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Abstract— As block coding and intelligent receiver combining in 
multi-antenna systems moves from the theorectical into the 
physical domain, it is necessary to apply robust analysis to the 
problems encountered with the development of real radio 
systems that are often overlooked during theoretical 
development of methods and processes.  One such problem is the 
lack of synchronization between the transmitter and receiver 
sampling clocks.  This text attempts to analyze the significance of 
poorly correcting for differences in the transmit and receive 
sample clocks by simulating the BER of an Alamouti space-time 
coded system under a variety of sample rates and clock offsets.  
The results can be used to estimate the impact on link quality by 
a given sampler’s estimation error using the empirical model 
given. 

I. INTRODUCTION 
The introduction of intelligent antenna combining and 

block coded MIMO systems have provided for a vast potential 
increase in the performance of wireless links which undergo 
complex multiplicative fading.  Much theoretical work has 
been done to show that in the presence of a worst case fading, 
that has been drawn from a theoretical Rayleigh distribution, 
multi-antenna systems can provide a minimum of 3dB in array 
gain for each additional antenna used [1], and can provide a 
significant improvement at higher SNRs when coding is 
used[2].   

In most cases, practical radio issues such as carrier offset 
mismatches and a mistimed sample clock are ignored, even 
though such implementation issues can greatly affect the 
quality of the overall link.  Some characterization of the error 
introduced by such practical limitations is useful for link 
budget design and system performance estimation. 

In this paper we attempt to characterize the errors 
introduced by sampling offsets in an Alamouti space-time 
encoded system using least squares channel estimation.  First, 
the system is simulated using a variety of symbol widths and 
offsets to provide a set of data that provides a relationship 
between the BER of the system and the offset of the estimated 
sample clock.  Next, an empirical model of the extra error rate 
that has been introduced is extrapolated from the simulated 
data to provide an estimate of the error for a given 
combination of symbol widths and sample offsets.  The rest of 
the paper is organized as follows; Section II details the 
theoretical model of the space-time system used to simulate 
the error rates for a given offset.  Section III provides a 
detailed description of the problems introduced by symbol 
timing errors.  Section IV presents the results from the 
simulation and provides an empirical model for the estimation 
of the BER for a given SNR, sample width, and sample offset.  

Finally, Section V presents the empirical model derived from 
the simulation results. 

 

II. THEORETICAL AND SIMULATION SYSTEM MODEL 
In order to simulate a space-time block coded system under 

Rayleigh fading, the following mathematical model was used.  
A set of n symbols to be transmitted is represented by the 
vector s = [s0 s1 … sn].  These symbols are then encoded using 
the Alamouti space-time code to provide a set of two symbol 
streams, sa to be sent out of the transmit antennas. 
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In order to allow for matched filtering at the receiver, the 
samples are shaped via an interpolating root raised cosine 
(RRC) filter, h, with an excess bandwidth of 0.35 which 
allows for maximum likelihood detection (MLD) at the 
receiver and interpolates them to a total of p samples per 
symbol.  This is modelled by convolution of Sa with h.  With 
the space time coding and the transmit portion the matched 
filtering complete, the symbols are ready to be transmitted 
over a simulated channel. 

The transmission of the set of symbol sa through a fading 
channel is represented through the multiplication by a vector 
H containing the two complex coefficients representing the 
two zero mean Gaussian, independent, identically distributed 
(ZMGIID) channels between the transmit antennas and the 
receive antenna.  Additionally, the channel includes 

 
Figure 1: Sampling Offset Example 
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additive white Gaussian noise (AWGN), providing for a 
final representation of the signal at the receiver: 

 
nHhsy a +∗= )(  

 
At the receiver this signal y is sent through a second filter, 

h’, matched to the transmit filter and is sampled at the center 
of the symbol.  An increasing offset from the center of the 
symbol is introduced during simulation to represent a 
discrepancy between the sample clocks of the transmitter and 
receiver.  Because the matched filter receiver relies on 
sampling at the center of the symbol, an offset between the 
transmitter and receiver sample clocks introduced by less than 
ideal timing recovery can lead to an increase in the BER as the 
correlator output decreases to the noise floor.  In order to 
estimate the impact of the offset, it is necessary to delay the 
received signal by some amount τ  equal to the delay prior to 
decoding.  The signal that is then sent through the matched 
filter decoder is specified by 

( )[ ] )(τδτ nHhsy a +∗=  

When this signal, τy , is sent through the decoder at the 
receiver, additional errors will be introduced depending on the 
length of the delay. Figure 1 shows the impact of the delay for 

τ  equal to ½ of a sample period.  It is clear that the matched 
filter will not provide an optimum output because of this delay. 

III.  SIMULATION MODEL 
By simulating the effects of offsets in sample timing we 

can analyze the impact that various changes in the 
development of a communications system can have on BER.  
By understanding the scope of the changes, it is possible to 
design a system that utilizes tradeoffs in terms of cost, speed, 
and reliability in order to provide the best BER at the 
minimum cost.   

For the results presented here, rates of 5, 10, 15, 20, and 25 
samples per symbol were tested.  The number of samples per 
symbol used in a communications system can affect the ability 
of the receiver to accurately reconstruct the transmitted 
symbols.  By increasing the number of samples a receiver has 
for a given symbol, the approximation of the discrete sampled 
symbol approaches that of the continuous symbol, allowing 
more accurate analysis during correlation and maximum-
likelihood schema.  The trade off in this case is that for a fixed 
analog to digital converter (ADC) rate, increasing the number 
of samples for each symbol also increases the amount of time 
each symbol takes to transmit, thereby reducing the overall 
data rate.   

Figure 2: BER Vs SNR for various samples per symbol 
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In addition to varying the number of samples per symbol, 
the offset from the center of the symbol is also varied.  
Because the model represents a discrete time system, the 
offset is specified as a number of samples, rather than as 
specific delay τ . Symbol offsets mainly arise from a 
combination of two effects.  First, it is likely that the sample 
clocks of the transmitter and receiver are not synchronised 
with respect to one another.  This may mean that the received 
symbol is sampled in between the interpolated discrete points 
of the symbol generated at the transmitter.  Because of this, 
there may be some fractional sample offset between the 
received symbol and the ideal symbol sent from the 
transmitter.  The second source of offsets may come from 
non-ideal symbol timing estimators at the receiver.  The most 
common forms of symbol timing estimation, maximum-
likelihood, training symbols, and early/prompt/late schema all 
suffer from a chance that the estimate of the symbol center 
will be off by a sample or more depending on the SNR at the 
receiver.  The combination of these two effects are mostly 
indistinguishable and are represented in the simulation as a 
single offset from the ideal center of the symbol.  Symbol 
offsets of 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 were considered 
during simulation.  For integer offsets, these timing recovery 
errors are introduced by shifting the received blocks of 
symbols by a number of samples equal to the offset.  When 
fractional offsets are considered, the symbols undergo rational 
resampling in the channel model.  That is, they are 

interpolated by the denominator of the offset, shifted by the 
numerator, and then decimated back to the original symbol 
length.  It should be pointed out that each symbol offset is 
positive; the samples in each symbol are advanced by the 
offset during the channel modelling.  It might be more 
realistic to randomly distribute positive and negative offsets, 
however, when the RRC pulse shaping is applied, it can be 
seen that a positive or negative delay has the same effect on a 
per symbol basis due to the symmetry in the shaped filters.  
Additionally, each symbol is delayed by the maximum 
amount in each simulation, providing for a worst case scenario 
given a maximum allowable delay. 

In order to create a simulation environment that would be 
applicable to modern designs, the model was based on the 
structure of an 802.11n system.  The packet length, format, 
and training sequences were used in the simulation.  
Additionally, the same assumptions regarding block fading 
were made; specifically that the channel would not change 
during each block. 

IV. SIMULATION RESULTS 
Figure 2 shows the simulation results for the cases where 

the samples per symbol are 10, 15, 20, and 25.  Several 
conclusions can be drawn from analysis of these graphs.  First, 
it is clear that incorrect sample timing at the receiver leads to a 
lower bound on the BER of a space-time coded system.  
Second, there seems to be a non-linear relationship between 

Figure 3: Different Ratios of offset to samples per symbol 
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that lower bound and the two parameters, samples per symbol 
and offset.  It can be seen that the samples per symbol and the 
offset appear to independently affect the BER of the system, 
in addition to the expected independent variable, the ratio 
between them.  Figure 3 shows the BER curves for various 
simulations where the ratio of the offset to the number of 
samples in each symbol is the same.  It is easy to see in the 
graphs that there is a significant difference between the curves 
despite the ratio being the same. 

This gives a space-time system designer some insight into 
the effects of different parameters when creating a system.  
For example, it is clearly beneficial, in terms of efficiency, to 
devote more resources increasing the number of samples per 
symbol rather than to attempt a reduction in the sample offset 
error.  However, this does not mean that it is always beneficial 
to maximize the size of each symbol.  It can be seen from 
Figure 3(b) that when the symbol offset error is low (around 
10%), that there is very little gain to be had by increasing the 
number of samples per symbol.  This implies that the 
optimum number of samples per symbol needed to account for 
a given offset also has an upper bound past which increasing it 
will no longer provide you with noticeable performance gains. 

V. EMPIRICAL MODEL 
Based on the simulation results from Section IV, a system 

of equations designed to fit the BER curves and allow for 
accurate estimation of the increase in BER for a given offset 
at a given number of samples per symbol. 

Because only the additional errors introduced by the 
sampling offset are of interest, the first step is to subtract out 
the BER of a theoretical Alamouti system.  Using this data, 
the additional BER introduced though unaligned sampling, we 
can fit to an equation using standard linear regression 
techniques.  Using a simple least squares regression, it was 
easy to see that the BER added to a theoretical Alamouti 
system was directly dependent on the SNR.  The data could be 
very accurately fit to the following equation 

a ⋅ z−b + c  
where z is the SNR, c is the BER floor introduced by the 

offset and a and b affect the rate at which the BER approaches 
the floor.  All 3 coefficients were affected very strongly by the 
ratio between the offset and the samples per symbol, but as 
discussed in section IV, this alone was not enough to 

accurately represent the system.  In addition, offset and 
samples per symbol terms were required to approximate the 
additional BER.   

Both of the a and b coefficients were fit to a simple 
summation of the first, second, and third powers of each of the 
three variables as follows 

 
F = a1 ⋅ s + a2 ⋅ s2 + a3 ⋅ s3 +

a4 ⋅ o + a5 ⋅ o2 + a6 ⋅ o3 +

a7 ⋅ o

s
+ a8 ⋅ o

s

2

+ a9 ⋅ o

s

3

+ a10

 

where o is the offset, s is the number of samples per symbol, 
and an is the nth coefficient of the fit.  This fit allows for a 
flexible interaction between the main component, the ratio of 
the offset to the number of samples per symbol, and the 
variables it is dependent on. 

The final parameter to be fit, c, is the floor that the BER 
approaches as the SNR increases.  This floor exists in all non-
theoretical systems, and stems from the fact that with 
imperfect channel estimation, timing recovery, etc, it will be 
impossible to reach certain theoretical BERs.  Though these 
floors exist, their bounds are not often tested due to the fact 
that channel simulations will typically rely on perfect channel 
knowledge and timing synchronization.  In this case, the error 
floors are clearly apparent for some cases, and easy to 
extrapolate for others.  This floor can be shown to be 
dependent on the offset (o) and number of samples per symbol 
(s) as follows 

F = a1 ⋅ oa2 + a3 ⋅ sa4 + a5

o

s

   
   
   

   
   
   

a6

 

 
With the model equations set, each of the coefficients an for 

a, b, and c can be found traditional linear regression 
techniques.  These calculated coefficients are in Table 1 at the 
end of the paper.   

Figure 4 shows the simulated BERs along with the values 
generated by the empirical model.  It is clear that this model is 
particularly effective when the offset is small, 5-10% of the 
number of samples.  Additionally the model is very accurate 
when the offset is very high with respect to the number of 

Figure 4: Simulated BER and Fit BER Figure 5: Worst-fit Simulation with confidence intervals Published in 3rd International Conference on Signal Processing and Communication Systems
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samples (25%+).  This is because the BER floor (c) has a 
greater impact on the fit with respect to the impact of the SNR. 

Even with the divergence of the fit from the simulated data, 
it can be seen from Figure 5 that the data falls within the 
expected confidence intervals of the simulation.  Figure 5 
shows the BER curve with the worst mean residuals after 
fitting, an offset of 1.5 samples with 10 samples per symbol, 
along with the 95% confidence interval of the simulation.  It 
can be seen that even at its worst, the empirical model falls 
within these 95% bounds. 

VI. CONCLUSIONS 
In this paper we presented an initial investigation into the 

effects of errors in sample timing on the bit error rate of a 
space-time coded system in a flat fading environment.  Initial 
results confirm the logical conclusion that as the estimated 
symbol center drifts from the actual center of the symbol that 
the BER of the system increases.  The more interesting results 
of the investigation show that there is an independent, non-
linear relationship between the offset and the number of 
samples per symbol with respect to the BER of the system.  
This relationship is modelled by fitting the empirical data to 
an equation for easy estimation, and the results give insight 
into the tradeoffs that a designer may make when developing a 
space-time coded system. When designing a space-time coded 
system, therefore, it is more beneficial to devote resources to 
increasing the number of samples per symbol rather than 
refining the timing estimate.  Additionally, there are clearly 
bounds on both the BER for a given number of samples per 
symbol, as well as the number of samples required to negate a 
given offset size.   

TABLE 1: FIT COEFFICIENTS 

 a b c 
a1 -3.3388e-05 5.6657e-05 -1.3622e-04 
a2 1.5695e-03 -3.7582e-04 1.6830e+00 
a3 -9.1463e-03 -1.0193e-01 2.5810e-09 
a4 6.6216e-03 -6.6188e-02 3.6926e+00 
a5 1.8473e-04 3.4661e-01 6.4456e+02 
a6 -2.0971e-01 -2.5740e-01 7.7760e+00 
a7 -5.8369e+00 -2.5051e+01 - 
a8 -4.3513e-01 -1.0015e+01 - 
a9 2.1307e+00 9.9820e+00 - 
a10 1.0110e-01 -1.4948e+00 - 
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