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Shear-Horizontal Vibration Modes  
of an Oblate Elliptical Cylinder  

and Energy Trapping in Contoured  
Acoustic Wave Resonators
Huijing He, Jiashi Yang, and John A. Kosinski, Fellow, IEEE

Abstract—We study shear-horizontal free vibrations of an 
elastic cylinder with an oblate elliptical cross section and a 
traction-free surface. Exact vibration modes and frequencies 
are obtained. The results show the existence of thickness-shear 
and thickness-twist modes. The energy-trapping behavior of 
these modes is examined. Trapped modes are found wherein 
the vibration energy is largely confined to the central portion 
of the cross section and little vibration energy is found at the 
edges. It is also shown that face-shear modes are not allowed 
in such a cylinder. The results are useful for the understand-
ing of the energy trapping phenomenon in contoured acoustic 
wave resonators.

I. Introduction

Shear vibration modes of crystal plates (including face 
shear, thickness shear, and thickness twist) [1] are the 

modes used most often for bulk acoustic wave resonators 
and resonator-based sensors. An important aspect of these 
modes is their energy trapping behavior. In a partially 
electroded plate, thickness-shear and thickness-twist vi-
brations are largely confined to the electroded central 
region of the plate [2], and fall off rapidly in amplitude 
outside of this region. Near the edges of the plate there 
is essentially no vibration and therefore the plate can be 
mounted at the edges without affecting its vibration. Anal-
ysis of the partially electroded plate has shown that the 
energy trapping is due to mass loading of the elastic plate 
by the electrodes [2]. Contoured plates with varying thick-
ness (thick in the central region and thin near the edges) 
can also produce strong energy trapping [3]. Contoured 
piezoelectric resonators are widely used as electronic com-
ponents and energy trapping in these resonators has sus-
tained research interest for many years [3]–[15]. However, 
analyses to date have typically involved approximate solu-
tions, and exact solutions are rare. For example, the anal-
yses in [3]–[7] were based on approximate two-dimensional 
plate equations for coupled thickness shear and flexure. 

Alternatively, a single scalar equation for thickness-shear 
and thickness-twist modes was derived in [8] and [9] for 
AT- and SC-cut quartz plates, respectively, and this was 
used in [8]–[12] to analyze contoured resonators. The sca-
lar equation derived in [8], [9] is also two-dimensional and 
approximate in nature. Mesa resonators with a stepped 
thickness were studied using combined analytical and nu-
merical (and hence approximate) techniques in [13] for 
strong energy trapping.

Mathematically, the analysis of contoured resonators 
leads to differential equations with variable coefficients 
when the resonators are modeled by two-dimensional 
equations. This presents considerable mathematical chal-
lenges and sometimes additional approximations must be 
made. Only in rare situations can exact modes be ob-
tained from the three-dimensional equations of elasticity 
or piezoelectricity. To date, shear-horizontal modes in-
cluding thickness shear, face shear, and thickness twist in 
an elastic [14] or a piezoelectric [15] wedge with a linear 
thickness variation seem to be the only exact solutions 
available. The solutions for modes in a wedge are useful 
for understanding the behavior of energy trapping in con-
toured resonators because a contoured resonator thick in 
the central region and thin near the edges may be viewed 
as two wedges joined together (a double wedge according 
to [3]). In fact, a cylinder with an oblate elliptical cross 
section (see Fig. 1) may also be viewed as a contoured 
resonator. It has a smooth surface and is closer to many 
real contoured resonators than a double wedge. There-
fore, in this paper, we study shear-horizontal vibrations in 
an isotropic elastic cylinder with an oblate elliptical cross 
section. We have found that this is a rare case among 
contoured resonators wherein exact modes satisfying the 
three-dimensional equations of elasticity can be obtained.

II. Governing Equation

Consider the long cylinder with an elliptical cross-sec-
tion shown in Fig. 1. The semi-major and semi-minor axes 
are denoted by a and b. We are mainly interested in the 
case in which a ≫ b for contoured resonator application 
but our solution procedure is valid for any a and b as 
long as a ≠ b. For resonator applications, we consider the 
case in which the surface of the cylinder is traction free. 
The cylinder is made of an isotropic elastic material. The 
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three-dimensional theory of elasticity allows for shear-hor-
izontal motions described by

	 u u u u x x t1 2 3 3 1 20= = =, ( , , ),	 (1)

which depend on time and two spatial variables only. The 
nonzero components of the strain tensor Sij and the stress 
tensor Tij are

	
S S u S S u
T u T u

4 32 3 2 5 31 31

4 3 2 5 31

2 2= = = =

= =
, ,

, ,

, ,

, ,µ µ
	 (2)

where μ is the shear elastic constant of the material. The 
nontrivial equation of motion takes the form

	 c u u2
2 2

3 3∇ = �� ,	 (3)

where ∇2 is the Laplacian operator. c2 is the speed of 
plane shear waves in an infinite isotropic elastic medium, 
given by

	 c c2
2

44= /ρ.	 (4)

We consider time-harmonic free vibrations wherein all 
fields have the same exp (iω t) factor, which is dropped for 
simplicity. For such time-harmonic motions, (3) reduces to 
the Helmholtz equation:

	 c u u2
2 2

3
2

3∇ = −ω .	 (5)

We introduce elliptical cylindrical coordinates (ξ, η, z) de-
fined by [16]

	 x h x h x z1 2 3= = =cosh cos , sinh sin , .ξ η ξ η 	 (6)

The radial, angular, and axial coordinates (ξ, η, z) are over 
[0, ∞), [0, 2π ), and (−∞, ∞) respectively, and curves of 
constant ξ form ellipses orthogonal to the x3 = z axis. The 
major axis of the cross section of the elliptical cylinder has 
length 2a along the x1 direction and the minor axis has 
length 2b along the x2 direction. The cross section is 
bounded by an ellipse with foci at ±h =  2 2a b−  along 
the major axis of the cross section. Then, (5) takes the 
form

	
∂
∂

+
∂
∂

+ − =
2

3
2

2
3
2

2
32 2 2 0

u u
k u

ξ η
ξ η(cosh cos ) ,	 (7)

where

	 2
2

k c h=
ω

.	 (8)

The nonzero stress components in the elliptic coordi-
nates are

	 T hJ
u

T hJ
u

z zξ η
µ
ξ

µ
η=

∂
∂

=
∂
∂

3 3, ,	 (9)

where

	 J = −
2

2 2 2cosh cos .ξ η 	 (10)

Note that (7)–(10) are dependent only upon the radial 
and angular elliptic coordinates (ξ, η) which describe the 
cross section of the elliptical cylinder.

III. Solutions of the Helmholtz Equation

By the method of separation of variables, we write u3 as

	 u U V3( , ) ( ) ( ).ξ η ξ η= 	 (11)

Substitution of (11) into (7) results in two ordinary dif-
ferential equations:

	
d V
d

q V
2

2 2 2 0
( )

( cos( )) ( ) ,
η
η

λ η η+ − = 	 (12)

	
d U
d

q U
2

2 2 2 0
( )

( cosh( ) ) ( ) ,
ξ
ξ

ξ λ ξ+ − = 	 (13)

where λ is the separation constant and

	 q
h
c

=
ω 2 2

2
24

.	 (14)

Eqs. (12) and (13) are known as the angular and radial 
Mathieu equations, respectively.

A. Solutions of the Angular Mathieu Equation

Eq. (12) has four kinds of periodic solutions with pe-
riod 2π [16]:

	 se q A q rm r
m

r
2 1 2 1

2 1

0

2 1+ +
+

=

∞

= +∑( , ) ( )sin( ) ,( )η η 	 (15)

	 se q A q rm r
m

r
2 2 2 2

2 2

0

2 2+ +
+

=

∞

= +∑( , ) ( )sin( ) ,( )η η 	 (16)

	 ce q B q rm r
m

r
2 2

2

0

2( , ) ( )cos( ),( )η η=
=

∞

∑ 	 (17)

Fig. 1. An oblate elliptical cylinder and coordinate system.
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	 ce q B q rm r
m

r
2 1 2 1

2 1

0

2 1+ +
+

=

∞

= +∑( , ) ( )cos( ) ,( )η η 	 (18)

where m = 0, 1, 2, 3, …. Eqs. (15)–(18) are solutions of 
(12) for each m. Later, when discussing numerical results, 
it will become clear that m is associated with the number 
of nodal lines roughly parallel to the x2 axis. A qr

m( )( ) and 
B qr
m( )( ) are coefficients for the series of η and they depend 

on q. They are solutions of (19)–(22), see above, obtained 
by substituting (15)–(18) into (12). λ2m+1, λ2m+2, κ2m, 
and κ2m+1 are the roots of the polynomial equations of λ 
obtained by setting the determinants of the coefficient ma-
trices of (19)–(22) to zero. se2m+1(η, q) and se2m+2(η, q) 
correspond to modes antisymmetric about the major axis 
(x1). ce2m(η, q) and ce2m+1(η, q) correspond to symmetric 
modes. These will become clear later. λ2m+1 and λ2m+2 are 
associated with the (2m + 1)th and (2m + 2)th antisym-
metric modes, and κ2m and κ2m+1 are associated with the 
2mth and (2m + 1)th symmetric modes. cem(η, q) and 
sem(η, q) are orthogonal functions satisfying the condition

	
ce q ce q se q se q

m n
m

m n m n( , ) ( , ) ( , ) ( , )

, ,
,

η η η η

π

π π

0

2

0

2

0

∫ ∫=

= =
≠

if 
if nn.{

	 (23)

In accordance with (23), we have the following normaliza-
tion conditions:

	

A A

B B

r
m

r
r
m

r

m
r

2 1
2 1

0
2 2
2 2

0

0
2 2

2

2 2
1 1

2

+
+
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+
+
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∞

( )

( ) = ( ) =

+

∑ ∑( ) ( ), ,

( ) (( ) ( ), .2

1
2 1
2 1

0

2 2
1 1m

r
r
m

r

B( ) = ( ) =
=

∞

+
+

=

∞

∑ ∑
	(24)

B. Solutions of the Radial Mathieu Equation

The four kinds of radial Mathieu functions correspond-
ing to the angular Mathieu functions are:

	

1 0 0 0 0
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0 0 7 0
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2 0 0 0 0
4 0 0 0

0 6 0 0
0 0 8 0

2

2

2

2

−











…
− …

− …
− …

λ
λ

λ
λ

q
q q

q q
q q

� � � � � � � 






























+

+

+

+

A
A
A
A

m

m

m

m

2
2 2

4
2 2

6
2 2

8
2 2

( )

( )

( )

( )

�







=

























0
0
0
0
�

,	 (20)

	

−
















…

− …
− …

− …

λ
λ

λ
λ

q
q q

q q
q q

0 0 0 0
2 2 0 0 0
0 4 0 0
0 0 6 0

2

2

2

� � � � � � �


































=

B
B
B
B

m

m

m

m

0
2

2
2

4
2

6
2

0
0
0
0

( )

( )

( )

( )

� �

























,	 (21)

	

1 0 0 0 0
3 0 0 0

0 5 0 0
0 0 7 0

2

2

2

+











− …
− …

− …
− …

q q
q q

q q
q q

λ
λ

λ
λ

� � � � � � � 































+

+

+

+

B
B
B
B

m

m

m

m

1
2 1

3
2 1

5
2 1

7
2 1

( )

( )

( )

( )

�






=

























0
0
0
0
�

.	 (22)



he et al.: shear-horizontal vibration modes of an oblate elliptical cylinder 1777

	

Se q
se q se q

q A

A

m
m

m

m
r

m
2 1

2 1 2

1
2 1 2

2

2 1 0

1

+
+

+

+

+=
( ) ( )
( )

× −

′
( , )

, ,

( )

( )
ξ

π

11
2 1

1 1 2 2 1 1
0

( )[ ( ) ( ) ( ) ( )],m
m m m m

r

J v J v J v J v+
+ +

=

∞

−∑
			

		  (25)

	

Se q
se q se q

q A

A

m m

m

m m
2 2

2

2
2 2 2

2

2 2 2 20

1

+ +

+ += −
( ) ( )
( )

× −

′ ′
( , )

, ,

( )

( )
ξ

π

rr
m

m m m m
r

J v J v J v J v+
+

+ +
=

∞

−∑ 2
2 2

1 2 2 2 2 1
0

( )[ ( ) ( ) ( ) ( )],

			

		  (26)

	

Ce q
ce q ce q

B

B q J v

m
m m

m

m
r
m

m

2
2 2 2

0
2 2

2
2

0

1

( , )
( , ) ,

( ) ( ) (

( )

( )

ξ
π

=
( )

( )

−× 11 2
0

) ( ),J vm
r=

∞

∑
	 (27)

	

Ce q
ce q ce q

q B

B

m
m m

m

m
r

2 1
2 1 2 1 2

1
2 1 2

2

0

1

+
+ +

+

+

= −
( )

( )

× −

( , )
( , ) ,

( )

( )
ξ

π

11
2 1

1 1 2 2 1 1
0

( )( )[ ( ) ( ) ( ) ( )],m
m m m m

r

q J v J v J v J v+
+ +

=

∞

+∑
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where v1 = q exp( ),−ξ  v2 = q exp( ),ξ  and Jm are Bessel 
functions of the first kind.

IV. Shear-Horizontal Modes

We discuss modes antisymmetric and symmetric about 
the major axis of the oblate elliptical cross section sepa-
rately.

A. Antisymmetric Modes

The displacement field of the antisymmetric modes is

	 u t S Se q se qm m m
m

3
1

( , , ) ( , ) ( , ),ξ η ξ η=
=

∞

∑ 	 (29)

where Sm are undetermined constants. Substitution of 
(29) into (9) gives

	 T hJ S Se q se qz m m
m

mξ
µ

ξ η= ′
=

∞

∑ ( , ) ( , ),
1

	 (30a)

	 T hJ S Se q se qz m m
m

mη
µ

ξ η= ′
=

∞

∑ ( , ) ( , ),
1

	 (30b)

where a prime indicates differentiation with respect to ξ 
in (30a) or η in (30b). Let the elliptical boundary of the 
cross section of the cylinder be at ξ = ξ0. The traction-free 
boundary condition is

	 T hJ S Se q se qz m m
m

mξ
µ

ξ η= =′
=

∞

∑ ( , ) ( , ) ,0
1

0 	 (31)

which implies that

	 Se qm′ =( , ) .ξ0 0 	 (32)

Eq. (32) determines a series of values of q for each m. To 
determine the roots of (32), we plot the left side of (32) 
versus q to get some estimates of these roots. These es-
timates are then refined by the bisection method to the 
desired accuracy. Modes corresponding to different values 
of q have different numbers of nodal lines roughly parallel 
to the x1 axis. Then ω can be determined from (14). Note 
that the case of a fixed boundary with u3 = 0 corresponds 
to that of a vibrating membrane, for which the free vibra-
tion solution was given in [17].

B. Symmetric Modes

Similarly, the symmetric modes are given by

	 u C Ce q ce qm m m
m

3
0

=
=

∞

∑ ( , ) ( , ),ξ η 	 (33)

	 T hJ C Ce q ce qz m m
m

mη
µ

ξ η= ′
=

∞

∑ ( , ) ( , ),
0

	 (34)

	 Ce qm′ =( , ) .ξ0 0 	 (35)

V. Numerical Results and Discussion

As an example, for the elastic material we consid-
er Glass-7950 with ρ = 2180 kg/m3 and μ = 2.7815 × 
1010 N/m2. The elliptical boundary is oblate with a = 10b 
= 5 mm, which is typical for a resonator. We use the co-
ordinate system definitions from (6) to calculate the radial 
parameter ξ0 = 0.10033 which describes the surface of the 
elliptical resonator and the corresponding foci locations 
at ±h = ±4.974 mm. For the purposes of this analysis, 
we use the first thirty terms of each series to calculate 
the displacement field. The frequency of the most widely 

Fig. 2. Fundamental thickness-shear mode. First mode when u3 = 
Se1(q,ξ)se1(q,η). ω = 1.1567271 × 107 rad/s. X = 1.088 mm.
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used fundamental thickness-shear mode is calculated to 
sixteen significant figures when thirty terms are kept in 
the series, and this allows for the analysis of phenomeno-
logical trends. We recognize that this level of precision 
far exceeds both the precision of the material constants 
and the precision of any physical manufacturing processes. 
Somewhat fewer terms are required to apply the solutions 
in engineering design. In the figures shown in the follow-
ing, the maximal displacement is normalized to one. The 
figures are not drawn to scale. The ellipses are in fact 
much more oblate than shown in the figures. We will dis-
cuss thickness-shear and thickness-twist modes separately.

A. Thickness-Shear Modes

The fundamental thickness-shear mode is the one most 
widely used in acoustic wave devices. The displacement 

distribution of this mode over a cross section is shown 
in Fig. 2. The inset shows the cross section; darker areas 
represent larger displacements. This mode has one nodal 
line with zero displacement at x2 = 0 or along the x1 axis. 
When the upper half of the cross section is moving in one 
direction, the lower half moves in the opposite direction or 
vice versa. We note that although the top and bottom of 
the cylinder are moving with the largest displacement, the 
left and right edges are not moving. This is the so-called 
energy trapping phenomenon. With energy trapping, the 
cylinder can be mounted at the left and/or right edges 
without affecting the vibration in the central region. To 
quantify energy trapping, we introduce a characteristic 
X which is determined as the central portion of the cross 
section with | x1| < X which carries 90% of the vibration 
energy. If we fix b and increase a, when a/b is very large, 

Fig. 3. Higher-order thickness-shear modes. (a) First mode when u3 = 
Ce0(q,ξ)ce0(q,η). ω = 2.2795427 × 107 rad/s. X = 0.783 mm. (b) Sec-
ond mode when u3 = Se1(q,ξ)se1(q,η). ω = 3.4019209 × 107 rad/s. X = 
0.626 mm. (c) Second mode when u3 = Ce0(q,ξ)ce0(q,η). ω = 4.5241962 
× 107 rad/s. X = 0.624 mm.

Fig. 4. Thickness-twist modes. (a) First mode when u3 = Se2(q,ξ)
se2(q,η). ω = 1.2303289 × 107 rad/s. X = 1.834 mm. (b) First mode 
when u3 = Se3(q,ξ)se3(q,η). ω = 1.3060256 × 107 rad/s. X = 2.263 mm. 
(c) First mode when u3 = Se4(q,ξ)se4(q,η). ω = 1.3837045 × 107 rad/s. 
X = 2.543 mm.
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we expect the result to approach that of a narrow rectan-
gular cross section. Our numerical tests show that when 
a/b = 10, 20, 30, and 40, the frequency of the fundamental 
thickness-shear mode is 1.1567, 1.1397, 1.1340, and 1.1310 
× 107 Hz, respectively, approaching 1.1222 × 107 Hz of 
a rectangular cross section from above, as expected. The 
fundamental thickness-shear mode of a rectangular cross 
section is x1- or a-independent. Our solution cannot be 
directly used to calculate the special case of a circular cyl-
inder with a = b because in this case h = q = 0. Instead, 
we calculate the case of an almost circular cylinder with a 
= 5 mm and b = 0.99a whose first fundamental thickness-
shear frequency is found to be 1.3281 × 106 Hz, very close 
to that of a circular cylinder with a radius of 5 mm which 
is 1.3153 × 106 Hz [18].

Figs. 3(a), 3(b), and 3(c) show three higher-order 
thickness-shear modes. They have 2, 3, and 4 nodal lines 
roughly parallel to the x1 axis, respectively. The frequen-
cies of the thickness-shear modes in Fig. 2 and Figs. 3(a), 
3(b), and 3(c) are roughly equally spaced, but not exactly 

so. The modes in Fig. 2 and Fig. 3(b) are antisymmetric 
about the x1 axis. The other two modes are symmetric. 
We note that higher-order modes are better trapped, i.e., 
with narrower vibration distributions in the x1 direction.

B. Thickness-Twist Modes

Corresponding to the fundamental thickness-shear 
mode in Fig. 2 with a nodal line at x2 = 0, there are 
higher-order modes with additional roughly vertical nodal 
lines, as shown in Figs. 4(a), 4(b), and 4(c) with an in-
creasing number of 1, 2, and 3 vertical nodal lines, respec-
tively. These are called thickness-twist modes. We note 
that the distribution of the modes in Figs. 4(a), 4(b), and 
4(c) in the x1 direction increases for higher-order modes, 
indicating that the higher-order modes are trapped less. 
Unlike the nearly harmonic frequencies of the thickness-
shear modes, the frequencies of the thickness-twist modes 
in Fig. 4(a), 4(b), and 4(c) increase only slightly for the 
higher-order modes.

Fig. 5. Other thickness-twist modes. (a) First mode when u3 = Ce1(q,ξ)ce1(q,η). ω = 2.3521836 × 107 rad/s. X = 1.243 mm. (b) First mode when 
u3 = Ce2(q,ξ)ce2(q,η). ω = 2.4259184 × 107 rad/s. X = 1.686 mm. (c) First mode when u3 = Ce3(q,ξ)ce3(q,η). ω = 2.5007192 × 107 rad/s. X = 
1.976 mm. (d) Second mode when u3 = Se2(q,ξ)se2(q,η). ω = 3.4742139 × 107 rad/s. X = 1.086 mm. (e) Second mode when u3 = Ce1(q,ξ)ce1(q,η). ω 
= 4.5963106 × 107 rad/s. X = 0.934 mm.
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Similarly, Fig. 5(a), 5(b), and 5(c) show three thickness-
twist modes corresponding to the higher-order thickness-
shear mode in Fig. 3(a). Figs. 5(d) and 5(e) are thickness-
twist modes corresponding to the thickness-shear modes 
in Figs. 3(b) and 3(c), respectively.

VI. Conclusion

Exact solutions for shear-horizontal modes have been 
obtained for an oblate elastic elliptical cylinder. These 
modes show energy trapping. Higher-order thickness-
shear modes exhibit rapidly increasing (nearly harmonic) 
frequencies and higher-order modes are increasingly bet-
ter trapped, as shown in Fig. 3. In contrast, higher-order 
thickness-twist modes exhibit slowly increasing frequencies 
and the higher-order modes are increasingly less trapped, 
as shown in Fig. 4. The exact mode solutions obtained are 
rare and provide basic understandings of energy trapping 
in contoured acoustic wave resonators. Analysis of ellipti-
cal cylinders made from anisotropic and/or piezoelectric 
materials can provide further understanding of contoured 
resonators but is mathematically more challenging.
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