The Relationship Between Executive Attention and Spatial Working Memory in Adults

Erica Ness
University of Nebraska - Lincoln, erica.ness22@yahoo.com

Emily Franzen
University of Nebraska - Lincoln, emily.franzen94@gmail.com

James Thomas
University of Nebraska - Lincoln, jamie_arthur_thomas@hotmail.com

Haily Sain
University of Nebraska-Lincoln

Lalah McLaughlin
University of Nebraska-Lincoln

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/ucarereresearch

Part of the [Applied Behavior Analysis Commons](http://digitalcommons.unl.edu/ucarereresearch), [Cognition and Perception Commons](http://digitalcommons.unl.edu/ucarereresearch), and the [Experimental Analysis of Behavior Commons](http://digitalcommons.unl.edu/ucarereresearch)

Ness, Erica; Franzen, Emily; Thomas, James; Sain, Haily; McLaughlin, Lalalah; Spohr, Lindsey; DeGirolamo, Greg; and Schutte, Anne R., "The Relationship Between Executive Attention and Spatial Working Memory in Adults" (2016). *UCARE Research Products*. 71.
http://digitalcommons.unl.edu/ucarereresearch/71

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The study examined the effects of executive attention on spatial working memory in adults using a location recall task. Attention is suggested to play a crucial role in maintenance of a remembered location in spatial working memory. Awh and Jonides (2001) found that reaction time to a presented stimulus was faster when the stimulus was held in spatial working memory. A subsequent study found that when holding a location in spatial working memory, tasks which shift attention cause memory performance to be worse for the remembered location. An ERP study by Awh and Jonides (2001) found similar response amplitudes between visual responses for remembered locations and directed spatial attention. These results are significant because they suggest that spatial attention is used as a retrieval mechanism for holding locations in spatial working memory. Another study found that when a location is held in spatial working memory, an onset of an external stimulus, i.e., a distractor, caused a shift in the memory representation in the direction of the location (Stiglic, Merten, Master, & Theeuwes, 2007). In contrast Schuurs, Kassen, and Bunt (2015) found that in a similar task to 6-year-olds’ memory representation of the target location shifted away from the distractor.

Our study examined executive attention in adults and the effect distractors have on memory representations held in spatial working memory. We hypothesized that when a location is held in spatial working memory, a distractor that captures attention will shift the memory representation towards the distractor if the distractor is close to the remembered location. If the distractor is far in space from the location held in spatial working memory, the memory representation will shift away from the distractor. We also tested the hypothesis that adults with better top-down control of attention (i.e., better executive attention) will make smaller errors in the spatial working memory task.

Examining executive attention on spatial working memory is important to better understand the processes underlying spatial working memory. Examining the specific effects of distractors on a memory representation in spatial working memory will help determine how executive attention and working memory are related, and will have implications for theories of spatial cognition, such as Dynamic Field Theory.

Results

No main effect or interactions with Executive Attention, so it was dropped from the final model.

Significant distractor main effect, F(6,546)=3.961, p<.001

References

Background and Significance

The Relationship Between Executive Attention and Spatial Working Memory in Adults

Erica Ness, Emily Franzen, James Thomas, Haley Sain, Lalah McLaughlin, Lindsey Spohr, Greg DeGirolamo & Anne R. Schutte

University of Nebraska—Lincoln

The study examined the effects of executive attention on spatial working memory in adults using a location recall task. Attention is suggested to play a crucial role in maintenance of a remembered location in spatial working memory. Awh and Jonides (2001) found that reaction time to a presented stimulus was faster when the stimulus was held in spatial working memory. A subsequent study found that when holding a location in spatial working memory, tasks which shift attention cause memory performance to be worse for the remembered location. An ERP study by Awh and Jonides (2001) found similar response amplitudes between visual responses for remembered locations and directed spatial attention. These results are significant because they suggest that spatial attention is used as a retrieval mechanism for holding locations in spatial working memory. Another study found that when a location is held in spatial working memory, an onset of an external stimulus, i.e., a distractor, caused a shift in the memory representation in the direction of the location (Stiglic, Merten, Master, & Theeuwes, 2007). In contrast Schuurs, Kassen, and Bunt (2015) found that in a similar task to 6-year-olds’ memory representation of the target location shifted away from the distractor.

Our study examined executive attention in adults and the effect distractors have on memory representations held in spatial working memory. We hypothesized that when a location is held in spatial working memory, a distractor that captures attention will shift the memory representation towards the distractor if the distractor is close to the remembered location. If the distractor is far in space from the location held in spatial working memory, the memory representation will shift away from the distractor. We also tested the hypothesis that adults with better top-down control of attention (i.e., better executive attention) will make smaller errors in the spatial working memory task.

Examining executive attention on spatial working memory is important to better understand the processes underlying spatial working memory. Examining the specific effects of distractors on a memory representation in spatial working memory will help determine how executive attention and working memory are related, and will have implications for theories of spatial cognition, such as Dynamic Field Theory.

Methods

Participants:

The participants consisted of 40 female and 45 male adults at the University of Nebraska--Lincoln.

Task:

Spatial working memory task. Participants sat in front of a large touch-screen monitor. Each trial consisted of a target that appeared for 1500 ms at one of two possible locations, ±20° or ±40° from the median symmetry axis. After a delay of 10 seconds, the participant touched the screen at the remembered location of the target. Of the 160 total trials, three fourths of them consisted of a distractor that appeared 2.5°, ±12.5°, or ±20° from the target.

Attention network task: For this task the participants completed the attention network task (ANT) developed by Fan and colleagues (2002). The ANT measured executive attention, alerting, and orienting.

Participants:

The participants consisted of 40 females and 45 males adults who were 18 years of age or older.

Task:

Spatial working memory task. Participants sat in front of a large touch-screen monitor. Each trial consisted of a target that appeared for 1500 ms at one of two possible locations, ±20° or ±40° from the median symmetry axis. After a delay of 10 seconds, the participant touched the screen at the remembered location of the target. Of the 160 total trials, three fourths of them consisted of a distractor that appeared 2.5°, ±12.5°, or ±20° from the target.

Attention network task: For this task the participants completed the attention network task (ANT) developed by Fan and colleagues (2002). The ANT measured executive attention, alerting, and orienting.

Results:

No main effect or interactions with Executive Attention, so it was dropped from the final model.

Significant distractor main effect, F(6,546)=3.961, p<.001

Discussion

Executive attention, as measured by the ANT, was not related to spatial working memory performance. Thus, the hypothesis that executive attention and spatial working memory would be related was not confirmed.

We hypothesized that a distractor would bias memory responses. When the distractor was near the target location, we hypothesized that responses would be biased towards the distractor. When the distractor was far from the target, we hypothesized that responses would be biased away from the distractor. In the Spatial Working Memory task (SWM), distractors biased the response, thus the hypothesis was partially confirmed. However, the results showed the following pattern: (1) Distractor near target responses biased away from distractor; (2) Distractor far from target responses not biased.

According to Dynamic Field Theory, distractors near the target, but not too close to the target, will “pull” the memory of the target away from the distractor due to inhibition associated with the distractor. Distractors very close to the target will “pull” the memory of the target toward the distractor due to excitation associated with the distractor. The closest distractor may have been too far from the target to “pull” the memory toward it.

Figure

Figure 1. A diagram of the screen for the spatial working memory task with target at ±20° (top panel) and a distractor approximately ±20° from the target.