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ABSTRACT 
 
Recent research has demonstrated the potential of using an 
articulation-based silent speech interface for command-and-control 
systems. Such an interface converts articulation to words that can 
then drive a text-to-speech synthesizer. In this paper, we have 
proposed a novel near-time algorithm to recognize whole-
sentences from continuous tongue and lip movements. Our goal is 
to assist persons who are aphonic or have a severe motor speech 
impairment to produce functional speech using their tongue and 
lips. Our algorithm was tested using a functional sentence data set 
collected from ten speakers (3012 utterances). The average 
accuracy was 94.89% with an average latency of 3.11 seconds for 
each sentence prediction. The results indicate the effectiveness of 
our approach and its potential for building a real-time articulation-
based silent speech interface for clinical applications. 
 

Index Terms— Sentence recognition, silent speech interface, 
support vector machine, laryngectomy 
 

1. INTRODUCTION 
 
Oral communication plays an important role in social life. Persons 
with speech impairments (caused, e.g., by laryngectomy, which is 
partial or complete surgical removal of larynx) struggle with their 
daily communication [1]. Each year, about 15,000 new cases of 
laryngeal and hyperlaryngeal cancer are diagnosed in the United 
States [2] and there are an estimated 16,500 tracheo-oesophageal 
surgeries every year in the UK [3]. However, currently, there are 
only limited treatment options for those individuals, which either 
produces an un-natural voice (i.e., by electrolarynx) or is limited 
by slow manual input (i.e., as in typing-based Augmentative and 
Alternative Communication devices, AAC) [1]. New assistive 
technologies are needed to provide a more efficient and natural 
mode of oral communication for these individuals.  

Silent speech interfaces (SSIs), although still experimental 
[4], may provide an efficient communication modality. 
Articulation-based SSIs convert silently produced articulatory 
movement or vocal tract data into orthographic transcriptions that 
can be used to drive a text-to-speech synthesizer (TTS) or to 

trigger the playback of pre-recorded sounds. An advantage of using 
pre-recorded sounds is that the individual’s own voice can be 
recorded and replayed post laryngectomy [2, 3, 4].  

Two major challenges of developing SSIs are the lack of 
portable and fast data acquisition devices (hardware) and of 
sufficient algorithms (software) to convert non-acoustic data to 
speech text. Electromagnetic articulography (EMA) is a promising 
development towards better hardware [4]. Fagan et al. have shown 
the potential of their EMA-based silent speech interface for 
command-and-control applications by successfully classifying a set 
of words from movements of sensors affixed to the tongue and lips 
[3, 5]. Our study is focused on the development of a fast and 
accurate algorithm that converts articulation to text. 

Articulatory data can improve the accuracy of automatic word 
recognition for the voiced speech of both healthy [6, 7] and 
neurologically impaired individuals [8]. This typically involves the 
use of articulatory features (AFs) which include lip rounding, 
tongue tip position, and manner of production, for example. 
Phoneme-level AF-based approaches often obtain word 
recognition accuracies less than 50% [6] because articulation can 
vary significantly within those categorical features depending on 
the surrounding sounds and the speaking context [9]. These 
challenges motivate a higher-level unit of recognition. 

Sentence-level recognition has rarely been investigated due in 
part to the difficulty in training appropriate models. Our long-term 
goal is to recognize a set of functional sentences (i.e., those used 
by AAC users in practice) that drive EMA-based silent speech 
interfaces for clinical applications. This paper presents a novel 
sentence-level and near-time recognition algorithm. The algorithm 
was tested using a functional sentence dataset, which is part of our 
ongoing data collection. The algorithm is characterized by the 
following features: (1) recognition is sentence-level, rather than 
phoneme-level; (2) it is based on continuous articulatory 
movements, rather than on discrete AFs; (3) it uses a dynamic 
thresholding technique based on probability change patterns; and 
(4) it is extensible, which means a variety of classifiers can be 
built-in easily. The algorithm will provide the recognition 
component of our future articulation-based SSI. 

 
2. DESIGN & METHOD 
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Fig. 1 illustrates the design of our EMA-based SSI, which contains 
three components: (a) data acquisition, (b) online (sentence) 
recognition, and (c) sound playback or synthesis. This paper 
focuses on the online recognition component whose goal is to 
recognize a set of functional sentences, S. The central recognition 
problem is to convert a time-series of spatial configurations of 
multiple articulators to time-delimited sentences. Here, a spatial 
configuration is an ordered set of 3D locations of the articulators. 
To attain real-time performance, we combine the segmentation and 
identification into a variable size moving window algorithm. The 
algorithm is based on the premise that a sentence will have its 
highest matching probability given an observation window with an 
appropriate width and starting point. A trained classifier that 
derives these matching probabilities is embedded into the 
algorithm, as described in the following section.  
 
2.1. Classifier Training 
 
A support vector machine (SVM) [10] was trained using pre-
segmented articulatory movement time-series data from multiple 
sensors associated with known sentences (training data). SVMs are 
widely used classifiers that find a separating hyperplane between 
classes by maximizing the margin between them. A kernel function 
is used to describe the distance between two data points (i.e., u and 
v in Eq. 1). The following radial basis function (RBF) was used as 
the kernel function in this study, where  is an empirical parameter: 

||)||1exp(),( vuvuKRBF               (1) 
The time required to train this model is not relevant here 

because the training component is developed off-line, i.e., before 
the SSI is deployed in online recognition. Only the time to predict 
sentences is important in real-time applications. To obtain a high 
speed in prediction, a direct mapping strategy was used, in which 
the input data was minimally processed before being fed into the 
SVM (directly mapped to words). Here, the motion paths of 
sensors attached to the tongue and lips are segmented for each 
sentence and time-normalized to a fixed-width (SVMs typically 
require samples to have a fixed length of samples) and 
concatenated as a single vector of attributes, which forms a 
sentence observation. Furthermore, to compare the accuracy of our 
SVM technique to a more common time-series classification 
approach, we also tested the classification using dynamic time 
warping (DTW) [3]. 
 
2.2. Online Recognition 
 
The trained classifier is used to recognize sentences from 
continuous (unsegmented) tongue and lip movement data. Here, a 

prediction window with variable boundaries traverses the sequence 
of tongue and lip movement data to recognize sentences and their 
locations within the window based on the probabilities returned by 
LIBSVM, which extends the generic SVM by providing 
probability estimates transformed from SVM decision values [11]. 
 
2.2.1. Parameters 
Several parameters were obtained from a training data set of 
sentences S (|S|=N) before being used in online recognition: 
 lmax: maximum length of sentences 
 lmin: minimum length of sentences 
 thc[N]: an array of candidate thresholds, one for each sentence  

in S that represents the minimum probability for a sample to be 
considered as a candidate. 

 thd[N]:  an array of decision thresholds, one for each sentence in 
S which specifies the probability necessary to verify a candidate. 
These are the mean identification probabilities across training 
sequences for each sentence.  

 W: span of the prediction window, specified by its left and right 
boundaries, [Wl, Wr].  
The algorithm also uses the following adjustable empirical 

parameters: 
 : step size with which the window W moves forward.  
 : step size with which the size of estimated sentence length 
is incremented in the process of generating probabilities.   

 
2.2.2. Recognition Algorithm 
Fig. 2 gives the details of the proposed algorithm. First, at each 
time t, possible candidates are generated by the sub-function 
GenerateCandidates. The probabilities of all possible lengths for 
each sentence at time t were explored within multiple time spans 
between (t + lmin) and (t + lmax) in steps of . The duration of 
sentences ranged from 0.50 (lmin) to 1.19 (lmax) seconds in this 
dataset. The window W then moves by  and the process is 
repeated. The offset of the probability function varied considerably 
across sentences, which makes it difficult to identify a sensitive 
candidate threshold. Therefore, the probabilities associated with 
each sequence are baseline-corrected by subtracting the average 
probability derived from the first lmin seconds of the test sequence. 
Furthermore, each sentence has its own thresholds (thc and thd). At 
each t, the highest probability across different lengths is retuned as 
the probability at t for a sentence s. If the probability is greater than 
the candidate threshold (thc), a candidate is saved in C. In the early 
stage of this work, thc (= 0.083 for all sentences) and thd (=0.6) 
were given based on training probabilities and observation.  

All candidates are then verified according to their 
probabilities (Lines 4-19). For a sentence s, there are two 
possibilities in terms of number of candidates. First, if there is only 
one candidate c (represented by a tuple <s,t>) for s, then if its 

 
Fig. 1. Design of the EMA-based silent speech interface 
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probability is greater than the decision probability thd(s), the 
sentence is recognized with that hypothesis. Alternatively, there 
could be more than one candidate for s. Here, the trend in the 
change of probability is analyzed within the window W. If the 
probabilities for s are decreasing, implying ongoing decreases, the 
candidate for s is confirmed (Line 10-11 in Fig. 2); otherwise, the 
decision-making is delayed. We assume that the probabilities for s 
cannot increase indefinitely as t moves forward. 

The Time Location Constraint (TLC) (Line 15 in Fig. 2) is as 
follows: if the difference between times t1 and t2 is less than lmin, 
they are considered as a single time location. Only the sentence 
with the highest probability is retained at one time location.  

The time taken by the algorithm is in O(n × l × |S|), where n is 
the length of the input sequence in time,  l (i.e., (lmax - lmin) /  ),  
the number of estimated length and |S| (number of sentences) can 
be treated as a constant for a given dataset for evaluation.  

Two measures, prediction location offset (machine-
independent), and prediction processing time (latency) (machine-
dependent), were used to evaluate the efficiency of the algorithm. 
Prediction location offset is defined as the difference in location 

(indicated using time) between where a sentence was spoken and 
the time it was recognized. It gives a rough estimate of how much 
information is needed for predicting a sentence. Latency is the 
actual CPU time for a sentence prediction (prediction time minus 
the sentence onset time) 

 
3. DATA COLLECTION & PROCESSING 

 
3.1. Participant, stimuli, and procedure 
 
Ten healthy American English female speakers participated in the 
data collection. Each speaker participated in one session in which 
they repeated multiple iterations of a sequence of sentences. 
Twelve sentences for basic greeting and conversation were selected 
form a list of most frequently used sentences among AAC users 
[12]. In total, 3012 sentences (in 251 sequences) were obtained 
and used in this experiment. 

The electromagnetic articulograph AG500 (Carstens Inc. 
Germany) was used to register the 3-D movements of the tongue, 
lip, and jaw when a subject was talking. The AG500 records 
movements by establishing a calibrated electromagnetic field in a 
cube that can track the movements of tiny sensor coils that were 
attached on the surface of the tongue, lips, and jaw using dental 
glue. The spatial precision of motion tracking using the AG500 is 
approximately 0.5 mm [13]. 

Fig. 3 shows the positions of the 12 sensors. Three head 
sensors, HC (Head Center), HL (Head Left) and HR (Head Right) 
were collected to perform head-orientation normalization. Data 
from four tongue sensors named T1 (Tongue Tip), T2 (Tongue 
Blade), T3 (Tongue Body Front), and T4 (Tongue Body Back), 
and two lip sensors (Upper and Lower Lip) were used for analysis. 
The movements of three jaw sensors, JL (Jaw Left), JR (Jaw 
Right), and JC (Jaw Center), were recorded for future use. 

 
3.2. Data processing 

 
Prior to analysis, the time-series data of sensor locations recorded 
using EMA went through a sequence of preprocessing steps. First, 
head movements were subtracted from the tongue and lip 
locations. The orientation of the derived 3-D Cartesian system is 
displayed in Figure 3. Second, a zero-phase lag low-pass filter (at 
10 Hz) was applied for removing signal noise. Third, all sequences 
were manually segmented and annotated with sentences. Only y 
and z coordinates of the sensors (i.e., T1, T2, T3, T4, UL, and LL) 
were used for analysis because the movement along the side-to-
side axis is not significant in normal speech production. 
 

 
Fig. 3.  Positions of sensors attached on the subject's head, face 

Whole-Unit Recognition Algorithm  
Input:  sequence   
Parameters: S, lmin, lmax, thc, thd, t, , 
1    t = 0;    Wl = 0; Wr = 0; C = ø; R = ø;   
2    while (t < |sequence|- lmax) 
3       GenerateCandidates(sequence, t, Wl, Wr, C);  
4       if !empty(C )   // if found candidates in window [Wl, Wr] 
5             Wr = t;  //adjust right boundary of prediction window 
6 for  s  S 
7     if there is one candidate, c, s.t. prob(c)  thd(s) 
8         R = R  {c};  // c=<s, t>, s is recognized at t 
9         Wl = c.t;  //adjust left boundary of the window W 
10             else if  c1, c0, s.t. t0 < t1, prob(c1) < prob(c0) 
11         R = R  {c0};  // s is recognized at t0 
12         Wl = t0;  // c0 = <s, t0>;  
13             end 
14 end 
15            R = CheckTimeLocationConstraint(R);     
16            Output(R);   // output all c’s in R in chorological order  
17            C = C – R;   // remove all c’s in R from C 
18 R = ø;    // clear R; 
19      end  // concludes if in line 4 
20      t = t + ;     //keep reading data 
21    end  // concludes while in line 2 
 
SubFunc GenerateCandidates(sequence, t, Wl, Wr,C) 
Parameters: lmin, lmax,  
1        for  s  S 
2         for (i = lmin; i<lmax; i = i + ) 
3             probs(s, t + i) = GetProbs(sequence, t, t + i);   
4        end            
5        for  s  S, prob(s, t) = GetMax(probs, Wl, Wr);  end 
6        for  s  S, RemoveBaseline(prob); end 
7        for  s  S 
8         if prob(s, t)   thc(s)  
9          c = <s, t>;   C = C  c;   end 
10      end // C is the candidate list  
EndSubFunc 

Fig. 2. Whole-unit online recognition algorithm.  
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4. RESULTS & DISCUSSION 

Leave-one-out cross validation was conducted within each subject. 
The average classification (training) accuracy was 93.76% (std. 
dev. =2.39) across subjects using our approach (direct mapping 
and SVM). Although the DTW approach obtained a higher 
accuracy of 98.09% ( =1.55), our SVM approach (which took an 
average only of 7.98 ms for a single sentence classification) was 
significantly (p<0.00001) faster than DTW approach (which took 
3069.2 ms on average). Thus, only the SVM approach was used in 
the online recognition experiment, where a sentence was 
recognized correctly if the predicted time was less than 100 ms 
before or after the actual onset time. 

On average, the online recognition accuracy across subjects 
was 94.89% (std. dev. =3.72). The average prediction location 
offset and latency was 0.23 ( =0.04) and 3.11 ( =0.97) seconds 
for each sentence, respectively. The high accuracy shows the 
effectiveness of our proposed algorithm. The short delay indicated 
that our approach was able to make a prediction based on even a 
small amount of information, making it feasible for real-time 
applications. A short latency gives an estimate of how much CPU 
time is needed for each sentence prediction (we used a PC with a 
2.5 GHz dual core CPU and 6GB RAM). The low standard 
deviations of these measures across subjects indicate that the 
algorithm is effective for multiple persons. Fig. 4 shows an 
example of the probabilities on a selected sequence where peaks 
occur in the presence of known sentences. 

 
5. CONCLUSION & FUTURE WORK 

Experimental results indicate the effectiveness and efficiency of 
our proposed whole-sentence recognition algorithm from 
articulatory movements and its potential for building a real-time 
articulation-based SSI, which can be used by non-vocal 
individuals.  

Although the current results are encouraging, the online 
algorithm still has room for improvement. First, automated 
methods are needed to find optimal parameter settings during 
training. Second, decisions during online prediction could be 
improved using more sophisticated criteria than the peak value in 
the probability function. Third, faster DTW algorithms [14] and 
other classifiers (e.g., HMM [15]) will also be investigated. 
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