Redescription of *Eimeria escomeli* (Rastegaieff, 1930) from *Myrmecophaga tridactyla*, and a First Report from Bolivia

Scott Lyell Gardner
University of Nebraska - Lincoln, slg@unl.edu

Steve Upton
coccidia@ksu.edu

C. R. Lambert
University of New Mexico, Albuquerque, New Mexico

O. C. Jordán
Zoo Santa Cruz, Fauna Sudamericana, Santa Cruz, Bolivia

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs

Part of the [Parasitology Commons](http://digitalcommons.unl.edu/parasitologyfacpubs/63)

Gardner, Scott Lyell; Upton, Steve; Lambert, C. R.; and Jordán, O. C., "Redescription of *Eimeria escomeli* (Rastegaieff, 1930) from *Myrmecophaga tridactyla*, and a First Report from Bolivia" (1991). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 63.
http://digitalcommons.unl.edu/parasitologyfacpubs/63
Redescription of *Eimeria escomeli* (Rastegaieff, 1930) from *Myrmecophaga tridactyla*, and a First Report from Bolivia

S. L. Gardner,1,4 S. J. Upton,2 C. R. Lambert,1 AND O. C. Jordán3

1 Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131, 2 Division of Biology, Kansas State University, Manhattan, Kansas 66506, and 3 Zoo Santa Cruz, Fauna Sudamericana, Casilla 754 Santa Cruz, Bolivia

ABSTRACT: *Eimeria escomeli* (Rastegaieff, 1930) Levine and Becker, 1933, is redescribed from the giant anteater, *Myrmecophaga tridactyla* (L.), from the departamento de La Paz, Bolivia. This is the first report of parasites from *M. tridactyla* from Bolivia and only the third time that coccidians have been recorded from this host.

During a survey of the parasites of mammals of Bolivia from 1984 to 1986, several xenarthrans were examined for coccidian parasites. Of 2 individual armadillos examined, neither *Chae­tophractus vellerosus* (Gray) or *C. nationi* (Thomas) had coccidians in their feces. Of representatives of 2 species of anteaters examined (*Cyclopes didactylus* (L.) and *Myrmecophaga tridactyla* L.), only the feces of *M. tridactyla* contained oocysts at the time of sampling. These oocysts conform most closely in size and shape to (gen. ?) *escomeli* Rastegaieff, 1930, originally described from *M. tridactyla* (see Rastegaieff, 1930). The specimens described by Rastegaieff (1930) were unsporulated and could not be properly identified. Although Levine and Becker (1933) tentatively placed *E. escomeli* in the genus *Eimeria*, Pellerdy (1974) confirmed the placement of this species in the genus *Eimeria*. During our fieldwork in Bolivia, we obtained sufficient numbers of sporulated oocysts from the feces of an individual of *M. tridactyla* to allow a complete description. In the present paper, we redescribe *E. escomeli* and properly confirm its place in the genus *Eimeria*.

Materials and Methods

Methods and procedures of study follow McAllister and Upton (1988) and Lambert et al. (1988). Measurements are in micrometers, with the mean given first followed by the range. Unless stated otherwise, \(N = 30 \).

Description

Eimeria escomeli (Rastegaieff, 1930)

Levine and Becker, 1933

(Figs. 1–4)

Oocysts subspherical to ellipsoidal, 21.6 \(\times \) 19.0 (17.6–26.4 \(\times \) 15.2–23.2), with bi-layered wall 1.6 (1.2–2.0) thick; shape index (length/width ratio) 1.15 (1.0–1.3). Outer layer of wall about 1.0 thick and slightly pitted externally; inner layer thin and smooth. Micropyle and polar granule usually absent; many oocysts containing debris, perhaps remnants of a polar granule. Oocyst residuum present, formed from 1 to several homogeneous globules (Fig. 1), each 5.0 (3.2–8.0) in diameter (\(N = 18 \)). Sporocysts 13.2 \(\times \) 6.5 (10.8–15.2 \(\times \) 5.6–7.4), with a smooth, single-layered wall. Stieda body present, consisting of a flattened dome at 1 end of sporocyst about 0.8 high \(\times \) 2.4 wide; substieda body present (Fig. 3), about 1.6 high \(\times \) 2.2 wide and homogeneous. Sporocyst residuum present, formed of either a loose mass of homogeneous granules of various sizes (Fig. 2) or as scattered granules. Sporozoites elongate, lying parallel and head-to-tail. Posterior ends of sporozoites curved back along poles of sporocysts. Each sporozoite contains a large, ellipsoidal posterior refractile body (Fig. 3) and 3/30 (10%) contained a smaller spherical anterior refractile body. Nucleus rarely seen.

Type Host: *Myrmecophaga tridactyla* L.

Type Locality: Bolivia, La Paz, North Bank of the Rio Beni (long. 13°16'S, lat. 67°17'E), 240 m elevation.

Date Collected: 8 September 1985.

Age of oocysts when measured: 1,010 days.
Figures 1–3. Photomicrographs of sporulated oocysts of coccidia recovered from the feces of Myrmecophaga tridactyla. Bar = 10.8 μm. 1. Sporulated oocyst showing oocyst residuum consisting of several homogeneous globules (*). 2. Note sporocyst residuum composed of a loose mass of homogeneous granules. 3. Sporocysts with homogeneous substieda body (arrow), and large ellipsoid posterior refractile body (*). Note thick, externally pitted outer wall.

Material deposited: Phototype (=photographs, see Bandoni and Duszynski, 1988) of sporulated oocysts USNM Helm. Coll. No. 81056.

Collector: O. C. Jordán, personal field catalog number OCJ/85-169.

Discussion

Little information is available concerning coccidian parasites of Xenarthra in the Neotropics. Up to the present time, only 3 species of *Eimeria* have been described from anteaters, 1 from the sloth (*Bradypus* sp.) and 4 from armadillos. Representatives of this group of mammals occur only in the Nearctic and Neotropical regions (Simpson, 1980); thus, no comparisons will be made with coccidians described from any of the pholidote anteaters occurring in other biogeographic regions.

Eimeria escomeli differs from *E. tamanduae* Lainson, 1968, from *Tamandua tetradactyla* (L.) in being smaller and without a highly refractile spherule in the stieda body (Lainson, 1968). The oocysts of *E. escomeli* are smaller than *E. cyclopei* Lainson and Shaw, 1982, from *Cyclopes didactylus* (L.), and possess an oocyst residuum.

Eimeria escomeli can be recognized as distinct from *E. travassoi* Da Cunha and Muniz, 1928, from *Euphractus* and *Dasypus* spp. and from *E. dacunhai* Levine, 1984, from *Cabassous* sp. and

Figure 4. Line drawing of *Eimeria escomeli* recovered from feces of *Myrmecophaga tridactyla*. Bar = 3 μm.
Chaetophractus sp. in having much smaller oocysts and smaller sporocysts (Da Cunha and Muniz, 1928). *Eimeria escomeli* differs from *E. cabassusi* Carini, 1933, from *Cabassous* sp. in having ellipsoidal to subspherical oocysts and a well-developed oocyst residuum, and also differs from *E. choloepi* Lainson and Shaw, 1982, from *Choloepus didactylus* (L.) in having an oocyst residuum and well-developed stieda and substieda bodies (Carini, 1933; Lainson and Shaw, 1982).

Acknowledgments

This work was supported in large part by the National Science Foundation (grant nos. BSR-8612329 to S. L. Gardner, T. L. Yates, and D. W. Duszynski; BSR-8408923 to T. L. Yates; and BSR-8316740 to S. Anderson), the American Museum of Natural History, The Museum of Southwestern Biology, and the Tinker Foundation. Financial support was also obtained from the Latin American Institute, Student Research allocations Committee, and Graduate Resource Allocations Committee of the University of New Mexico. Thanks also to T. L. Yates, J. Cook, L. Ruidas, N. Olds, and P. Desjeux for assistance in the field.

Literature Cited

