competency <-> Salience: .31 ***
- Competency <-> Self-Verification: .49 ***
- Competency <-> Generalized Other: .17 **
- Science Identity <-> Self-Verification: .31 ***
- Science Identity <-> Generalized Other: .17 **
Future Research

• Go beyond “reflexive role taking” reports of what you think that others think and use reports from friends

• Social Network Analysis
 Do middle school youth tend to select friends with similar levels of science identity, and/or do friends influence the science identities of their friends?

ASSESS:

Social selection (science identity homophily - or science kinds of kids becoming friends with each other)
or
Socialization by friends to have a science identity
References

Biology of Human
Funding and Acknowledgements

Biology of Human is funded by the National Institutes of Health through the Science Education Partnership Award (SEPA) Grant No. R25OD010506 (2012-2017) http://worldofviruses.unl.edu/biology-of-human/

Project Directors:
• Judy Diamond, PhD. Project Director, jdiamond1@unl.edu
• Julia McQuillan, PhD. Co-Project Director, jmcquillan2@unl.edu
• Charles Wood, PhD. Co-Project Director, cwood1@unl.edu

Learning Research Team:
• Julia McQuillan
• Amy Spiegel
• Trish Wonch Hill

UNL Bureau of Sociological Research
http://bosr.unl.edu/
Thank you!

Please contact me with any questions, comments, or ideas:

Trish Wonch Hill, Ph.D.
Research Assistant Professor
Department of Sociology
University of Nebraska – Lincoln
234C Benton Hall
Lincoln, NE 68588
phill3@unl.edu