Generalized model for the optical absorption edge in a-Si:H

T. Datta
University of Nebraska - Lincoln

John A. Woollam
University of Nebraska-Lincoln, jwoollam1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the [Electrical and Computer Engineering Commons](http://digitalcommons.unl.edu/electricalengineeringfacpub)

Datta, T. and Woollam, John A., "Generalized model for the optical absorption edge in a-Si:H" (1989). *Faculty Publications from the Department of Electrical and Computer Engineering*.

http://digitalcommons.unl.edu/electricalengineeringfacpub/74

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Abstract
We have reanalyzed the published optical absorption coefficient data for \textit{a}-Si:H and introduced a divergence temperature, a new concept in the physics of these materials.
Generalized model for the optical absorption edge in a-Si:H

T. Datta
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208

John A. Woollam
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588-0511
(Received 25 July 1988)

We have reanalyzed the published optical absorption coefficient data for a-Si:H and introduced a divergence temperature, a new concept in the physics of these materials.

An important area of research in disordered substances is the equilibration of such systems. Particularly, the defect kinetics and the effects of structural rearrangements in a-Si:H are topics of current theoretical as well as experimental investigations.\(^1\)\(^-\)\(^3\) One reason for this interest is that if a-Si:H is truly far from thermodynamic equilibrium then its physical properties, viz., the electronic properties, will be determined by the deposition process.\(^2\) Hence, it is important to know how close to a metastable equilibrium is a given noncrystalline substance. The low-energy (\(E\)) optical absorption, \(\alpha\), in a-Si:H has been studied by Cody \textit{et al.} as functions of sample treatment, temperature, pressure, etc. They report\(^1\)

\[
\alpha(E,T) = \alpha_0 \exp\left(\frac{E - E_\infty}{E_0(T,X)}\right)
\]

for \(E \leq E_\infty\), the Tauc optical gap energy. It was correctly argued\(^1\) that for amorphous semiconductors, systematic studies are essential. Furthermore, although both \(E_g\) and \(E_0\) are influenced by the noncrystallinity of the specimens, \(E_0\) appears to be directly quantifiable in terms of the disorder. They concluded\(^1\) that there should be a temperature (\(T\)) independent component to the band-edge absorption of a noncrystalline material. Operationally it means that when \(\alpha(E)\) data are plotted versus \(E\) at constant \(T\), or after thermal annealing at different temperatures, then these isotherms would converge to a common \(\alpha = \alpha_0\) for \(E = E_\infty\). That is, the \(\alpha(E)\) data would exhibit an "Urbach focus."\(^4\)\(^-\)\(^7\) This convergence was clearly shown\(^1\) in Fig. 1.

It was proposed\(^1\) that the contribution of thermal structural disorder to \(E_0\) are linearly superposable, such that \(E_0(T,X) = E_0(T) + E_0(X)\). In the harmonic approximation, \(E_0(T,X) = K \left\langle \langle U^2 \rangle \right\rangle_{K} + \left\langle U^2 \right\rangle_{P}\) where \(\left\langle U^2 \right\rangle\) is the average of the square of the displacement of the atoms from their equilibrium positions due to the disorder. In the Einstein approximation, Cody \textit{et al.} obtained

\[
E_0(T,X) = \frac{\Theta}{\alpha} \left\{ (1 + X)/2 + e^{\Theta/T - 1} \right\},
\]

where \(X = \left\langle \langle U^2 \rangle \right\rangle_{K}/\left\langle U^2 \right\rangle_{P}\) is the contribution due to the zero-point uncertainty. From the above, a linear relationship was predicted between \(E_g\) and \(E_0\), i.e., \(E_g = E_F - GE_0\), where \(G\) is the slope of \(E_g\) versus \(E_0\), and \(E_F\) is the Abe-Toyazawa parameter.\(^6\)

In this paper we will discuss first an extension of this model. We will relate the structural disorder term \(E_0(X)\) explicitly with the annealing temperature \(T_H\). Secondly, we will employ the \(T_H\) data from Fig. 1 of Ref. 1 to analyze this extended model.

We assume that annealing produces structural rearrangements. Under that condition the \(E_0(T_H)\) associated with annealing at \(T_H\) will be proportional to the corresponding (equilibrium) thermal energy, or, \(E_0(T_H) \propto T_H\). Secondly, at \(T_0\) an annealing temperature characteristic

\[\text{FIG. 1. This is a redrawing of the } T_H \text{ data from Fig. 1 of Ref. 1. Notice, that (1) the isoenergy } \alpha(T_H) \text{ behavior is activated, and (2) there is a common focus } \alpha_\infty \text{ at } T_H = T_0 \text{ of the different "isooenergies."} \]
to the specimen, the disorder energy diverges. Notice T_0 is distinct from the fictive temperature T_f defined in Ref. 8. $E_0(T_H)$ at T_0 will be represented by a simple pole. This choice is not essential in this model but is chosen for analytical convenience. Hence we have

$$E_0(T_H) = \gamma T_H (1 - T_H/T_0)^{-1}$$

and

$$\alpha(T_H,E) = \alpha_0 \exp[(E - E_\infty)(1 - T_H/T_0)/\gamma T_H].$$

The consequences of our model for α will be apparent by expanding Eq. (4). That is,

$$\alpha(E,T_H) = \alpha_0 \exp[-(E - E_\infty)/\gamma T_0] \times \exp[(E - E_\infty)/\gamma T_H]$$

or

$$\alpha(T_H) = \alpha_\infty \exp[(E - E_\infty)/\gamma T_0] = \alpha_\infty \exp(\Delta/T_0),$$

where $\alpha_\infty = \alpha_0 \exp(-\Delta/T_0)$ and $\Delta = (E - E_\infty)/\gamma$. Also, from Eqs. (5) and (6)

$$\ln \alpha_0 = \ln \alpha_\infty - \Delta/T_0.$$

Notice, there are three parts in the present analysis. These are as follows: $\alpha(T_H)$ is activated in T_H, i.e., the isoenergy plots of $\ln \alpha_0$ versus T_H^{-1} are linear [Eq. (6)], with a temperature focus at $T_H = T_0$ [Eq. (5)], and $\ln \alpha_0$ is linearly dependent on Δ, the activation energy [Eq. (7)]. Similar behavior is observed in the conductivity data for many thin films in different activated states. This may be indicative of the similarity between the optical and transport behavior reported in these systems. An additional point of interest is that the behavior represented by Eq. (7) is not sensitive to the exact microscopic model. This is analogous to a similar situation in the transport behavior. Also, the Urbach tail absorption is explainable by a variety of disorder models. This may be why the Urbach behavior is so widely observed in such a wide class of realizations of disorder in physical systems. Likewise, the results represented in Eq. (7) might be widely applicable.

Figure 1 shows a replot of the T_H data from Fig. 1 of Ref. 1. These ioeenergy data clearly show activated absorption as indicated by Eq. (6). We determine $\alpha_\infty = 1.2 \times 10^6$ cm$^{-1}$, in close agreement with the value $(1.5 \times 10^6$ cm$^{-1}$) reported in Ref. 1. The characteristic temperature T_0 is estimated to be 1340 K. Recently, Street and co-workers have introduced the glass transition temperature ($T_g \sim 400$ K) of the bonded hydrogen submatrix. Since the α data were read off the Fig. 1 of Ref. 1, of Ref. 1, the estimate of T_0 is not precise but the order of magnitude T_0 ($\sim 10^3$) appears to be 3 times that of T_g. As is the case of E_g and E_0, we believe it would be important to study the gradual variation in T_0 due to systematic changes in the specimens. To test the linear dependence of $\ln \alpha_0$ on the activation energy, α_0 and Δ were determined. We find that an excellent straight line fit of $\ln \alpha_0$ versus Δ satisfies the prediction of Eq. (7). We have reanalyzed the $\alpha(\varepsilon)$ data1 for a-Si:H and introduced a divergence temperature, a new concept in the physics of these materials.11,12

This work was supported by Control Data Corporation at the University of Nebraska–Lincoln, and by the University of South Carolina.
