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in Figure 2. We use grid spacings h equal to 1/5, 1/10, 
1/20, 1/40, 1/80, and 1/160, respectively. The variation of 
the relative error, e, vs. the grid spacing is shown (in a log−
log plot) in Figure 3. We use linear spline and Akima spline 
interpolation in (6) to determine if a Gauss point is inside 
or outside ω. The convergence becomes quadratic for the 
denser grids. Notice that the quadratic convergence is the 
analytical rate for approximating the disk area with trian-
gular sectors spanning equal angles. The number of sec-
tors used for the plot in Figure 3 is 1/h, that is, 5, 10, 20, 40, 
80, 160, respectively. In the computations that follow, the 
Akima spline interpolation will be used in (6) for comput-
ing integrals over the domain. 

2.5 Fixed-grid shape optimization with EFG 

With this simple geometry projection for computing 
the solution over the physical domain, ω, the algorithm for 
EFG fixed-grid, E(FG)2, shape optimization is proposed: 

Algorithm 2. E(FG)2: the EFG fixed-grid shape optimization 
method 

1: define initial guess for design variables (control points for the 
boundary spline function) 
2: while not a local minimum do 
3:     find objective function, constraints by solving (2) using EFG  
        method and Algorithm 1 over ω 
4:     compute sensitivities of objective function, constraints, with  
        method of choice 
5:     optimizer provides new values for design variables 
6:     update control points for boundary spline 
7: end while 

The sensitivities can be computed in various manners: 
by direct-differentiation method, adjoint system, or by fi-
nite differences. In the example we present below, we use 
an sequential quadratic programming (SQP) optimizer 

from the International Mathematical and Statistical Library 
(IMSL) that internally computes sensitivities by finite dif-
ferences. This choice is made here for convenience only. 

This algorithm is clearly applicable to not only shape 
optimization problems for thermal systems but to any 
shape optimization problems whose equations of state are 
described by PDEs, such as optimal shape design of elastic 
and thermoelastic bodies under stress constraints. 

3 Test problem for shape optimization involving large 
shape changes 

A challenging test in optimal shape design is the shape 
optimization of cooling fins. The problem is treated in, for 
example, Bobaru and Mukherjee (2002); Bobaru and Racha-
konda (2004b). When starting from a generic regular shape 
of the cross-sectional area of the thermal cooling system, 
large shape changes between the initial and final design 
take place. 

We analyze a section of a long fin array and use periodic 
boundary condition. One face of the thermal system is at-
tached to a body at constant temperature, while the oppo-
site face is exposed to the cooler temperature of the ambi-
ent air (Figure 4). We solve the shape optimization problem 
on the top cross-section of the cooling system. The bound-
ary conditions on the cross-section of the thermal system 
are shown in Figure 4. The following values are used in (1) 
: θ0 = 500K, θ∞ = 300K, and q = 0 (due to periodicity condi-
tions). Even if the shape optimization problem is set in two 
dimensions, the solution takes into account the third di-
mension via the dependence of the heat transfer coefficient 
on the height of the fin. We consider the heat transfer coef-
ficient as a function of the boundary temperature:

h (z, θ) =          2κ Pr 1/2              [Gr (z, θ)]1/4.        (10)                 z [336(Pr + 5/9)]1/4

Here, z is the coordinate along the height of the fin, Pr is 
Prandtl’s number, and Gr is Grashof’s number. The heat  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The relative error computed as in (9) vs. the grid 
spacing. Superlinear to quadratic convergence is achieved in 
numerically integrating the domain using the cutting strategy 
described in Figure 2. 

Figure 4. The imposed temperature boundary, (Γθ
0), zero-flux 

boundary, (Γθ
1), and the convective boundary, (Γθ

2). Design 
variables (control points) are interpolated with a shape-pre-
serving Akima spline and are selected on Γθ

2 only (including 
its ends); as a result, the zero-flux, Γθ

1 , boundaries can change 
their length but not shape. Symmetry is imposed about the 
middle vertical axis. 
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transfer coefficient depends on Grashof’s number which 
implies a dependence on the fin’s temperature on Γθ

2 , as

Gr (z, θ)  =
  gβ(θ − θ∞)z3     

(11)                              ν 2

The dependency of h on θ|Γθ
2  is more complicated than 

the root-four behavior apparent from (10) and (11). That 
is because the Prandtl number and the convective factor, 
gβ/ν 2, in Grashof’s number also vary with the temperature 
θ on Γθ

2 (see Table 1 in Bobaru and Rachakonda 2004a). The 
values we use for the ambient are those of air at one atmo-
sphere and for the range of temperatures and conditions 
specified above. The ambient fluid properties are captured 
by the “convective term,”  gβ/ν 2. These properties are nor-
mally evaluated at the film “average” temperature θ f = (θw 
+ θ∞) as described in White (1988), page 298, where θw is 
the “wall” temperature, i.e., the temperature of the fin’s 
convective boundary. 

The mathematical form of the optimization problem is 
to find the shape of the fin cross-section that solves:

min F(y) = −κ
 ∫Γθ

0 
qdΓ  

, y ∈ ω            (12)                            Lfin

subject to

H1(y) = 1 − ∫ω dω  ≥ 0      (13)                    Amax

H2(y) = 1 −    BLO      ≥ 0     (14)
                     BLOmax

where q is the heat flux from the base, Lfin is the length of 
the base of the fin, y = [y1, … , yp] is the design vector repre-
senting the y-coordinates of the control points on the spline 
boundary. The domain, ω, is defined by {y ∈ Rp : 0.005 ≤ 
yi ≤ 0.05, ∀i = 1, … , p}. The upper bound is chosen arbi-
trarily. Notice that in the moving grid approach used in 
Bobaru and Rachakonda (2004a,b) we were forced to use 
a higher lower bound for the design variables due to the 
large difference in node density created after large shape 
changes. In the present fixed-grid method, the only limita-
tion is given by the fineness of the discretization. For the 
discretization we use, we select the lower bound such that 
at least a few node layers are covered between convective 
boundary and the base of the fin. This insures an accurate 
computation of the heat- flux through the base. Amax is 60% 
of the original rectangular area. BLO is the “boundary layer 
overlap” which is the area shown in Figure 5. 

 

Instead of directly evaluating this area, we compute an 
equivalent measure of it using a fast algorithm introduced 
in Bobaru and Rachakonda (2004a), based on the x-coordi-
nates of nodes along the design boundary. A small viola-
tion is allowed in BLOmax with a value equal to 5% of the 
fin base length.

The minimization problem (12)–(13) is ill-posed in the 
sense that the more design variables are assigned, the more 
fins are created with a shape that produces a better and 
better objective. This aspect of the problem has been dis-
cussed in Bobaru and Rachakonda 2004a with the mov-
ing grid approach. Imposing a constraint on the length 
or on the curvature of the design boundary to regularize 
the problem would be misleading: first, the length of the 
boundary should be part of the solution, and second, the 
boundary should be allowed to have non-differentiable 
points. In fact, we noticed (Bobaru and Rachakonda 2004b) 
that the best shape for highly conductive materials is given 
by pointed fins. 

In Section 4.1 we show that the newly introduced 
method is insensitive to biased grids and that we can per-
form large shape changes in a single iteration. The EFG 
fixed-grid method eliminates the need for special arrange-
ments of nodes required in the moving grid method (Bo-
baru and Rachakonda 2004a,b). In section 4.2, the E(FG)2 
method allows us to enlarge the bounds on the design vari-
ables, and thus, uncover a new property of the optimal 
shapes for low and highly conductive materials; in section 
4.3, we eliminate boundary overlap for low conductivity 
periodic fins by introducing a new zero-slope constraint. 
The E(FG)2 helps us observe new properties for the con-
ductivity-dependence of the optimal shape. 

4 Numerical results 

4.1 Area constrained optimization; biased grids 

We test the new E(FG)2 shape optimization method for 
the problem with area constraint only (12)–(13) on a part of 
an infinite-length thermal system by using periodic bound-
ary conditions (no-flux though Γθ

1 boundaries in Figure 4). 

Figure 5. Overlap area for the thermal boundary layer for two 
fins too close to one another. Instead of having the ambient 
cooling air at the limit of the boundary layer, the fins are fac-
ing each other’s thermal layer of a higher temperature; thus, 
reducing the heat transfer.

Table 1 Coordinate values of the starting guess (in meters) for 
the design variables (d.v.’s) used to obtain the optimal shapes 
in Figures 10 (sharp fins) and 11 (round fins)

d.v.’s x-coordinates       d.v.’s y-coordinates        d.v.’s y-coordinates
(m)                                    sharp fins case (m)          round fins case (m)

0.0 × 10−2  5.0 × 10−2  4.2 × 10−2

1.0 × 10−2  4.9 × 10−2  4.5 × 10−2

2.5 × 10−2  5.0 × 10−2  5.0 × 10−2



222 Bo B ar u & rac h ak o n d a i n Str u c tu r a l a nd Mul ti d i S c i p l i n a r y Opt i M i z a ti O n  32 (2006) 

The dimensions for the cooling system are (see Figure 4): 
fin length is 1 × 10−1 m, fin width is 5 × 10−2 m, and the 
height is selected to be 4 × 10−1 m, such that it does not lead 
to a turbulent thermal boundary layer in natural convec-
tion conditions anywhere along the height of the system. 
Recall that the third dimension enters the 2D equations via 
the heat transfer coefficient (10). 

The proposed shape optimization procedure is insensi-
tive to biased grids. To verify this, we solve the optimiza-
tion problem for the fin above with symmetry conditions 
on the design variables. In this test, we use a grid of 21 × 41 
nodes for the fixed grid over the rectangular domain Ω of 
1 × 10−1 m by 5 × 10−2 m and five design variables (control 
points) with their x-coordinates equally spaced along the 
convective boundary. The control points do not have to be 
grid nodes. The design variables control the profile of the 
convective boundary as described above. Figure 6 shows 
the optimal shape when no boundary layer constraint is 
used and when we impose a strong bias on the horizon-
tal arrangement of the nodes. Note that as the integration 

cells are fixed, we no longer have to solve the optimization 
problem on grids in which the nodes are arranged in “col-
umns” as in Figure 3 in Bobaru and Rachakonda (2004a). 
This is an important generalization and advantage com-
pared to the moving grid approach. Convergence to the op-
timal shape, which is given by a design vector with values 
alternating between the lower and upper bounds [0.5, 0.05, 
0.5, 0.05, 0.5] × 10−1 m, is achieved in a single iteration from 
a slightly perturbed rectangular original shape defined by 
the guess design vector, [0.5, 0.49, 0.5, 0.49, 0.5] × 10−1 m. 

When no boundary layer constraint is imposed, the 
ill conditioning of the problem is manifested by the in-
crease in the number of fins, thinner and closer to one an-
other, with the increase in the number of design variables. 
This has been observed before in the shape optimization 
with EFG based on the moving grid method in Bobaru 
and Rachakonda (2004a). The new fixed-grid method re-
covers that results, but in addition, it allows us to elimi-
nate the requirement for a high lower bound, the moving 
grid method had to impose on the design variables. We can 

Figure 6. Insensitivity of the optimal shapes with the discreti-
zation grid: the case of a uniform grid (top) and a horizontally 
biased nonuniform grid (bottom). Five design variables, equally 
spaced in the horizontal direction, are selected on the convec-
tive boundary. Total number of nodes is the same in both cases, 
(21 × 41). New boundary nodes are created as in Figure 2. 

Figure 7. A single optimization iteration is required from the 
starting guess shape (top) to the final finned shape (bottom) of 
the thermal system cross-section. The large shape changes in-
volved are easily dealt with by the mesh-free fixed-grid method. 
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now handle very large shape changes between consecutive 
iterations. The moving grid method could deal with mod-
erately large shape changes only. 

With nine design variables, the optimal shape shown in 
Figure 7 gives a better objective function value. By chang-
ing the initial perturbation from the rectangular shape so 
that the middle design variable is on a “hill” rather than in 
a “valley” as in Figure 7, we obtain the results in Figure 8. 
Notice that in this case, the fins at the extremities present 
regions of only colinear nodes. The EFG solution can break 
down in such cases (see, e.g., Belytschko et al. (1994)), and 
to avoid this, the supports for adjacent nodes have to be in-
creased. This process degrades the accuracy of the solution 
as we loose the localization properties of the approxima-
tion. A denser grid is required in such situations. 

When even more control points are chosen on the con-
vective boundary, more fins form for an even better value 
of the objective function. The case of 13 design variables is 
in Figure 9. The grid size is kept the same in all these case 
of 5, 9, and 13 design variables. The values of the objective 
function (negative heat flux) are not physical, as the model 

assumes that all points on the convective boundary are ex-
posed to the ambient temperature. This, however, is not 
possible if the fins that are generated are too close to one 
another due to the presence of the thermal boundary layer 
that forms along the height of the fins. A constraint, such as 
the one in (14), has to be used for a physically correct model. 

4.2 Boundary layer overlap constrained optimization 

The constrained optimization problem (12)–(14) is well-
posed as fins cannot be generated ad infinitum due to the 
overlap of the thermal boundary layer. We now select a 
unit cell of length 5 × 10−2 m for reasons presented in Bo-
baru and Rachakonda (2004a). The third dimension, z, en-
ters the solution in two ways: firstly, through the convec-
tive boundary condition as the heat transfer coefficient, h, 
depends on the height, and secondly, through the thick-
ness of the boundary layer which is used to compute the 
boundary layer overlap in (14). A fixed grid with 31 × 31 
nodes is used for the rectangular area, Ω, of 5 × 10−2 m by 5 
× 10−2 m.  

Figure 8. The first (top) and second and last (bottom) iterations 
for nine design variables. Notice that the formation of very 
thin fins at the zero- flux boundaries where colinear nodes will 
eventually degrade the EFG solution. In the computation of 
the EFG shape functions (4), each Gauss point involved in the 
computation needs to be covered by the supports of at least 
three non-colinear nodes. 

Figure 9. The first (top) and second (bottom) and last iterations 
for 13 design variables. The number of fins increases unlimited 
with the increase of the number of design variables. The objec-
tive value continues to “improve” since the thermal boundary 
layer is not taken into account. 
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We use five design variables selected on the convective 
boundary. Four copies of the unit cell optimal shape are 
repeated to construct the periodic fin array shown in Fig-
ures 10 and 11 which are obtained with the starting guesses 
for the design variables as in Table 1. We give only the first 
three coordinates as we use symmetry of the geometry for 
the remaining two design variables. 

For the unit-cell, the history of the objective function, 
area constraint, and thermal boundary layer overlap (BLO) 
constraint for the highly conductive material (aluminum 
with κ = 235 W/mK) are given in Figures 12, 13, and 14, re-
spectively. While the boundary layer overlap is eliminated 
in the unit cell, the value of the objective function reached 
by the rounded tip fins is overstated for the periodic con-
struct due to the overlap of the thermal boundary layer re-
sulting when the unit cells are joined together. Notice that 
for the highly conductive material, the sharp fin shape uses 
only 48% of the maximum area allowed, while the round 
fin shape uses 80% of the same value. The sharp fins, there-

fore, use 40% less material while providing a value of the 
objective function 8% higher than the round profile. The 
control points oscillate between their lower and upper 
bounds. The area constraint is not active. As the tempera-
ture does not drop significantly (less than 0.5%) while heat 
is transported across the fin for this highly conductive ma-
terial, it is beneficial to create shapes with as much conduc-
tive boundary length as possible enclosing the finite cross-
sectional area to maximize the heat flux through the fin. 
The only limiting factors here are the boundary layer over-
lap constraint and the simple bounds on the design vari-
ables themselves. 

We now use a hypothetical material with a low thermal 
conductivity value, κ = 1 W/mK. An optimal shape for the 
unit cell is shown in Figure 15. The area constraint is ac-
tive, but in contrast to the highly conductive case, the de-
sign variables stay away from their upper bounds. The op-
timal shape, in this case, is determined such that the top 
cross-section of the cooling system does not extend narrow 

Figure 10. The optimal configuration for the periodic fin of a 
highly conductive material. Five design variables are selected 
on the unit cell. The control points oscillate between the their 
lower and upper bounds. The area constraint, however, is not 
active. As the temperature does not drop significantly while 
heat is transported across the fin, it is beneficial to create “in-
finite length bounding a finite area” shapes to maximize the 
heat flux through the fin.  

Figure 11. An optimal configuration for the periodic fin of a 
highly conductive material. Five design variables are selected 
on the unit cell. The area of the cross-section used is 40% 
larger than the sharp fin solution, while the heat flux through 
the base is 8% less than the sharp fins. The periodic array has 
some overlap of the thermal boundary layer which can be 
eliminated by imposing zero-slope end conditions for the in-
terpolated design boundary.  

Figure 12. The objective function history for two initial config-
urations that lead to the optimal shapes shown in Figures 10 
and 11. A lower value is better. 

Figure 13. The history of the area constraint (13) for highly 
conductive material. A larger value means less area is used. A 
positive value means the area used is less than the maximum 
allowed value. The sharp fin design uses 40% less material 
than the rounded shape design.



E(FG)2:  a n E w F i xE d-G r i d s h a p E o p ti mi z a ti o n mE th o d   225

fins that would cool too much and, with their reduced sur-
face temperature, limit the effectiveness of the heat-transfer 
with the ambient [see (10) and (11) for the connection be-
tween θ|Γθ

2 – θ∞ and heat-transfer coefficient]. 
In our previous work using a moving grid method, we 

were not able to use lower values for the design variables’ 
lower bound, and the unit conductivity local optimal shape 
we determined did not make use of all allowable area (see 
Table 3 in Bobaru and Rachakonda 2004b). The bound-
ary layer overlap constraint induces a large number of lo-
cal minima in the problem. With the lowering of the lower 
bound permitted by the new E(FG)2 method, we can attain 
a better objective function value than before and also ob-
serve an interesting property of low conductivity materi-
als; the amount of material used by the optimal top cross-
section is maximized to prevent drastic cooling that reduces 
heat transfer. In Table 2, we compare the results obtained 
with the moving grid in Bobaru and Rachakonda (2004b) 
and those with the current E(FG)2 for the low conductivity 
material. Using the same starting guess but having different 
lower bounds for the design variables in the moving grid 
and the fixed grid, the latter improves the objective value 
by almost 15% with an increase in the use of area of 9%. 
The shape, however, that activates the area constraint (uses 
100% of the allowed cross-sectional area) provides the best 
value of the objective function. The final shape obtained 
with “guess B” in Table 2 is used for the plot in Figure 15. 

Notice that the fin in Figure 15 induces significant 
boundary layer overlap if repeated by periodicity. One 
solution for eliminating the overlap is to space the fins 
to twice the thickness of the boundary layer at the point 
where the adjacent layers come in contact. Another option 
is to use a constraint on the geometry requesting the slope 
of the boundary curve to be zero at the ends of the fin. The 
latter is analyzed next. 

4.3 Smooth-shape constraints for periodic array: low con-
ductivity materials case 

For the non-sharp shapes, it seems reasonable to im-
pose a zero-slope condition at the ends of the interpolating  

 
 
 
 
 
spline. In the moving grid solution (Bobaru and Racha-
konda 2004b), the discretization nodes at the ends of the 
design boundary are forced to take on the same y-coordi-
nate. In the present case, this is not possible as the nodes 
are fixed. Moreover, one cannot impose an end condition 
on shape-preserving splines. The end conditions for these 
splines are determined automatically to preserve the “as-
pect” of the interpolated points. 

Here, we introduce a control point (design variable) 
close to the end-control point (we still use symmetry) and 
choose to impose a geometric constraint in addition to (13) 
and (14), such that the first two design variables have simi-
lar y-coordinates. When the design variables are then inter-
polated with the shape-preserving spline, we will approx-
imately satisfy the zero slope at the ends of the convective 
boundary, which eliminates boundary layer overlap. The 
added constraint is:

H3(y) = (0.001 − |y1 − y2|) * s             (15) 

where s is a scaling factor taken equal to 500. The constraint 
becomes active when the first two design variables dif-
fer from each other by more than 2% when they are close 
to their upper bound or 20% when they are close to their 
lower bound. We select two different starting guesses as 
detailed in Table 3:

case 1  starting values are close to their lower bounds 
case 2  shift upwards the values in case 1 (by 2 cm) so 

that starting values are closer to their upper 
bounds 

These two different starting guesses lead to the optimal 
shapes shown in Figure 16. 

Observe that the shapes obtained are similar to each 
other, the only difference being that in case 1 (starting 
closer to the base of the fin), the optimal shape stays closer 

Figure 14. The history of the boundary layer overlap con-
straint (14) for the material with high conductivity. 

Figure 15. An optimal configuration for the unit-cell fin of a 
low conductivity material when five design variables are used 
on the design boundary. The area constraint is active. As the 
temperature on the convective boundary drops compared to 
the based temperature when heat transfer to the ambient com-
petes with the heat conduction from the base, it is not beneficial 
to create narrow elongated shapes that can reduce heat transfer, 
and thus, decrease the heat flux. In this optimal design (local), 
the control points stay away from their upper bounds. 
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to the base and uses less area, yet produces a similar heat 
transfer value as that from case 2. The more extended fins, 
produced using case 2, result in lower convective bound-
ary temperatures that, in turn, reduce the heat transfer. The 
reason for which the objective function value is not lower 
in case 2 than in case 1 is that the cross-sectional area and 
the length of the convective boundary at the final iteration 
are larger in case 2 than in case 1. This can be seen from the 
data in Figure 17 and Table 2. 

Unfinned local minimizers are also obtained for the case 
of low conductivity material under certain initial guesses. 
Such a local minimum is obtained with all design variables 
touching their lower bounds, closest to the heat source. The 
value of the objective function, however, is better for the 
designs shown above. There is, of course, a certain value 
of the material conductivity that renders the unfinned ther-
mal system as the global minimizer. 

5 Conclusions 

We presented a new shape optimization method based 
on a mesh-free solver, the element-free Galerkin method. 
The new method performs shape changes over a fixed grid 
in which the domain of interest is imbedded (projected). A 
set of “floating” nodes that discretize the boundary are the 
only ones that move, their positions being determined by 
the shape design variables (control points) on the design 
boundary at the intersections between the boundary curve 
and the fixed grid. The combination of the projection onto 

the fixed grid and the EFG solver led to the new E(FG)2 
shape optimization method in which: 

1. the floating nodes are easy to deal with as they do not in-
troduce any complexity in the solution procedure. 

2. the non-smoothness of the objective function observed 
in FEM-based fictitious domain methods appears to 
be eliminated due to the “diffuse” type and higher 
smoothness of the mesh-free approximation functions. 
A formal proof of this is still needed. 

3. shape changes can be extreme from one iteration to the 
next and are no longer limited by differences in node 
density as was the case for moving-grid EFG-based 
shape optimization methods. 

The method introduced here is applicable to general op-
timization problems in elasticity, etc. Here, we treated in 
detail examples from shape optimization of the convective 
boundary for cooling systems (thermal fins) under natural 
convection conditions. Sensitivities were computed here, 
for convenience, internally by the SQP optimizer from the 
IMSL using finite differences. Compared to previous re-
sults on optimal shape design of thermal fins, the newly in-
troduced E(FG)2 method proved to be: 

–  insensitive to the positioning of nodes in the fixed grid, 
–  capable of handling very large shape changes from one 

iteration to the next, 
–  able to enlarge the simple bounds imposed on the shape 

design variables.   

Table 2. Comparison of the influence of the design variables bounds on the qualitative solution for low-conductivity materials. 
Results with lower bound (LB) of 0.015 m are obtained in Bobaru and Rachakonda (2004b). The values of the objective function and 
constraints are shown for the optimal design. 

Test case  Starting  Final  Heat flux (-F(y))  Area  Percentage  Boundary 
  values for   values for   final value  constraint  of allowed  layer overlap    
d.v.’s (m) d.v.’s (m)  (W/m2)  final value area  constraint 

Moving grid a   4.2 × 10−2  1.5 × 10−2  1253.6  1.1 × 10−1  89%  −0.55 × 10−3 
(LB 0.015)    4.5 × 10−2  2.8 × 10−2 
 5.0 × 10−2  4.65 × 10−2 
Fixed grid guess A    4.2 × 10−2  0.50 × 10−2  1435.6  3.1 × 10−2  97%  0.9 
(LB 0.005)    4.5 × 10−2  3.41 × 10−2 
 5.0 × 10−2  3.17 × 10−2 
Fixed grid guess B b   1.0 × 10−2  0.50 × 10−2  1483.4  3.3 × 10−14  100%  0.3 × 10−1 
(LB 0.005)    2.40 × 10−2  3.57 × 10−2 
 4.95 × 10−2  3.17 × 10−2 

a. Results from Table 3 in Bobaru and Rachakonda (2004b) 
b. This starting guess is a perturbation of the final shape obtained with the moving grid method in Bobaru and Rachakonda (2004b)  

Table 3. Coordinate values of the starting guess (in meters) for the seven design variables (only four a given due to symmetry 
imposed) used to obtain the optimal shapes in Figures 10 (sharp fins) and 11 (round fins).

d.v.’s    d.v.’s    optimal    d.v.’s    optimal    
x-coordinates   y-coordinates   y values  y-coordinates   y values 
(cm)  for case 1 (cm)   for case 1 (cm) for case 2 (cm)  for case 2 (cm) 

0.00  0.60  0.50  2.60  0.98 
0.50  0.80  0.60  2.80  1.10 
1.50  1.50  1.17  3.50  1.96 
2.50  3.00  3.85  5.00  4.83
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We found new characteristics of the solution to the prob-
lem of generating optimal shape fins from unfinned areas: 
low conductivity materials tended to use the maximum 
amount of cross-sectional area to allow better “access” to 
the heat source for points on the conductive boundary; 
whereas, highly conductive materials developed long and 
narrow fins to maximize the length exposed to the cooling 
ambient with the design variables touching their lower and 
upper bounds alternatively, while the cross-sectional area 
constraint was far from being active. To eliminate bound-
ary overlap in periodic fins, we introduced a new con-
straint, and we obtained optimal shapes for low conduc-
tivity materials in the form of finned cross-sections that are 
optimal when they remain closer to the heat source. 

The shape optimization method developed here was ca-
pable of capturing all the essential properties of the prob-
lem of shape optimization of cooling systems starting from 
generic, unfinned shapes. The physical process that deter-
mines if fins are to be present or not is driven by the com-
petition between the heat transfer at the convective bound-
ary and the material’s conductivity. Several examples from 
the biological realm can be invoked here in connection to 
this optimal shape design problem: stegosaurus plates 
that evolved, at least in part, as heat-loss fins (Farlow et al. 
1976), and extended surfaces of intestinal villi. The mean-
ing of the coefficients in the heat transfer equations would 
have to be changed to describe the mass transfer equations, 
for the case of the intestinal villi. 

Compared to other fictitious-based projection type 
methods, the E(FG)2 method introduced here handles large 
shape changes in fewer iterations and can be applied for 
shape optimization problems with any types of constraints 
and boundary conditions. 

Figure 16. Two local optimal configurations for the periodic 
fin of a unit conductivity material with an additional con-
straint for the slope at the ends of the unit cell. Seven design 
variables are selected on the unit cell (due to symmetry, only 
four are used). The top design (case 1 in Table 3) stays as close 
as possible to the base of the fin to reduce cooling. The bot-
tom design (case 2) produces a similar objective value but uses 
more area (see Figure 17). The length of the design boundary 
is longer to compensate for the reduced surface temperature 
compared to the case 1 design. 

Figure 17. History of the objective function (12) and con-
straints (13), (14), (15), for a unit-conductivity material with 
slope constraint. The two starting guesses are as described in 
Table 3. The design resulting from case 1 is closer to the im-
posed temperature boundary and uses less area while provid-
ing the same heat flux value as that of case 2. 
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