EVALUATION OF THE MAJOR HISTOCOMPATIBILITY COMPLEX (Mhc) IN CRANES: APPLICATIONS TO CONSERVATION EFFORTS

SUSAN I. JARVI  
Northern Illinois University

MARCIA M. MILLER  
Bechman Research Institute of the City of Hope National Medical Center

RONALD M. GOTOL  
Bechman Research Institute of the City of Hope National Medical Center

GEORGE F. GEE  
USGS Patuxent Wildlife Research Center

W. ELWOOD BRILES  
Northern Illinois University

Follow this and additional works at: http://digitalcommons.unl.edu/nacwgproc

Part of the Behavior and Ethology Commons, Biodiversity Commons, Ornithology Commons, Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons

JARVI, SUSAN I.; MILLER, MARCIA M.; GOTOL, RONALD M.; GEE, GEORGE F.; and BRILES, W. ELWOOD, "EVALUATION OF THE MAJOR HISTOCOMPATIBILITY COMPLEX (Mhc) IN CRANES: APPLICATIONS TO CONSERVATION EFFORTS" (2001). North American Crane Workshop Proceedings. 84.  
http://digitalcommons.unl.edu/nacwgproc/84

This Article is brought to you for free and open access by the North American Crane Working Group at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in North American Crane Workshop Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
EVALUATION OF THE MAJOR HISTOCOMPATIBILITY COMPLEX (Mhc) IN CRANES: APPLICATIONS TO CONSERVATION EFFORTS

SUSAN I. JARVI,1 Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115-2861, USA
MARCIA M. MILLER, Department of Molecular Biology, Bechman Research Institute of the City of Hope National Medical Center, 1450 East Duarte Road, Duarte, California 91010-0269, USA
RONALD M. GOTOL, Department of Molecular Biology, Bechman Research Institute of the City of Hope National Medical Center, 1450 East Duarte Road, Duarte, California 91010-0269, USA
GEORGE F. GEE, USGS Patuxent Wildlife Research Center, 12011 Beoch Forest Road, Laurel, MD 20708-4041, USA
W. ELWOOD BRILES, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115-2861, USA

Abstract: Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world’s crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe “genetic bottleneck,” both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

Key words: cranes, eugenics, genetics, haplotype, major histocompatibility complex, Mhc.

1Present address: USGS Pacific Islands Ecosystems Research Center, Building 343, P. O. Box 218, Hawaii Volcanoes National Park, Hawaii 96718, USA.