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Abstract

Selenium is incorporated into proteins as selenocysteine (Sec), which is dependent on its specific tRNA, designated tRNABS< Tar-
geted removal of the tRNABS gene (T rsp) in mouse hepatocytes previously demonstrated the importance of selenoproteins in liver
function. Herein, analysis of plasma proteins in this 7rsp knockout mouse revealed increases in apolipoprotein E (ApoE) that was
accompanied by elevated plasma cholesterol levels. The expression of genes involved in cholesterol biosynthesis, metabolism and trans-
port were also altered in knockout mice. Additionally, in two transgenic 7rsp mutant mouse lines (wherein only housekeeping seleno-
protein synthesis was restored), the expression of ApoFE, as well as genes involved in cholesterol biosynthesis, metabolism and transport
were similar to those observed in wild type mice. These data correlate with reports that selenium deficiency results in increased levels of
ApoE, indicating for the first time that housekeeping selenoproteins have a role in regulating lipoprotein biosynthesis and metabolism.

© 2007 Elsevier Inc. All rights reserved.
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The importance of trace elements in human health can
be assessed by the fact that their reduction in the diet
may lead to various disorders. One important dietary trace
element is selenium, which has potent cancer chemo-pre-
ventive properties [1]. It also has protective roles against
viral infection [2], cardiovascular and muscular disorders
along with roles in mammalian development, male repro-
duction and immune function [3]. Selenium is incorporated
into a select group of proteins, selenoproteins, in the form
of the amino acid, selenocysteine (Sec). The biological
function of selenium is thought to be exerted primarily
by these proteins [4]. Of the 24 and 25 selenoproteins iden-

Abbreviations: ApoE, apolipoprotein E; Sec, selenocysteine; TBS,
tris-buffered saline; 7rsp, selenocysteine tRNA gene.
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tified in mice and humans, respectively [5], several are
known to have roles in cellular redox regulation (e.g.,
methionine sulfoxide reductase Bl (Msrbl), glutathione
peroxidases (Gpxs), and thioredoxin reductases (TRs))
[6]. Selenoprotein synthesis is dependent on the unique
tRNA, designated tRNAB [4] which is modified post-
transcriptionally for proper functioning [7]. Two bases
and one nucleoside modification occur within the antico-
don loop of tRNAB: A37 is modified to N°-isopente-
nyladenosine  (i°A) and U34 is modified to
methylcarboxyl-5’-methyluridine (mem”U); mem’U is fur-
ther modified on its ribosyl moiety to Um34 [8]. Interest-
ingly, the synthesis of Um34 on tRNAPS js responsive
to selenium status [9].

Removing the gene for tRNAL (designated Trsp)
causes complete loss of selenoprotein expression and ATrsp
is embryonic lethal [10,11]. In addition, we generated
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transgenic mice in which ATrsp mice were rescued with a
mutant Trsp transgene lacking i®A at position 37 (gener-
ated by an A37 — G37 mutation and the resulting trans-
genic mouse was designed as G37) [12] or mem’U at
position 34 (generated by an T34 — A34 mutation and
the resulting transgenic mouse was designed as A434) in
the Sec tRNAB S transgene product [13]. Interestingly,
housekeeping, but not stress-related selenoproteins are syn-
thesized by A34 and G37 Sec tRNAsSS that are tran-
scribed and modified from the corresponding A34 and
G37 transgenes [12].

We have also selectively removed Trsp in hepatocytes
using JloxP-Cre technology which demonstrated that
proper liver function is dependent on selenoprotein expres-
sion [14]. The mean life span of the hepatocyte ATrsp
knockout mice was significantly reduced compared with
their wild type counterparts [14]. These mice died suddenly
as a result of hepatocellular degeneration/necrosis. Most
hepatocytes had vacuolated cytoplasm and mineralization
with a majority of them being apoptotic. In contrast, the
liver of mice carrying A34 or G37 transgenes appeared to
be normal, with their lifespan being similar to that of the
corresponding phenotypically normal litter mates (desig-
nated herein as wild type).

In the present study, we examined the plasma protein
profile of hepatocyte ATrsp and the corresponding wild
type mice and observed an elevation in the level of a pro-
tein, later identified as apolipoprotein E (ApoE). The ele-
vated level of ApoE was accompanied by an increase in
plasma cholesterol levels in hepatocyte ATrsp mice. A com-
parative gene expression analysis of hepatocyte ATrsp and
wild type mice revealed an enhanced expression of genes
involved in cholesterol biosynthesis and a decreased expres-
sion of genes involved in cholesterol metabolism or trans-
port. Thus, the increase in plasma cholesterol levels
accompanied by alteration of genes involved in cholesterol
biosynthesis in the hepatocyte ATrsp mice reflects a link
between selenoproteins and cholesterol biosynthesis. Inter-
estingly, the levels of ApoE and cholesterol in the 434 and
G37 transgenic and wild type mice were similar, as demon-
strated by immunodetection and plasma lipid analysis,
respectively. Since 434 and G37 transgenes restore house-
keeping, but not stress-related selenoprotein synthesis, the
data suggest a relationship between selenoproteins and
lipoproteins, wherein housekeeping selenoproteins affect
lipoprotein biosynthesis and metabolism.

Materials and methods

Materials. NuPage polyacrylamide gels, polyvinylidene difluoride
membranes, Trizol reagent, and Superscript I reverse transcriptase were
purchased from Invitrogen (Carlsbad, CA, USA). SuperSignal West Dura
substrate was obtained from Pierce (Rockford, IL, USA); goat polyclonal
antibodies against ApoE and bovine anti-goat horseradish peroxidase-
conjugated secondary antibodies were obtained from Santa Cruz Bio-
technology, Inc. (Santa Cruz, CA, USA). Fairplay® II Microarray
Labeling kit was obtained from Stratagene (La Jolla, CA, USA), RNA
Storage Solution from Ambion Inc. (Austin, TX, USA), MinElute column

from Qiagen (Valencia, CA, USA) and SYBR green supermix from Bio
Rad Laboratories (Hercules, CA, USA). All other reagents were com-
mercially available products of the highest grade.

Mice and their genotyping. Control mice (genotype Trsp” tAIbCre™! +
designated wild type), liver ATrsp knockout mice (genotype Trsp"’/ﬁ—Alb—
Cre™*, designated ATrsp) and the 434 and G37 mutant Trsp transgenic
mice (designated 434 and G37 mice and described above) were obtained as
given [14]. Mice were either siblings or of similar ages, ranging between 8
and 9 weeks. The care of mice was in accordance with the National
Institutes of Health institutional guidelines under the expert direction of
Dr. Kyle Stump (NCI, National Institutes of Health, Bethesda, MD,
USA). DNA was extracted from mouse tail clippings and genotyped by
PCR with appropriate primers described earlier [14].

Microsequencing of protein. Plasma proteins were subjected to 10%
SDS/PAGE and visualized by Coomassie blue staining. The elevated
protein band observed on gels in plasma from A7rsp mice was excised,
digested with trypsin, and subjected to ESI-MS/MS analysis at the mass
spectrometry core facility, Redox Biology Center, University of Nebraska.
The resulting spectra were analyzed against mouse protein database and
expressed sequence tag databases.

Analysis of plasma lipids and western blotting. The analysis of plasma
lipids was carried out at the Diagnostic and Research Services Branch and
Department of Laboratory Medicine, National Institutes of Health,
Bethesda, MD, USA. Plasma samples from wild type, ATrsp, A34, and
G37 mice were electrophoresed on 10% polyacrylamide gels, transferred to
polyvinylidene difluoride membranes and immunoblotted with antibodies
against ApoE (1:1000 dilution). Following washes with TBST (Tween
supplemented TBS), the membrane was incubated with bovine anti-goat
horseradish peroxidase-conjugated secondary antibodies (1:20,000) and
then washed with 0.1% TBST, incubated in SuperSignal West Dura sub-
strate and exposed to X-ray film.

Sample preparation for microarray analysis. Total RNA from the liver
of wild type, ATrsp, A34, and G37 mice was isolated using Trizol reagent
according to manufacturer’s protocol and dissolved in the RNA Storage
Solution. To generate cDNA, 10 ug RNA was incubated with 1 pl oligo
dT at 70 °C for 5 min and cooled on ice for 1 min. In a separate tube, 2 pl
of 10x StrataScript reaction buffer, 1 pl of 0.1 M dithiothreitol, 1.0 pl of
20x aminoallyl dioxy-ribonucleotide triphosphate, 0.5 ul of 40 U/ul
RNAase inhibitor and 2 pl of 400 U/pl StrataScriptllI reverse transcriptase
were mixed. This mixture was added to the RNA and oligo dT mix and
reverse transcription was carried out at 48 °C for 2 h. The cDNA was
purified on MinElute columns and eluted from the column with 10 pl
elution buffer and dried for 15 min using Speed-Vac. Finally, 5 pl of 2X
coupling buffer and 5 pl Cy3 and Cy5 dye were mixed into control and
experimental cDNAs, respectively, and incubated in dark at room tem-
perature for 1 h. Following incubation, the labeled cDNA was purified on
a MinElute column and eluted with 10 pl of elution buffer.

Gene expression analysis. Mouse oligonucleotide glass arrays were
procured from the NCI microarray facility, Frederick, MD, USA. These
high-quality oligonucleotide arrays were designated Mm-MEEBO-v1.3px,
with each slide having 48 blocks containing 28 rows and 28 columns each.
Each slide had 36,960 oligonucleotide spots with a spacing of 155 pm.
Arrays were prehybridized with 40 pl prehybridization buffer (5X SSC, 1%
BSA and 0.1% SDS) under a coverslip for 1 h at 42 °C. The slides were
then washed with deionized water and isopropanol (each wash 2 min),
spin-dried and kept at room temperature.

For hybridization, the Cy3 and CyS5 labeled cDNA were combined
together and mixed with 1 pL [10 pg] COT-1 DNA, preheated at 100 °C
for 1 min to denature the target and cooled on ice for 2 min. This mixture
was added to 20 pl of 2X F-hybridization buffer (50% formamide, 10X
SSC, 0.2% SDS) and warmed to 42 °C. The total cDNA probe (40 ul) was
added to the prehybridized array and covered with a coverslip. The slides
were placed in hybridization chambers and incubated at 42 °C overnight
(12-16 h). Following hybridization, the slides were washed for 2 min each
in 2X SSC and 0.1% SDS, 1X SSC and 0.2X SSC and spin-dried.

Microarray slides were scanned in both Cy3 (532nm) and Cy5
(635nm) channels using an Axon GenePix 4000B scanner (Axon
Instruments, Foster City, CA, USA) with a 10 uM resolution. Scanned
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microarray images were exported as TIFF files to GenePix Pro 3.0 soft-
ware for image analysis. For data analysis, data files (in gpr format) and
images (in jpeg format) were imported into the microarray database
(mAdb), and analyzed by software tools provided by NCBI.

Quantitative real-time PCR analysis. Gene expression was verified by
real-time PCR, using the DNA Engine Opticon® 2 Real-Time PCR
Detection System (MJ-Research/Bio Rad Laboratories, Hercules, CA,
USA) in combination with primer sequences outlined in Table 1. Two
micrograms of total RNA from each sample was used to synthesize first
strand cDNA in a 20 pl reaction mixture by using SuperScript II reverse
transcriptase enzyme and random primers. Twenty nanogram of cDNA
was utilized for the PCR reaction, using iQ™ SYBR green supermix and
500 nM of each primer, under the following conditions: initial denatur-
ation for 5 min at 95 °C, followed by 40 cycles consisting of 20 s at 94 °C,
20s at 55°C and 30s at 72 °C. Amplifying known amounts of a PCR-

product generated a standard curve at the same time as the samples. The
expression of various mRNAs in each sample was normalized to the
expression of 18 S rRNA.

Results
Analysis of plasma proteins

Many proteins are synthesized in liver and transported
to the plasma, and as we had shown previously the impor-
tance of selenoproteins in liver function [14], the plasma
protein profiles of ATrsp and wild type mice were exam-
ined. Equal amounts of plasma proteins from both mouse

Reverse sequence

Table 1

Primers used for real-time PCR

Gene Forward sequence

Apoe 5'-GAGGAACAGACCCAGCAAAT-3’
Cyb5r3 5’-CCCGACATCAAGTACCCTCT-3’
Dher24 5'-TGCGAGTCGGAAAGTACAAG-3’
Ebp 5'-TTGGCCTCTTCTCCATCTCT-3’
Ldir 5'-TGGCCATCTATGAGGACAAA-3’
Pctp 5'-TGGCATACTGGGAAGTGAAG-3’
Pmuok 5'-AGGCTGAAGAGCAGACTTGG-3’
Star 5'-CATTGGCCAAGAGCTCAAC-3’
Stard3 5'-CCCAGGAAGAGAACTGGAAG-3

5'-GCCACAGAGGCCTGTATCTT-3'
5'-GCCATCGATCCTAGTCGAG-3’
5'-TGGAGTTCAGCAAAGCTGTC-3'
5'-CCTCGATCACAAGGTGAATG-3'
5'-GTGTGACCTTGTGGAACAGG-3’
5'-GACTTCTCGGGAAACTGAGG-3’
5'-CATGTCCCTCCGATAGGTCT-3'
5'-TGCTGGATGTAGGACAGCTC-3’
5'-CAGGATCACCTCCTGGTACA-3’

Wild type
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Fig. 1. Analysis of plasma proteins in wild type and ATrsp mice. (A) Plasma proteins from wild type and ATrsp mice were electrophoresed and stained
with Coomassie blue. The elevated protein (~35 kDa) in ATrsp mice is indicated by an arrow. (B) Mouse ApoE sequence. Peptides detected by MS/MS

analysis are underlined and shown in bold.
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lines were electrophoresed on polyacrylamide gels and
stained with Coomassie blue. Staining revealed elevated
levels of a protein at ~35 kDa in the plasma of ATrsp mice
(Fig. 1A). The corresponding band was excised from the
gel and protein identity determined by tandem mass spec-
trometry sequencing. This procedure revealed that the
35 kDa protein is ApoE (Fig. 1B).

ApoE protein and mRNA levels in knockout mice

To verify that ApoE levels were increased in plasma of
ATrsp mice, equal amounts of plasma protein from both
male and female wild type and ATrsp mice were electro-
phoresed and stained with Coomassie brilliant blue
(Fig. 2A). Separately, the samples were examined in immu-
noblot assays using polyclonal anti-ApoE antibodies
(Fig. 2A, lower panel). Increased ApoE was detected in
both male and female ATrsp mice compared to their corre-
sponding wild type counterparts. In addition, real-time
PCR revealed a 1.4-fold increase in the levels of Apoe
mRNA in the liver of ATrsp mice (Fig. 2B). Interestingly,
Apoe mRNA levels were also significantly higher (~3.75-
fold) in kidneys of ATrsp mice as compared to the wild type
mice.

A 2 g
z 5 o
= e - =
kDa = & = &
Z 4 Z 4
188 -

~
~
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o

Male

J [\ J
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449

Analysis of cholesterol levels and genes involved in
cholesterol biosynthesis

Cholesterol levels in plasma were examined in male and
female wild type and ATrsp mice (Fig. 3A). The elevated
level of ApoE was also reflected in plasma lipids with an
increase in plasma cholesterol levels of ATrsp mice. Total
plasma cholesterol was increased by 38.9% in ATrsp males
and 35.5% in ATrsp females. We further focused on male
mice as they had a lower mean lifespan than their female
counterparts [14].

The elevation of cholesterol in the plasma of ATrsp mice
prompted us to examine the expression profile of genes
associated with cholesterol biosynthesis. Comparative
analyses of gene expression using microarrays revealed
altered expression of genes involved in cholesterol biosyn-
thesis, metabolism and transport (Fig. 3B). Genes display-
ing a change of twofold or more were placed in a tabular
form. The loss of Trsp in liver was associated with an
increased expression of several genes involved in choles-
terol biosynthesis (e.g., Cyb5r3, Dhcr24, Ebp, and Pmuvk)
and a decreased expression of genes involved in cholesterol
metabolism or transport (e.g., Ldlr, Pctp, Star, and
Stard3). A quantitative analysis of these genes confirmed

B
Liver Kidney
2 - 5.0 -
*
- 4.0 -
S 15 o |
=2
s 3.0 -
V-
g 1]
o 2.0
2
=
S 05 s
0 T 1 0.0 T 1
) 2, @ )
= “ = <
= =

Fig. 2. Analysis of ApoE and Apoe mRNA in wild type and A7rsp mice. (A) Coomassie blue staining of plasma proteins from male and female wild type
and ATrsp mice (upper panel) and immunodetection of ApoE using polyclonal anti-ApoE antibodies in plasma from the same mice (lower panel). (B) The
relative Apoe mRNA levels in liver and kidney samples of wild type and ATrsp mice, determined by real-time PCR. The level of Apoe mRNA in each
sample was normalized to that of 18 S rRNA and the normalized value for Apoe mRNA in ATrsp mice was then plotted relative to that of wild type mice
along with the error bars. The results are representations of 4 independent experiments, each carried out in triplicate (*p < 0.0005 versus wild type mice).
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Fig. 3. Cholesterol levels and analysis of genes involved in cholesterol metabolism in wild type and ATrsp mice. (A) Examination of plasma cholesterol
levels in wild type and ATrsp male and female mice. The values represent means & SE, n = 5 mice/sex genotype ' (p <0.01 for both genders). (B)
Microarray analysis, using total RNA from liver of wild type and ATrsp mice showing genes with altered expression involved in cholesterol biosynthesis,
metabolism or transport. Results from four independent hybridizations are shown in the column designated AFOLD wherein an arrow pointing up
indicates a relative increase, and an arrow pointing down, a relative decrease in mRNA expression; and the standard error is shown in the column
designated SE. (C) Real-time PCR analysis of mRNA levels of some of the genes tabulated in (B). The results represent 3-4 independent experiments, each
carried out in triplicate and shown along with the error bars (*p <0.005; **p <0.1).

the microarray data for Cyb5r3, Dhcr24, Ebp, Pmvk, and
Ldlr (Fig. 3C). The transcript levels of Pctp, Star, and
Stard3 were too low to be detected under these experimen-
tal conditions and were not further examined.

Analysis of ApoE levels and cholesterol levels in
selenoprotein replacement mice

To assess whether the elevation in ApoE and cholesterol
levels was due to altered expression of housekeeping (e.g.,
TR1 and GPX4) or stress-related (e.g., GPX1 and SELT)
selenoproteins, the plasma protein profiles of wild type
and ATrsp mice were compared to the corresponding levels
in A34 and G37 transgenic mice, which are known to
express the former class of selenoproteins, but express the
latter class poorly [14]. Equal amounts of plasma proteins
from each mouse line were electrophoresed and stained
with Coomassie brilliant blue (Fig. 4A). Western blot anal-
ysis detected ApoE levels in these mice and we found that
A34 and G37 mice had normal levels of ApoE (Fig. 4A,
lower panel).

Plasma lipid analysis showed that although the levels of
cholesterol were elevated in ATrsp mice with respect to wild
type mice, they were virtually identical in wild type and the
A34 and G37 mice (Fig. 4B). Furthermore, expression of
genes associated with cholesterol biosynthesis was restored
in selenoprotein replacement mice and was more in line
with that in wild type mice (data not shown).

Discussion

Selenoproteins are critical for proper liver function as
their loss in this organ leads to severe necrosis and hepato-
cellular degeneration [14]. This observation suggested that
the absence of selenoproteins in liver may influence the
function of other proteins. To examine whether the levels
of secreted proteins are altered in the mouse model of hepa-
tic selenoprotein deficiency, we compared the levels of
major plasma proteins from ATrsp and wild type mice
and observed an increase in a ~35kDa protein in liver
knockout mice. Microsequencing and western blotting
identified this protein as ApoE. The increase in ApoE
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Fig. 4. ApoE and cholesterol levels in 434 and G37 mice. ApoE was assessed by Western blotting and cholesterol levels were measured in plasma lipids of
wild type, ATrsp, A34, and G37 mice. (A) Coomassie blue staining of plasma proteins from wild type, ATrsp, A34, and G37 male mice (upper panel) and
western blotting carried out using polyclonal anti-ApoE antibodies (lower panel). (B) Plasma cholesterol levels. Values represent means 4= SE, n = 5 mice/
genotype for wild type and ATrsp mice and n = 4 mice/genotype for 434 and G37 mice (*p <0.01).

was accompanied by an increase in cholesterol levels in the
plasma of ATrsp mice, which did not appear to be gender
specific. A comparative gene expression analysis in livers
of ATrsp and wild type mice revealed an enhanced expres-
sion of genes involved in cholesterol biosynthesis and a
decreased expression of genes involved in cholesterol
metabolism and transport in ATrsp mice. The 4poe mRNA
levels were also significantly higher in the kidney of ATrsp
mice as compared with the kidney from wild type mice.
Earlier reports suggested that Apoe is synthesized in both
liver and kidney [15], and the increased mRNA levels
observed in kidney could also account for elevated levels
of the protein in plasma.

It was previously reported that selenium deficiency
results in an increased plasma cholesterol concentration
[16,17] along with an increase in ApoE levels [18]. It was
speculated that this increase was related to an increase in
the HDLI1 fraction [18] which is rich in ApoE. The present
study analyzed the effects of the targeted removal of Trsp in
liver of mice fed a selenium sufficient diet. Interestingly, the
findings of increased cholesterol and elevated levels of
ApoE in the ATrsp mice are similar to those reported ear-
lier in rats maintained on selenium deficient diets [19].
Thus, these observations could be attributed to the absence
of selenoproteins in liver, even though our mice were fed
selenium sufficient diets. Since stress-related selenoproteins
are more susceptible to selenium status than housekeeping
selenoproteins, one might expect that the former subclass

of selenoproteins is responsible for the observed effect.
To test this possibility we examined levels of ApoE and
cholesterol in the A34 and G37 transgenic mice. The house-
keeping, but not stress-related selenoprotein population
was replaced in these transgenic mice, yet the levels of
ApoE and plasma cholesterol were restored to those
observed in the corresponding wild type mice. Thus, the
observed changes in ApoE and cholesterol levels and their
restoration in mice in which housekeeping selenoproteins
were expressed, suggests that stress-related selenoproteins
could not account for this effect.

Several selenoprotein mRNAs were restored in 434 and
G37 transgenic mice, such as Diol, Selk, Seppl, and Sepl5
[13], while others like TRI and TR3 were restored partially.
Although mRNA Ievels might not necessarily match pro-
tein expression levels, our data suggest that some of these
or other restored selenoproteins are responsible for the role
of selenium in ApoE and cholesterol metabolism.

Earlier studies have suggested a role of selenium [20]
and/or selenoproteins in cardiovascular disorders [21] and
reports indicate that cholesterol levels increase in selenium
deficient animals compared to adequate selenium fed ani-
mals [22]. Our studies suggest that these effects are most
likely executed through a select group of selenoproteins
as our mouse models have shown that the loss of Sec
tRNABSe elicits similar conditions, even under selenium
sufficient diets. It is of interest to note that the selenium
content of liver from ATrsp and the mutant 7rsp transgenic
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mice are similar and only about 30% of wild type. This
observation provides further evidence that the selenium
effect is mediated through (a) housekeeping selenopro-
tein(s) providing evidence for a novel role of this subclass
in human health through modulation of lipoprotein and
cholesterol metabolism.
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