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Abstract mization processes. These high customization costs are pro

With growing cost of electricity, the power management dfibitive, especially if the processes need to be executeetre
server clusters has become an important problem. Howevdiively. Composed of a large number of machines, a cluster is
most previous researchers only address the challenge irohonvery dynamic, where servers can fail, be removed from or@dde
geneous environments. Considering the increasing pojtylar to it frequently. To achieve high availability in such an gon-
of heterogeneous systems, this paper proposes an effidientrent, a mechanism that is easy to be modified upon changes is
gorithm for power management of heterogeneous soft rewd-ti essential. This paper proposes an efficient algorithm fargpo
clusters. It is built on simple but effective mathematicatlels. management (PM) of heterogeneous soft real-time clustégs.
When deployed to a new platform, the software incurs low comake two contributions. First, the algorithm is based orpsm
figuration cost because no extensive performance measatemedut effective mathematical models, which reduces custamiz
and profiling are required. To strive for efficiency, a threkh  tion costs of PM components to new platforms. Second, the
based approach is adopted. In this paper, we systematicalfieveloped online mechanisms are threshold-based. Acgprdi
study this approach and its design decisions. to an offline analysis, thresholds are generated that divide
. workload into several ranges. For each range, the power man-
1 Introduction agement decisions are made offline. Dynamically, the PM com-
Clusters of commodity-class PCs are widely used. When dponent just measures and predicts the cluster workloaijeec
signing such a system, traditionally researchers havestatan its range, and follows the corresponding decisions. In phais
maximizing performance. Recently, with a better undediten  per, we systematically investigate this low-cost efficipaiver
of the overall cost of computing [1], researchers haveetaid  management approach. Simulation results show that our algo
pay more attention to optimizing performance per unit oftcosrithm not only incurs low overhead but also leads to neanogti
According to [1], the total cost of ownership (TCO) includee  power consumptions.
cost of cluster hardware, software, operations and powsa A The remainder of this paper is organized as follows. The re-
result of recent advances in chip manufacturing technolh@y  |ated work is illustrated in Section 2. Sections 3 and 4 respe
performance per hardware dollar keeps going up. However, thyely present the models and state the problem. We disbess t

performance per watt has remained roughly flat over time. Kigorithms in Section 5 and evaluate their performance i Se
this trend continues, the power-related costs will sooreedlc tjon 6. Section 7 concludes the paper.

the hardware cost and become a significant fraction of tta tot
cost of ownership. 2 Related Work

To reduce power and hence improve the performance pBpower managementof server clusters [4, 5, 8, 14, 15, 16]dras b
watt, cluster power management mechanisms [4, 5, 8, 11, lehme an important problem. The authors of [3, 19] were the firs
15, 16, 17] have been proposed. Most of them, however, al@point out that cluster-based servers could benefit sagmitly
only applicable to homogenous systems. It remains a difficiirom dynamic voltage scaling (DVS). Besides server DVS, dy-
problem to manage power for heterogeneous clusters. Two n@a&mic resource provisioning (server power on/off) mecsasi
challenges have to be addressed. First, according to loghd amere investigated in [8, 14] to conserve power in clusters.
server characteristics, a power management mechanism musiThe aforementioned research has all focused on homoge-
decide not only how many but also which cluster servers shouheous systems. However, clusters are almost invariabgrdret
be turned on; second, unlike a homogenous cluster, whese itgeneous in term of their performance, capacity and power con
optimal to evenly distribute load among active serversytifie  sumption [11]. Survey [2] discusses the recent work on power
ing the optimal load distribution for a heterogeneous elusta management for server systems. It lists power management of
non-trivial task. heterogeneous clusters as one of the major challenges.

A few researchers [11, 17] have investigated mechanisms to The most closely related work is that of [11, 17]. Authors
address the aforementioned challenges. However, theinamecof [11] consider request distribution to optimize both poard
nisms all require extensive performance measurementi@at  throughput in heterogeneous server clusters. Their méxhan
few hours for each machine” [17]) or time-consuming optitakes the characteristics of different nodes and requesstinto



account. In [17], energy efficient real-time heterogenadus-  in the (0, f;_...] range!. The capacity model relates the CPU
ters are investigated. Both papers note that in heterogsnemperating frequency to the server’s throughput and the powe
clusters it is difficult to properly order servers with resp model describes the relation between the CPU frequency and
power efficiency and it may not be optimal to turn on the smallthe power consumption. While our approach could be general-
est number of machines to satisfy the current load. ized to different capacity and power models, in this paper we
However, both approaches depend on time-consuming opéssume and use the following specific models to illustrate ou
mizations to find the best cluster configuration for everysifle  method.
load. Even though the optimizations are executed offlineyth 3.2  Capacity Model

need to be repeated every time upon new installations, Iser¥gfe assume that the cluster provides CPU-bounded servises, a
failures, cluster upgrades or changes. Extensive perfecema typical web servers do today [3]. Therefore, to measure #he c
measurements and long optimization processes [11, 17}¢eadpacity of a back-end server its CPU throughput is used as the
high customization costs. To avoid these prohibitive Co8& metric, which is assumed to be proportional to the CPU oper-
propose in this paper a simple power management algorithm fgting frequency. That is, thé" server's throughput, denoted
heterogeneous soft real-time clusters. The algorithmssdban asy;, is expressed ag; = «; f;, whereq; is the CPU perfor-
mathematical models that require minimum performancelprofimance coefficient. Different servers may have differentesl

ing. Instead of solving the optimization problem for evensp  for ;. With the same CPU frequency setting, the higherdhe
sible load, our algorithm derives thresholds, divides lo#d  the more powerful the server is.

several ranges and determines the best cluster configufatio 33 Power Model
mula for each workload range, leading to a t|me—eff|C|ent—optThe power consumptio; of a server consists of a constant

E‘ézzt::: dpazgﬁ?es\'/sésilljc:tshee-:zgreti,rgzlr a(;\gllvc:arrltzcr)r:llsr:;xrstiéc;‘\zrev part and a variable part. Similar to previous work [8, 5, 113,
P P P " approximateP; by the following function:

3 Models Py = xi(ci + Bif)) 1)
In this section we present our models and state assump®ens {herez; denotes the server's on/off state:
lated to these models. th .

)0 thei'" server is off 5
3.1 System Model i 1 theit" serveris on @)

A cluster consists of a front-end server, connected to N {eanck
servers. We assume a typical cluster environment in whieh t
front-end server does not participate in the request psitgs

The main role of the front-end server is to accept requests a
distribute them to back-end servers. In addition, we deghey

NVhen a server is off, it consumes no power; when it is on, it
consumes; + 3; f¥ amount of power. In this model; denotes

lt_pe constant power consumption of the server. It is assumed t
include the base power consumption of the CPU and the power

power-management mechanism on the front-end server to Sonsumption of all other components. In addition, the CFRd al

P i i i i
force a server power on/off policy. Figure 1 shows a web Serv§onsumes 3 POwWes; f; th"_ﬂ_'s varle(_j with the CPU operating
cluster example that fits our system model. requencyf;. In the remaining of this paper, we uge= 3 to
illustrate our approach.

Hence, in the cluster the power consumption of all back-end
servers can be expressed as follows:

N
T =Y wilei+ Bif}] 3)

=1
Here, for the purpose of differentiatios,is used to denote the
cluster’s power consumption whilB denotes a server’'s power
consumption.

Following the aforementioned models, each server is speci-

fied with four parametersf; .., @, ¢;, ands;. To obtain these
parameters, only a little performance profiling is required

4 Power Management Problem

Given a cluster ofV heterogeneous back-end servers, each spec-
ified with parameters;_ ..., «;, ¢;, andp;, the objective is to
minimize the power consumed by the cluster while satisfyieg

In a heterogeneous cluster, different back-end serversl co0!lowing QoS requirementiz; ~ R, whereR; stands for the
have different computational capacities and power effgis) average response time of requests processed.b'f/”[back-end
In the following, we provide their models. We assume proceServer andR stands for the desired response time. The average

sors On_the bac_k'end Server_s support dynam_ic VOItage g_calm 1In Section 6.3, we also evaluate the algorithm’s perforreantservers with
and their operating frequencies could be continuouslystdgl only discrete frequency settings.

Figure 1. System Model




response timé?; is determined by the back-end server’s capacAs shown above, the optimal solution is determined by twé var
ity and workload. We usg; = «, f; to denote the server’s ca- ables: individual server’'s on/off state and workload distri-
pacity and);, the server’s average request rate, to represent thation )\;. To achieve the optimal power consumption and to
workload. Thus,R; is a function of these two parameters, i.e.guarantee the average response time, the key thereforim lies
R; = g(ui, A;). To enforceR; ~ R, we must controli; = o; f;  the front-end, i.e., the power on/off and workload disttibn
and\; properly. As a result, the power management problem &trategies. We present these strategies in the next section

formed as follows: 5 Algorithms

minimize N 3 When we design the power management strategies, one major
J= Z wilei + Bl ) focus s on their efficiencies. For a given worklogdsz., the
) =t front-end power management needs to decide 1) how many and
subject to: \o— ) which back-end servers should be turned on and 2) how much
i=1 TN = Acluster workload should be distributed to each server. SiAggster
il —2:) = Og i=12-,N ®) changes from time to time, these decisions have to be reevalu
glaifi, \i) = R, i=12--- N ated and modified regularly. Thus, the decision processdas t

;ge very efficient.
The mechanism we propose is built on a sophisticated but
low-cost offline analysis. It provides an efficient threghol

where A\ yste 1S the current average request rate of the clu
ter. We assume the cluster is not overloaded, that is, thagse

response time requiremeit, g(c; fi, \;) ~ R is feasible for ) o . .
P d glaifi M) based online strategy. ASSUMING, e IS the maximum

the cluster with a\ ;,s:c, request raté. The first optimization Kioad th be handied by the ol th L
constraint guarantees that each request is processed ty an'¥Prkload that can be handled by the cluster without viogtin

tive back-end server while the second constraint says awsisry 1€ @verage response time requirement. The offline analysis
either in an on or an off state. generates thresholds;, A5, - -- , Ay and divides (0 \¢uster]

For the power management, the front-end component dif0 (0; Aul (A1, Ao], -, (Ak, Akl -+, (Av—1, An]ranges
cides the server's on/off state,{ and the workload distribution (WhereAx = Aciusier). For each range, the power on/off and
among the active servers;j. On the back-end, each active nodeVorkload distribution decisions are made offline. Dynarityca
adjusts its CPU operating frequentyin the (0, f;.ma.] rangeto e system justmeasures and predicts the workload:e, de-
ensure the response time requirement, where a combined fe8f€S the rang@.,s.. falls into, and follows the corresponding
back control with queuing theoretic prediction approaghjlar ~POWer management decisions. Next, we present the details of
to that in [18], is adopted. our algorithm.

According to theM /M /1 queuing model, functiol?; = 5.1 Optimization Heuristic Framework
g(pi, Ai) is approximated as follows: In Section 4, the power management is formed as an optimiza-

1 1 tion problem (Equations (8) and (9)). Instead of solvingoit f

R; = = (6) : :
pi—XNi o aifi— i all possible workload\ ;,s¢e.- in the (0,A¢1useer] range, we pro-
T te, ~ B, imate th to be: pose a hgunsﬂc to simplify the problem. It is constructathw
0 guaranted?; ~ R, we apgzomm? e the propgy to be the following framework:
fi= o + 5 ) e The heuristic first orders the heterogeneous back-end
i (67

servers. It gives a sequence, caltedered server listfor
activating machines. To shut down machines, the reverse
order is followed.

Second, the optimal thresholds, k € {1,2,3,--- N} for

when0 < A\; < o fimar — lR. This approximation, however,
may introduce modeling inaccuracy. To overcome this inaccu
racy, we combine feedback control with queuing-theoreticp o

diction for the dynamic voltage scaling (DVS). Neverthsléa
Section 6.4, experimental data shows that the queuing model
estimate (Equation (7)) is very close to the ré¢alsetting of
the combined approach. This close approximation justifies t
adoption of the queuing estimatggdn the problem formulation.
The power management problem becomes:

minimize

A1
J:;Ii[ci—FﬁiX(a—i—Faié) ] (8) .
subject to:
Zij\il :Ei)\i = Acluster
SCZ(I—SCZ):O, 221,2,,]\] (9)
OS)\iSOéifi_mam_%v Z—la I 7N

2A simple admission control mechanism could enforce thistraint.

turning on and off servers are identifiedAif;, s¢e IS in the
(Ak—1,Ag] range, itis optimal to turn on the firtservers

of the ordered server list This also means if\.j,ster
changes between adjacent ranges, such as(figm, Ax]

to (Ax, Ax+1], the heuristic requires on/off state change for
justonemachine. Considering the high overhead of turn-
ing on/off servers (e.g., several minutes), this approach i
superior in that it minimizes the server on/off state change
Third, the optimal workload distribution problem is solved
for N scenarios wheré\ uster € (Agp—1,Ar],k =
1,2,---,N. When)\ uster € (Ak—1,Ag], it is optimal

to turn on the firsk servers of therdered server listi.e.,
z;=1,i=1,2,---kandz; =0,i = k+1,k+2,---,N.
With values ofz; fixed, the optimization problem (Equa-
tions (8) and (9)) becomes:

minimize



as its typical workload\,. This way theordered server list
is created by comparinég(%i) and is solely based on the
server’s static parametess, ¢;, and;.

subject to: e Activate All policy (AA). This activation policy always
Zz_c A=\ turns on all back-end servers. Therefore in this case the
{ =1 cluster L (11) power on/off mechanism is not needed. Neither isahe
0<Ai < difimer =5 1=12,.k dered server list

The analysis is simplified to solving the above optimization ® RANdom policy (RAN). This policy generates a random
problem fork =1,2,--- , N. ordered server lisfor server activation.
e Static Power based policy (SP). This policy orders ma-

Time Efficiency Analysis. If we consider solving the optimiza- . X . : .
chines by their static power consumption. A server with

tion problem (Equations (10) and (11)) as the basic operatio I _ onis listed lier i
the time efficiency of the proposed heuristicd$ N ), while the 5;1sm3 erdstanc polr/ver consumptienis listed earlier in
time efficiency to obtain the optimal power management solu- theordered server list

tion (i.e., solving Equations (8) and (9)) for all integeripts in * PseudoDynarnic Power based p_oIicy (PDP). This pplicy
the (0, \uusrer] range iSO ([Actuster 12). orders machines by the dynamic power consumption pa-

In the next three subsections, we discuss the decisions-on rameters;. A server with a smalles; is listed earlier in the

dered server listserver activation thresholdmdworkload dis- ordered server list According to thildet\'n"ﬁ'ogn of power
tribution respectively. For each decision, several strategies are efficiency PI-/(\ its dynamic part is® X( TR) As we

investigated. can see, the dynam|c power efficiency i is not solely deter-
5.2 Ordered Server List mined by 3;. This policy is therefore callegseudody-

Our algorithm follows a specific order to turn on and off ma- _ na@mic power based policy.

chines. To optimize the power consumption, this order mast 12-3 ~ Server Activation Thresholds

based on the server’s power efficiency, which is defined as tihethe previous section we introduced threlered server listhat

amount of power consumed per unit of workload (i.@'g{—”). specifies which servers to choose when we need to turn on or off

Servers with better power efficiencies are listed first. machines. This section presents our threshold-basedgyrad
According to the power model and the dynamic voltage scatlecide the optimal number of active servers.

ing mechanism adopted by back-end servers (Sections 3 & 4), The goal is two-fold. First, an adequate number of servers

the power consumptio®;(\) of a server includes a constantshould be turned on to guarantee the response time requiteme

partc; and a variable pag; x ( 2 Ry ) (see Equation (8)). Second, the number of active servers should be optimal with

Given any two servergandy, if ¢; < ¢; and By < ﬁg, server; respect to the consumed power. .

To meet the response time requirement, the number of ac-
has a better power efficiency than seryeHowever ifc; <¢j tive servers should increase monotonically with the waakllo
and ﬁ% > %, the power efficiency order of the two is notfixed. ), ,... The heavier the workload, the greater the number
When the server workload is small, P;()\) is less thanP;(\)  of active servers required. It suggests that we turn on more
and servei has a better power efficiency; while Asncreases, servers only when the current capacity becomes inadequate
P;(\) gets larger tha®; (\) and servey’s power efficiency be- to process the workload. Accordingly capacity thresholds
comes better. In the proposed method, to trade for online a1, Ac2, - -, Acn are developed and eadh;, corresponds to
gorithm’s efficiency and minimum server on/off operatiothe the maximum workload that can be processed by the first
ordered server lists determined offline and is not subject to dy-servers. According to Equation (6), when a server is opegati
namic changes. Therefore, even if the servers’ power dfigie at its maximum frequency .., it can process at most_,q.
order is not fixed, their activation order is neverthelesede amount of workload and meet the response time requirement:
mined s_tatically. Next we present our method and list sévera Nimaz = Qi fimaz — l (12)
alternatives for generating the activation order. R

e Typical Power based policy (TP). We assume the typicalThus, we have: &
workload for a server is\.. In our_heurrs_trr:, servers are Aok = Z Niman = Zo‘lfz -
ordered by their power consumptlon efficiency under the
typical workload, i.e. ,P7§7\ 2. A server with smaller& When the current Workload exceeds this threshulg, at least

i Bix (D13 k + 1 servers of therdered server lishave to be activated.

i.e., Sma”er+‘”ﬂ, is listed earlier in theor- However, the above thresholds may not be optimal with re-
dered server listA powermanagement mechanism usuallyspect to the power consumption. The power consumed by a
turns on a server when needed or when it leads to a reducsgtver is composed of two parts: the static parnd the dy-
power consumption (see Section 5.3). As a result, an anamic part3; 2. When adding an active server, the cluster’s
tive server usually works under a high workload. Thus wetatic power consumption increases but its dynamic power co

choose a workload that requir88% capacity of a server sumption may actually decrease. The reason is that with more

o (13)




active servers to share the workload, the workload digieithu ~ subject to:
to each server decreases; consequently, the CPU openading f Zle Xi = Acluster
quencyf; required for each server may get smaller, which could 0< N < % fimaz —
lead to a reduced dynamic power consumption of the cluster.

To derive the optimal-power threshold, scenarios when adhe analysis is to find optimal solutions for all,,k =
tivating k£ + 1 servers is better than activatingservers are 1,2,---,N.
identified. In such scenario#, servers are adequate to han- To solve the optimization fody, we first assume that all
dle the workload. But if we activatk + 1 servers, the system back-end servers are running below their maximum capagitie
consumes less power. We assume that the optimal power cd® 0 < Xi < Qi fimaz — =i = 1,2,..., k. Since the second
sumption using the first servers to handl@,;,.:., workload, constraint of the problem is satisfied, the optimizationdoees:
whereXuster € (0, Ack], iS Ji(Acruster) (S€€ Section 5.4 for ~ minimize

16)
1 . (
E, Z—1,2,...,k

Jk()\clustw)’s derivation). It is a monotonically increasing func- . _ _ ﬁ 1 5
tion of A\.juster. We analyze the following equation: T = ;[CZ + 0% (ai + aifz) ] (17)
jk(/\cluster) = jk-Q—l(Acluster) (14) .
subject to:
According to characteristics of functionik()\cluster) and i VY (18)
Ji+1(Aciuster) (S€€ Section 5.4), there is at most one solution — i@ = Aeluster

for Equation (14). If such a solutiok,,,,.,. is found, then ac- . i
tivating & + 1 servers is more power efficient than activating According toLagrange’s Theorerfv], the first-order necessary

servers Whem.uaer > Ajuore,- The proof is as follows. 1) condition for.J,'s optimal solution is:
jk()\cluster) is less thankarl()\cluster) for small )\cluster; 2) 36, Jo(\:.8) = k c Ai 1 \3

: « L . . ; i,0) = i+ 0 X (58 + —=
functions Ji (Aciuster) @nd Jit1(Aciuster) iNCrease monotoni- il ) i;[ & (C“ aiR) ] (19)
cally with Acjuster; and 3) if and only ifAquster = Nyjyarer 8C- N 5& N\ )
tivating k or k + 1 servers consumes the same amount of power. oy o Celuster

Therefore, once\ysier €XCEEASY,, 00 jkﬂ()\cluster) be- o o .
comes less thatiy (Acuster ), €., it becomes more power effi- and its first-order derivatives satisfy
cient to activate: + 1 servers. w =0, i=1,..k
Therefore, when there is a solutioq,,, ;.. € (0, A for a7k (i8) _ (20)
Equation (14), we find the optimal-power threshalg;, = a0

N 1uster Where activating: + 1 servers is more power efficient Solving the above condition, we obtain the optimal workload
than activatings servers when ... exceeds this threshold; distribution);,i = 1,....k as:
otherwise, we assigh,, = —1. After analyzing Equation (14) o (Aetuster + %) a1
fork =1,2,---, N — 1, we obtain another series of thresholds: Ni=——F———\/7 3 (21)
. (e ﬁl R
optimal-power threshold&,,;, Ay, ..., Ap(v—1)- >y B—;
By combining capacity and optimal-power thresholds, we get i=1
the server activation thresholds, k =1,2,--- , N: The corresponding power consumption is:
Ack for App = —1ork =N L& (Actuster + £)3
A — P = - —R
g {Apk for Ay, # —1 L Zcz +— — (22)
=1 (J;l (&7 ﬁ_j)

We use the symbal’ P to denote the abov€apacityPower-
based strategy. For comparison, a basdliApacity-only strat- The above solution is optimal when allback-end servers are
egy, denoted a€’4, is also investigated, for which;, = Ac;.  running below their maximum capacities. That is, when

In the Activate All policy (AA), no server activation thresholds (Equation (21)) satisfies the constrainttdat \; < a; fi_maz—

are needed. 1.i=1,2,..., k. Thus, the above condition holds true only for
54 \Workload Distribution light workloads. As) ..t iNCreases, servers start to be satu-

) o rated one after another. That is, a server’s shared workigad
Last two sections solved the problem of deciding how many ang, -hes its maximum level, f; _ 1 where we have:
. - . -max D .
which back-end servers should be activated for a given work- R

load. This section proposes a strategy to optimally digtelhe V- i (Actuster + %) \/E 1
workload among active servers. v k — 8 R
According to Section 5.1, if the firgt servers of therdered ; Qj \/5:2
server listare activated, the optimization problem becomes: = 1
minimize . = ifimae — 3 (23)
i 1 35
T Z[Cl i x (ai * aiR) ] (15) Solving Equation (23) for system workloag;,, ., we get:



We define)” as:

e | Bi . (% k 13 b fa; k
Acluster — fl_maz o 7:21 6] A (24) )\ZL g fm_mar @ ZQ Qi ﬁ_j + Zl aifi_maz - E (32)
. j= - =

This result seems to indicate that among#ktetive servers, the
In general, when\ yster € [A}f,/\m*l), m of the k ac-

one with a smaller value of; \ /ﬁ reaches its full capacit
| Ofimaz - der P b Y tive servers are saturated. That ks, = o fimae — R,z =
earlier as\ .1 increases. We therefore order theervers by 1,2,--- ,m. The optimization problem becomes:

their fl_mam/a, values and generate tlsaturated order list m|n|mize

When a server gets saturated, its shared workload shoulzkenot k 1 Ai 3

increased any more. Otherwise its response fitneill violate e o= Y le+pBix (a-R + oz_i) J

the requirement. As a result, after the first server’s sétna i=m1 !

i.e., the saturation of the first server on tegurated order list i

we have the server’s shared workload)as= a1 f1_maz — % + Z (ci +0if7 maw) (33)
=1

and the system workload as:

k .
| B1 /aj k subject to:
Ac uster — J1.max g - — —A 25
lust fl (6751 = 57 ( ) k m 1

Z /\z = )\cluster - Z (aj fj_mam - E) (34)

The workload distribution problem becomes: i=m+1 j=1
minimize k /\ 1 and the optimal solution is :
Jo = ZCZHL )] .
i= i Qi O‘i(Acluster - Z ajfj_mam + %) . 1
+ (Cl + G111 maa) (26) Nio= = Jy A
z’“: /& Bi R
subject to: Pt AVACH
. =
1 C_
Z)\z = /\cluster - (alfl_mam_ T) (27) forz—m—i—l,m—i—?,--- ’k (35)
— R
Here, servers are indexed following thegiturated order list (At _ i o fi + k)3
L. . k cluster y 7Jj-max R
Similar to Equations (17) and (18), we solve the above prable s Z o+ j=1
by applyingLarange’s Theorenand get the following optimal n — ! a7 \o
solution for\;,i = 2,3,--- , k: = (j:%:ﬂ aj\/3;)
O‘i(Acluster - O‘lfl-mam + ﬁ) [ 1
)\i = it = — = 28
k o 61 R ( ) + Z 51 i-max (36)

’ Baseline Algorithms. We denote our algorithm proposed
The corresponding power consumption is: above ag) P, theOPtimal workload distribution. For compari-
R k Aetuster — 01 f1maz + £)3 son, the following three baseline algorithms are investida
Jp = Zci + ,C Bt B1f7 e (29) e RANdom (uniform) workload distribution (RAN). In this
i=1 (> o \/Z:Z)Q strategy, every incoming request is distributed to a ran-
j=2 domly picked active server.
e CApacity based workload distribution (CA). This strategy
distributes the workload among active servers in proportio
to their processing capacities, i®;f;_maz-

k
| Ds [ k One-byOne Saturation policy (OOS). In this policy, re-
Acluster = fi_magc g— g (o7 ﬁ—j + alfl_mam — E (30) ° Yy o p y ( ) p Y.
K3 j:2 ]

Again, we let\; (Equation (28)) be equal to the maximum work-
loada; fi_maz — % and solve for\ .y sier- We get:

quests are distributed to active servers following a défaul
order. For every incoming request, we pick the first active

This result verifies our hypothesis that servers saturditefimg server that is not saturated to process it.

the saturated order list— the smaller the value of; q, /22, 9+ Algorithm Nomenclature

the earlier the server is saturated. The system workload thBhe previous three subsections have respectively prasdifte

starts to saturate the first two servers is: ferent strategies for deriving thedered server listserver ac-
tivation thresholdsaindworkload distribution By following the

k
Netuster = f2.maa /@ Z o o] + a1 fimas — E (31) proposed framework (Section 5.1), we could generate mdny di
i o 4 \ B; i R
Jj=2

ferent algorithms by combining different strategies far three



Server | fimaz | Ci B a; Server | fimaz | ¢ | Bi a;
1 1.8 44 | 2.915| 495.00 Typel 1.8 65 | 7.5 | 222.22
2 2.4 53 | 4.485| 548.75 Type2 1.8 75 5 | 250.00
3 3.0 70 | 2.370| 287.00 Type3 2.4 60 | 60 | 229.17
4 3.4 68 | 3.206| 309.12 Type4 2.4 75 | 5.2 | 250.00

Typeb5 3.0 90 | 4.5| 250.00

Type6 3.0 | 105]| 6.5| 266.67

_Tr?dules, forlintstanc?itr'll'P—CI:P—C_irF]’, AA-AiA—dCA ?hnd SP—C@-CA. Type7? 32 90 | 40| 23750
e nomenclature of the algorithms includes three parteeor

sponding to the three design decisions. The first part detiote Type8 3.2 105 4.4] 253.13

adopted strategy for deciding tloedered server list TP, AA,

RAN, SP or PDP. The second part represents the choice for de-

riving server activation thresholdsCP, CA or AA. In the third and is assumed to be reciprocally proportional to a serear's

portion of the name, OP, RAN, CA or OOS denoteswuwek-  pacity. Assuming small requests, their desired averagmnese

load distributionstrategy. However, not all combinations aretime R is set atl second.

feasible. For instance, CP can only be combined with OP and

AA is combined with AA. 40001

6 Performance Evaluation

In previous section, we proposed various threshold-basatts
gies for the power management of heterogeneous soft real-ti
clusters. In this section, we experimentally compare their
formance relative to each other and to the optimal solutfdhe
power management problem (Equations (8) and (9)).

Cluster Configuration. We use a discrete simulator to sim-
ulate heterogeneous clusters that are compliant to therayst
model presented in Section 3:

e First, we simulate a small cluster that consistst dfack-
end servers. They are all single processor machines: oo
server 1 has an AMD Athlon 64 3000+ 1.8GHz CPU,
server 2 has an AMD Athlon 64 X2 4800+ 2.4GHz CPU,; W  w  w  w e w0  mo o

Table 1. Parameters of a 4-Server Cluster

Table 2. Parameters of a 128-Server Cluster

3500

W
S
S
S)

2500

2000

Average Request Rate (Reg/Sec)
&
8

server 3 has an Intel Pentium 4 630 3.0GHz CPU and Sampling Period (1 sampling period = 30 seconds)
server 4 has an Intel Pentium D 950 3.4GHz CPU. To de- ]
rive server parameters, experimental data from [17, 6, 9] Figure 2. Average Request Rate

are referred. Table 1 lists the estimated parameters.
We simulate two cases: a) a server’s frequency can By offline ana|ySiS, a threshold-based algorithm derives th
be continuously adjusted in th@, f;....] range; b) a ordered server listserver activation thresholdand workload
server’s frequency can only be set to discrete values in tigéstribution formulasfor a cluster based on the server parame-
[fimin, fi.maz] rANge. ters. Once these three modules are deployed on the head node,
_ the cluster is able to handle different levels of workloach T
* Second, we simulate a large cluster that hzsback-end  eygjyate an algorithm’s performance, we use two metrics: th
servers oR different types. They are all single processopyerage response time and the consumed power. For all figures
type of machines whose parameters are as shown in Tg-this paper, we demonstrate the algorithm’s performaritte w
ble 2. the time-varied workload;,s¢.(t) as shown in Figure 2. Each
Workload Generation. A request is specified by a tuple simulation lasts3000 seconds. Periodically, i.e., evedy sec-
(Ai, E;), where 4; is its arrival time andE; is its execution onds, the system measures the current workload and préuticts
time on a default server when it is operating at its maximuen fr average request rate;, szer (t) for the next period. We adopt a
quency. To generate requests, we assume that the intestarrimethod proposed in [10] for the workload prediction. Based o
time follows a series of exponential distributions with meé+ the range the predicted.;,.s;c (t) falls into, the corresponding
varied mean of—-—. As shown in Figure 2, we simulate power management decisions on server onejfgnd workload
a workload .5t (t) that gradually increases from requiringdistribution ¢\;) are followed. According to\;, the back-end
20% to 90% of the cluster capacity. Request execution timserver DVS mechanism decides the server’s frequency gettin
E; is assumed to follow a gamma distribution with a specified;. In this paper, we use curves to show the average response
mean of-, wherey/ is the default server’s maximum process4ime, while for clarity, both curves and bar figures are used t
ing rate. The request execution time varies on differentegsr illustrate the power consumption.



We evaluate the effects of major design choices and com-  *°
pare the proposed algorithms in Sections 6.1 and 6.2. Sec- - Thcaca

400} - | &~ AA-CA-CA
-8~ RAN-CA-CA

tion 6.3 compares the threshold-based algorithms with the o - sp-ca-ca
timal power management solution. In Section 6.4, we experi- =
mentally evaluate the feedback control mechanism’s impact
the back-end server DVS.

6.1 Effects of Ordered Server List

We first evaluate an algorithm’s performance with respedifto
ferent policies in deciding therdered server list Our heuris-
tic: Typical Power based policy (TP) and baseline strategies: 150
ActivateAll policy (AA), RANdom policy (RAN),Satic Power "
based policy (SP) an&seudoDynamic Power based policy too| e

(PDP) are compared. We evaluate the following algorithms: e
TP-CA-CA, AA-AA-CA, RAN-CA-CA, SP-CA-CA and PDP- T w @ w w0 w0 1w W w
CA-CA. Except for AA-AA-CA, which activates all serversgh Samping Period (- sampling period = 30 seconds)

other algorithms only differ in therdered server lisbut have
the same capacity based (CA) strategies for decigiérger ac-

300
250
¢

200

Power Consumption (Watt)

Figure 4. Effects of Ordered Server List: Power

450

tivation thresholdsandworkload distribution Figures 3 and 5
show the simulation results. 400 - 1
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- PORZCAZCA Figure 5. Effects of Ordered Server List; Power
a big impact on the power efficiency. When adopting a bad or-
\ der, such as that bR ANdom policy (RAN) orPseudaDynamic
" L L

o 1 2 Samsl(i)ng Pe‘fﬁg o ;:mplinj°peri0 d’i osmonds. Power based policy (PDP), a high level of power is consumed.
Occasionally, thd®>seudoDynamic Power based policy (PDP-
CA-CA) performs even worse than tietivateAll policy (AA-

) ) _ ) AA-CA). It shows under such scenarios activating more garve
Since algorithms adopt capacity based (CA) strategiesdor deonsumes less power.

ciding server activation thresholdand workload distribution I
we can see from Figure 3 they all achieve the response tine gc@sa2 Effe(;ts pf Activation Thresholds and Workload
and keep the average response time ardusetond. One inter- Distribution
esting observation is that thctivate All policy (AA) does not  In this subsection, to evaluate polices that desielever activa-
decrease the response time. The reason is on a back-end seti@n thresholdsandworkload distributionwe simulate the fol-
the local DVS mechanism always sets the CPU frequency at theving algorithms: RAN-CP-OP that is based on our heuristic
minimum level that satisfies the time requirement. Therforand RAN-CA-OOS, RAN-CA-CA and RAN-CA-RAN baseline
even though AA policy turns on all back-end servers, it dags nalgorithms. For RAN-CP-OP, the last two modules are com-
lead to reduced response times. bined together since optimal-power thresholds depend en th
Figure 5 shows the power consumption with the increasingptimal workload distribution. Therefore we evaluate thve t
cluster workload. Algorithm TP-CA-CA, built on oufypical polices together. For these algorithms, a comrRéiNdomly
Power based policy (TP), always consumes the least power. generatedrdered server lists used.
performs especially well at a low/medium cluster requetd ra  Figures 6 and 8 show the simulation results. From Figure 6,
when a good power management mechanism is needed the mu&t.can see that algorithm RAN-CA-RAN fails to provide re-
As workload increases, all back-end servers have to beadetiv sponse time guarantee: under several workload conditthas,
and the algorithms begin to have similar performance. Flasnt average response time goes above th&econd target. The
experiment, we demonstrate that #erver activation ordehas reason is for a heterogeneous cluster, R\dom (uniform)

Figure 3. Effects of Ordered Server List: Time
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Figure 6. Effects of Activation Thresholds and
Workload Distribution: Time
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Figure 7. Effects of Activation Thresholds and
Workload Distribution: Power
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Figure 8. Effects of Activation Thresholds and
Workload Distribution: Power

workload distribution does not prevent a server from bewero
loaded. Even though th@Apacity-based server activation pol-
icy has ensured that the cluster capacity is adequate tdéhand
the workload, the bad workload distribution still causes@oS
violation. Since all other algorithms consider a serveajsacity

for workload distribution, they meet the time requirement.

Figure 8 illustrates the power consumption results. Unter a
scenarios, the algorithm based on our heuristic, RAN-CP-OP
always consumes the least power. In addition, unlike otireet
algorithms, RAN-CP-OP’s power consumption increases mono
tonically and smoothly with the workload. The main reasons
behind these results are as follows.

More Servers but Less Power. As discussed in Sec-
tion 5.3, more servers do not always consume more power. Our
CapacityPower-based strategy (CP) takes this factor into ac-
count. For example, whil@ ;... (t) = 929 reg/sec, the base-
line CApacity-only based algorithms activate one server and
when A\ st (t) = 2747 regl/sec, they activate three servers.
In contrast, our algorithm RAN-CP-OP turns on two and four
servers respectively under these two scenarios. It leahsiti
less power consumptions. Wheg,,,s:.-(t) increases t@800
reg/sec, RAN-CA-CA algorithm turns on the forth server. The
result is that, with four servers its power consumption foeav-
ier workload (say8029 req/sec) idessthan that of three servers
for a lighter workload (sag747 reg/sec).

Optimal Workload Distribution. Our heuristic forms and
solves the workload distribution as an optimization prahle
The simulation results demonstrate that the resultantilolist
tion is indeed optimal. In Figure 8, WheXy;,s.-- (t) is greater
than2800 reqg/sec, four algorithms all activate the same number
of servers. But our algorithm RAN-CP-OP still consumes the
least power due to its optimal distribution of the worklo&th-
like RAN-CP-OP, algorithm RAN-CA-OQOS experiences a sud-
den change of the consumed power whenever a new server is
activated. For thi©One-by-One Saturation strategy (OOS) on
workload distribution, after adding an active server, itis
power consumption increases but its dynamic power consump-
tion does not decrease because it does not reduce the wabrkloa
distributed to the other servers. Thus, their dynamic paeer
sumption does not decrease. As we observe, this strategy lea
to the highest power consumptions.

6.3 Evaluation of Integrated Algorithms

This subsection evaluates the following integrated athors:

our heuristic TP-CP-OP and AA-AA-CA, SP-CA-CA and PDP-
CA-CA baseline algorithms. When choosing baseline algo-
rithms for comparison, we exclude the “deficient” algoritym
i.e., those based on RAN and OOS workload distribution poli-
cies. In addition, we compare these algorithms with thenogti
power management solution: OPT-SOLN. To obtain the optimal
solution, we solve the power management problem, i.e., Equa
tions (8) and (9), for all integer poin#s,;, e, in the (O,Xcluster]
range. The optimal server on/off{) and workload distribution
(\;) is recorded for evenh ,sier-. Dynamically, based on the
predicted) ;. ster (), the corresponding optimal configuration
is followed.
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Figure 11. Integrated Algorithms: Power

current commercial processors only support DVS with a tahit
number of frequencies. For example, Intel Pentium G H z
CPU supports 6 voltages frof9561 to 1.484V/, thus leading
to 6 different frequencies.

Next we, therefore, evaluate our algorithm’s performante o
servers with discrete frequency settings. We simulate dinees
4-server cluster but assume a server’s frequency can ordgtbe
to 10 discrete values in tHe; ,.in, fiomaz] range, where; .,
is assumed to b&7.5% of f;.n... TO satisfy the response time
requirement and to save power, out of the 10 levels, the back-
server DVS chooses the smallest adequate frequency. We agai
combine feedback control with queuing-theoretic preditfor
the DVS. A discrete feedback control approach similar td tha
in [13] is adopted.

The simulation results are showed in Figures 12 and 14. We
can see in Figure 12 that due to the constraint of discrete fre
guencies, the resultant response time has a larger flumtuati
around the target. Comparing Figure 14 with Figure 11, simil
power consumptions are achieved and the power consumption

Figures 9 and 11 respectively show the average response tiagking of the algorithms does not change and our algorithm
and the power consumption. As expected, our algorithm TRill consumes the least power.
CP-OP performs better or as good as the baseline algorithms
under all scenarios. Compared to the results of OPT-SOLN,
our heuristic TP-CP-OP leads to only a negligidi®9%, more

power consumption. In addition, for the simulated worklche

OPT-SOLN algorithm switches on/off back-end servers far-a t

tal of 12 times, while our algorithm TP-CP-OP only turns on the
4 servers at their individual appropriate moments followang
dered server list Although our current simulator does not sim-
ulate the server on/off overhead, in real clusters it uguakes
several minutes and consumes some extra power to turn on/off
a machine. Following the threshold-based approach, owr alg
rithm minimizes the server on/off overhead, which will lead
better QoS performance and smaller power consumptionsn As a
interesting future work, we plan to compare our algorithm TP
CP-OP with the “optimal” algorithm OPT-SOLN to see which
algorithm will perform better in real cluster environments

Effects of Discrete Frequencies.So far we have assumed
that the CPU frequency could be tuned continuously. However

10

Average Response Time (Microsecond)
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Figure 12. Effects of Discrete Frequencies: Time
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Figure 14. Effects of Discrete Frequencies:
Power

6.4 Effects of Feedback Control

power consumption curves of TP-CP-OP algorithm with and
without feedback DVS control. On average, the feedback con-
trol mechanism only reduces the frequency (©§00925GHz

and the power by.66Watts.

The aforementioned results show that the average response
time is sensitive to the operating frequency changes. Alsmal
frequency change can lead to a large difference in response t
As a result, although the feedback control mechanism ic-effe
tive in regulating the response time, it only slightly moeffithe
gueuing estimated frequengy and leads to a little bit better
power consumptions.
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Figure 15. Effects of Feedback Control: Time
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As described in Section 4, to overcome the inaccuracy of
M/M/1 queuing model, we apply a combined feedback con-
trol with queuing-theoretic prediction mechanism for bacid
server DVS. This section evaluates the feedback controharec
nism'’s impact. We compare the combined DVS mechanism with 100
a queuing prediction only DVS mechanism where no feedback #
control is applled % 10 20 Y 20 %0 % 70 %0 % 100 110
Figure 15 shows the average response time when the feed-
back control is not applied. As we can see, due to the mod-
eling inaccuracy, the resultant response time is not close t
the 1 second target. In contrast, when the feedback control is
combined with the queuing-theoretic prediction, the agena- 6.5 Performance on Large Cluster
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Figure 16. Effects of Feedback Control: Power

sponse time, as shown in Figure 9, is kept around the targét. practice, large cluster typically runs with hundreds atk-
These results demonstrate that the feedback control mischanend nodes. Therefore, in this subsection, we evaluate the al

is effective in regulating the response time.

gorithm’s performance on a large cluster with 8 types of 128

On the other hand, when comparing the power consumptigrodes (see Table 2 for their parameters). Similar to Seéti®n
of DVS mechanisms with and without feedback control, the difwe compare three baseline algorithms: AA-AA-CA, SP-CA-CA
ferences are negligible. For illustration, Figure 16 pn¢s¢he and PDP-CA-CA with our heuristic: TP-CP-OP. Figures 17, 18



and 19 show the simulation results. As we can see, before
the system workload reaches aroufitl44 reqg/sec, AA-AA-
CA consumes much more power than algorithms with power

25000

on/off mechanisms.

But as workload increases, AA-AA-CA
outperforms SP-CA-CA and PDP-CA-CA algorithms. This re-
sult again proves that more servers do not always consume mor
power. Our algorithm TP-CP-OP considers both static and dy-
namic power efficiencies. Its mechanisms on power on/off and

workload distribution strive to achieve an optimal powen<co

sumption. As a result, it always performs the best in all work

load conditions.
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Figure 19. Performance on a Large Cluster:
Power

server list server activation thresholdandworkload distribu-

tion. We systematically study this approach and the impact of
these design decisions. A new algorithm denoted as TP-CP-OP
is proposed. When deciding tlserver activation orderthe al-
gorithm considers both static and dynamic power efficiesicie
Its server activation thresholdand workload distributionare
explicitly designed to achieve optimal power consumptiBg.
simulation, we clearly demonstrate the algorithm’s adagas

I I I I I | I I
30 40 50 60 70 80 90 100
Sampling Period (1 sampling period = 30 seconds)

10 I I

20 110

in power consumption: it incurs low overhead and leads to-nea
optimal power consumption.
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