
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

5-24-2008

Efficient Power Management of Heterogeneous
Soft Real-Time Clusters
Leping Wang
University of Nebraska - Lincoln, lwang@cse.unl.edu

Ying Lu
University of Nebraska - Lincoln, ylu4@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Wang, Leping and Lu, Ying, "Efficient Power Management of Heterogeneous Soft Real-Time Clusters" (2008). CSE Technical reports.
Paper 75.
http://digitalcommons.unl.edu/csetechreports/75

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/75?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Power Management of Heterogeneous Soft Real-TimeClusters

Leping Wang, Ying Lu
Department of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588

{lwang, ylu}@cse.unl.edu

Abstract
With growing cost of electricity, the power management of

server clusters has become an important problem. However,
most previous researchers only address the challenge in homo-
geneous environments. Considering the increasing popularity
of heterogeneous systems, this paper proposes an efficient al-
gorithm for power management of heterogeneous soft real-time
clusters. It is built on simple but effective mathematical models.
When deployed to a new platform, the software incurs low con-
figuration cost because no extensive performance measurements
and profiling are required. To strive for efficiency, a threshold-
based approach is adopted. In this paper, we systematically
study this approach and its design decisions.

1 Introduction
Clusters of commodity-class PCs are widely used. When de-
signing such a system, traditionally researchers have focused on
maximizing performance. Recently, with a better understanding
of the overall cost of computing [1], researchers have started to
pay more attention to optimizing performance per unit of cost.
According to [1], the total cost of ownership (TCO) includesthe
cost of cluster hardware, software, operations and power. As a
result of recent advances in chip manufacturing technology, the
performance per hardware dollar keeps going up. However, the
performance per watt has remained roughly flat over time. If
this trend continues, the power-related costs will soon exceed
the hardware cost and become a significant fraction of the total
cost of ownership.

To reduce power and hence improve the performance per
watt, cluster power management mechanisms [4, 5, 8, 11, 14,
15, 16, 17] have been proposed. Most of them, however, are
only applicable to homogenous systems. It remains a difficult
problem to manage power for heterogeneous clusters. Two new
challenges have to be addressed. First, according to load and
server characteristics, a power management mechanism must
decide not only how many but also which cluster servers should
be turned on; second, unlike a homogenous cluster, where it is
optimal to evenly distribute load among active servers, identify-
ing the optimal load distribution for a heterogeneous cluster is a
non-trivial task.

A few researchers [11, 17] have investigated mechanisms to
address the aforementioned challenges. However, their mecha-
nisms all require extensive performance measurements (“atmost
few hours for each machine” [17]) or time-consuming opti-

mization processes. These high customization costs are pro-
hibitive, especially if the processes need to be executed repet-
itively. Composed of a large number of machines, a cluster is
very dynamic, where servers can fail, be removed from or added
to it frequently. To achieve high availability in such an environ-
ment, a mechanism that is easy to be modified upon changes is
essential. This paper proposes an efficient algorithm for power
management (PM) of heterogeneous soft real-time clusters.We
make two contributions. First, the algorithm is based on simple
but effective mathematical models, which reduces customiza-
tion costs of PM components to new platforms. Second, the
developed online mechanisms are threshold-based. According
to an offline analysis, thresholds are generated that dividethe
workload into several ranges. For each range, the power man-
agement decisions are made offline. Dynamically, the PM com-
ponent just measures and predicts the cluster workload, decides
its range, and follows the corresponding decisions. In thispa-
per, we systematically investigate this low-cost efficientpower
management approach. Simulation results show that our algo-
rithm not only incurs low overhead but also leads to near optimal
power consumptions.

The remainder of this paper is organized as follows. The re-
lated work is illustrated in Section 2. Sections 3 and 4 respec-
tively present the models and state the problem. We discuss the
algorithms in Section 5 and evaluate their performance in Sec-
tion 6. Section 7 concludes the paper.

2 Related Work
Power management of server clusters [4, 5, 8, 14, 15, 16] has be-
come an important problem. The authors of [3, 19] were the first
to point out that cluster-based servers could benefit significantly
from dynamic voltage scaling (DVS). Besides server DVS, dy-
namic resource provisioning (server power on/off) mechanisms
were investigated in [8, 14] to conserve power in clusters.

The aforementioned research has all focused on homoge-
neous systems. However, clusters are almost invariably hetero-
geneous in term of their performance, capacity and power con-
sumption [11]. Survey [2] discusses the recent work on power
management for server systems. It lists power management of
heterogeneous clusters as one of the major challenges.

The most closely related work is that of [11, 17]. Authors
of [11] consider request distribution to optimize both power and
throughput in heterogeneous server clusters. Their mechanism
takes the characteristics of different nodes and request types into

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2008-0004
Issued May 24, 2008

account. In [17], energy efficient real-time heterogeneousclus-
ters are investigated. Both papers note that in heterogeneous
clusters it is difficult to properly order servers with respect to
power efficiency and it may not be optimal to turn on the small-
est number of machines to satisfy the current load.

However, both approaches depend on time-consuming opti-
mizations to find the best cluster configuration for every possible
load. Even though the optimizations are executed offline, they
need to be repeated every time upon new installations, server
failures, cluster upgrades or changes. Extensive performance
measurements and long optimization processes [11, 17] leadto
high customization costs. To avoid these prohibitive costs, we
propose in this paper a simple power management algorithm for
heterogeneous soft real-time clusters. The algorithm is based on
mathematical models that require minimum performance profil-
ing. Instead of solving the optimization problem for every pos-
sible load, our algorithm derives thresholds, divides loadinto
several ranges and determines the best cluster configuration for-
mula for each workload range, leading to a time-efficient opti-
mization process. Furthermore, our algorithm incurs low over-
head and achieves close-to-optimal power consumptions.

3 Models
In this section we present our models and state assumptions re-
lated to these models.

3.1 System Model
A cluster consists of a front-end server, connected to N back-end
servers. We assume a typical cluster environment in which the
front-end server does not participate in the request processing.
The main role of the front-end server is to accept requests and
distribute them to back-end servers. In addition, we deploythe
power-management mechanism on the front-end server to en-
force a server power on/off policy. Figure 1 shows a web server
cluster example that fits our system model.

Web Page Requests

 Back-end Web Server

 Back-end Web Server

 Back-end Web Server

 Back-end Web Server

Front-end Server

D
is

tr
ib

ut
ed

R
eq

ue
st

s

Response

Response

Distributed

Requests

Web Server Clusters

Figure 1. System Model

In a heterogeneous cluster, different back-end servers could
have different computational capacities and power efficiencies.
In the following, we provide their models. We assume proces-
sors on the back-end servers support dynamic voltage scaling
and their operating frequencies could be continuously adjusted

in the (0, fi max] range1. The capacity model relates the CPU
operating frequency to the server’s throughput and the power
model describes the relation between the CPU frequency and
the power consumption. While our approach could be general-
ized to different capacity and power models, in this paper we
assume and use the following specific models to illustrate our
method.

3.2 Capacity Model
We assume that the cluster provides CPU-bounded services, as
typical web servers do today [3]. Therefore, to measure the ca-
pacity of a back-end server its CPU throughput is used as the
metric, which is assumed to be proportional to the CPU oper-
ating frequency. That is, theith server’s throughput, denoted
asµi, is expressed asµi = αifi, whereαi is the CPU perfor-
mance coefficient. Different servers may have different values
for αi. With the same CPU frequency setting, the higher theαi

the more powerful the server is.

3.3 Power Model
The power consumptionPi of a server consists of a constant
part and a variable part. Similar to previous work [8, 5, 12],we
approximatePi by the following function:

Pi = xi(ci + βif
p
i) (1)

wherexi denotes the server’s on/off state:

xi =

{

0 theith server is off

1 theith server is on
(2)

When a server is off, it consumes no power; when it is on, it
consumesci + βif

p
i amount of power. In this model,ci denotes

the constant power consumption of the server. It is assumed to
include the base power consumption of the CPU and the power
consumption of all other components. In addition, the CPU also
consumes a powerβif

p
i that is varied with the CPU operating

frequencyfi. In the remaining of this paper, we usep = 3 to
illustrate our approach.

Hence, in the cluster the power consumption of all back-end
servers can be expressed as follows:

J =
N

∑

i=1

xi[ci + βif
3
i] (3)

Here, for the purpose of differentiation,J is used to denote the
cluster’s power consumption whileP denotes a server’s power
consumption.

Following the aforementioned models, each server is speci-
fied with four parameters:fi max, αi, ci, andβi. To obtain these
parameters, only a little performance profiling is required.

4 Power Management Problem
Given a cluster ofN heterogeneous back-end servers, each spec-
ified with parametersfi max, αi, ci, andβi, the objective is to
minimize the power consumed by the cluster while satisfyingthe
following QoS requirement:Ri ≈ R̂, whereRi stands for the
average response time of requests processed by theith back-end
server andR̂ stands for the desired response time. The average

1In Section 6.3, we also evaluate the algorithm’s performance on servers with
only discrete frequency settings.

2

response timeRi is determined by the back-end server’s capac-
ity and workload. We useµi = αifi to denote the server’s ca-
pacity andλi, the server’s average request rate, to represent the
workload. Thus,Ri is a function of these two parameters, i.e.,
Ri = g(µi, λi). To enforceRi ≈ R̂, we must controlµi = αifi

andλi properly. As a result, the power management problem is
formed as follows:

minimize
J =

N
∑

i=1

xi[ci + βif
3
i] (4)

subject to:









∑N
i=1 xiλi = λcluster

xi(1 − xi) = 0, i = 1, 2, · · · , N

g(αifi, λi) ≈ R̂, i = 1, 2, · · · , N

(5)

whereλcluster is the current average request rate of the clus-
ter. We assume the cluster is not overloaded, that is, the average
response time requirement∀i, g(αifi, λi) ≈ R̂ is feasible for
the cluster with aλcluster request rate2. The first optimization
constraint guarantees that each request is processed by an ac-
tive back-end server while the second constraint says a server is
either in an on or an off state.

For the power management, the front-end component de-
cides the server’s on/off state (xi) and the workload distribution
among the active servers (λi). On the back-end, each active node
adjusts its CPU operating frequencyfi in the(0, fi max] range to
ensure the response time requirement, where a combined feed-
back control with queuing theoretic prediction approach, similar
to that in [18], is adopted.

According to theM/M/1 queuing model, functionRi =
g(µi, λi) is approximated as follows:

Ri =
1

µi − λi

=
1

αifi − λi

(6)

To guaranteeRi ≈ R̂, we approximate the properfi to be:

fi =
λi

αi

+
1

αiR̂
(7)

when0 < λi ≤ αifi max − 1
R̂

. This approximation, however,
may introduce modeling inaccuracy. To overcome this inaccu-
racy, we combine feedback control with queuing-theoretic pre-
diction for the dynamic voltage scaling (DVS). Nevertheless, in
Section 6.4, experimental data shows that the queuing model
estimate (Equation (7)) is very close to the realfi setting of
the combined approach. This close approximation justifies the
adoption of the queuing estimatedfi in the problem formulation.
The power management problem becomes:

minimize

J =

N
∑

i=1

xi[ci + βi × (
λi

αi

+
1

αiR̂
)3] (8)

subject to:










∑N
i=1 xiλi = λcluster

xi(1 − xi) = 0, i = 1, 2, ..., N

0 ≤ λi ≤ αifi max − 1
R̂

, i = 1, 2, ..., N

(9)

2A simple admission control mechanism could enforce this constraint.

As shown above, the optimal solution is determined by two vari-
ables: individual server’s on/off statexi and workload distri-
bution λi. To achieve the optimal power consumption and to
guarantee the average response time, the key therefore liesin
the front-end, i.e., the power on/off and workload distribution
strategies. We present these strategies in the next section.

5 Algorithms
When we design the power management strategies, one major
focus is on their efficiencies. For a given workloadλcluster , the
front-end power management needs to decide 1) how many and
which back-end servers should be turned on and 2) how much
workload should be distributed to each server. Sinceλcluster

changes from time to time, these decisions have to be reevalu-
ated and modified regularly. Thus, the decision process has to
be very efficient.

The mechanism we propose is built on a sophisticated but
low-cost offline analysis. It provides an efficient threshold-
based online strategy. Assuminĝλcluster is the maximum
workload that can be handled by the cluster without violating
the average response time requirement. The offline analysis
generates thresholdsΛ1, Λ2, · · · , ΛN and divides (0,̂λcluster]
into (0, Λ1], (Λ1, Λ2], · · · , (Λk, Λk+1], · · · , (ΛN−1, ΛN] ranges
(whereΛN = λ̂cluster). For each range, the power on/off and
workload distribution decisions are made offline. Dynamically
the system just measures and predicts the workloadλcluster , de-
cides the rangeλcluster falls into, and follows the corresponding
power management decisions. Next, we present the details of
our algorithm.

5.1 Optimization Heuristic Framework
In Section 4, the power management is formed as an optimiza-
tion problem (Equations (8) and (9)). Instead of solving it for
all possible workloadλcluster in the (0,λ̂cluster] range, we pro-
pose a heuristic to simplify the problem. It is constructed with
the following framework:
• The heuristic first orders the heterogeneous back-end

servers. It gives a sequence, calledordered server list, for
activating machines. To shut down machines, the reverse
order is followed.

• Second, the optimal thresholdsΛk, k ∈ {1, 2, 3, · · ·N} for
turning on and off servers are identified: ifλcluster is in the
(Λk−1, Λk] range, it is optimal to turn on the firstk servers
of the ordered server list. This also means ifλcluster

changes between adjacent ranges, such as from(Λk−1, Λk]
to (Λk, Λk+1], the heuristic requires on/off state change for
just onemachine. Considering the high overhead of turn-
ing on/off servers (e.g., several minutes), this approach is
superior in that it minimizes the server on/off state changes.

• Third, the optimal workload distribution problem is solved
for N scenarios whereλcluster ∈ (Λk−1, Λk], k =
1, 2, · · · , N . Whenλcluster ∈ (Λk−1, Λk], it is optimal
to turn on the firstk servers of theordered server list, i.e.,
xi = 1, i = 1, 2, · · ·k andxi = 0, i = k+1, k+2, · · · , N .
With values ofxi fixed, the optimization problem (Equa-
tions (8) and (9)) becomes:

minimize

3

Jk =

k
∑

i=1

[ci + βi × (
λi

αi

+
1

αiR̂
)3] (10)

subject to:
{

∑k
i=1 λi = λcluster

0 ≤ λi ≤ αifi max − 1
R̂

, i = 1, 2, ..., k
(11)

The analysis is simplified to solving the above optimization
problem fork = 1, 2, · · · , N .

Time Efficiency Analysis. If we consider solving the optimiza-
tion problem (Equations (10) and (11)) as the basic operation,
the time efficiency of the proposed heuristic isΘ(N), while the
time efficiency to obtain the optimal power management solu-
tion (i.e., solving Equations (8) and (9)) for all integer points in
the (0,λ̂cluster] range isΘ(⌈λ̂cluster⌉2

N).
In the next three subsections, we discuss the decisions onor-

dered server list, server activation thresholdsandworkload dis-
tribution respectively. For each decision, several strategies are
investigated.

5.2 Ordered Server List

Our algorithm follows a specific order to turn on and off ma-
chines. To optimize the power consumption, this order must be
based on the server’s power efficiency, which is defined as the
amount of power consumed per unit of workload (i.e.,Pi(λ)

λ
).

Servers with better power efficiencies are listed first.
According to the power model and the dynamic voltage scal-

ing mechanism adopted by back-end servers (Sections 3 & 4),
the power consumptionPi(λ) of a server includes a constant
partci and a variable partβi × (λ

αi
+ 1

αiR̂
)3 (see Equation (8)).

Given any two serversi andj, if ci ≤ cj and βi

α3

i

≤
βj

α3

j

, serveri

has a better power efficiency than serverj. However, ifci < cj

and βi

α3

i

>
βj

α3

j

, the power efficiency order of the two is not fixed.

When the server workloadλ is small,Pi(λ) is less thanPj(λ)
and serveri has a better power efficiency; while asλ increases,
Pi(λ) gets larger thanPj(λ) and serverj’s power efficiency be-
comes better. In the proposed method, to trade for online al-
gorithm’s efficiency and minimum server on/off operations,the
ordered server listis determined offline and is not subject to dy-
namic changes. Therefore, even if the servers’ power efficiency
order is not fixed, their activation order is nevertheless deter-
mined statically. Next we present our method and list several
alternatives for generating the activation order.
• Typical Power based policy (TP). We assume the typical

workload for a server isλ′

i. In our heuristic, servers are
ordered by their power consumption efficiency under the

typical workload, i.e.,Pi(λ
′

i)
λ′

i

. A server with smallerPi(λ
′

i)
λ′

i

,

i.e., smaller
ci+βi×(

λ′

i
αi

+ 1

αiR̂
)3

λ′

i
, is listed earlier in theor-

dered server list. A power management mechanism usually
turns on a server when needed or when it leads to a reduced
power consumption (see Section 5.3). As a result, an ac-
tive server usually works under a high workload. Thus we
choose a workload that requires80% capacity of a server

as its typical workloadλ′

i. This way theordered server list

is created by comparingPi(λ
′

i)
λ′

i

and is solely based on the
server’s static parametersαi, ci, andβi.

• Activate All policy (AA). This activation policy always
turns on all back-end servers. Therefore in this case the
power on/off mechanism is not needed. Neither is theor-
dered server list.

• RANdom policy (RAN). This policy generates a random
ordered server listfor server activation.

• Static Power based policy (SP). This policy orders ma-
chines by their static power consumption. A server with
a smaller static power consumptionci is listed earlier in
theordered server list.

• PseudoDynamicPower based policy (PDP). This policy
orders machines by the dynamic power consumption pa-
rameterβi. A server with a smallerβi is listed earlier in the
ordered server list. According to the definition of power

efficiency Pi(λ)
λ

, its dynamic part is
βi

α3
i

×(λ+ 1

R̂
)3

λ
. As we

can see, the dynamic power efficiency is not solely deter-
mined byβi. This policy is therefore calledpseudody-
namic power based policy.

5.3 Server Activation Thresholds
In the previous section we introduced theordered server listthat
specifies which servers to choose when we need to turn on or off
machines. This section presents our threshold-based strategy to
decide the optimal number of active servers.

The goal is two-fold. First, an adequate number of servers
should be turned on to guarantee the response time requirement.
Second, the number of active servers should be optimal with
respect to the consumed power.

To meet the response time requirement, the number of ac-
tive servers should increase monotonically with the workload
λcluster . The heavier the workload, the greater the number
of active servers required. It suggests that we turn on more
servers only when the current capacity becomes inadequate
to process the workload. AccordinglyN capacity thresholds
Λc1, Λc2, · · · , ΛcN are developed and eachΛck corresponds to
the maximum workload that can be processed by the firstk
servers. According to Equation (6), when a server is operating
at its maximum frequencyfi max, it can process at mostλi max

amount of workload and meet the response time requirement:

λi max = αifi max −
1

R̂
(12)

Thus, we have:
Λck =

k
∑

i=1

λi max =
k

∑

i=1

αifi max −
k

R̂
(13)

When the current workload exceeds this thresholdΛck, at least
k + 1 servers of theordered server listhave to be activated.

However, the above thresholds may not be optimal with re-
spect to the power consumption. The power consumed by a
server is composed of two parts: the static partci and the dy-
namic partβif

3
i . When adding an active server, the cluster’s

static power consumption increases but its dynamic power con-
sumption may actually decrease. The reason is that with more

4

active servers to share the workload, the workload distributed
to each server decreases; consequently, the CPU operating fre-
quencyfi required for each server may get smaller, which could
lead to a reduced dynamic power consumption of the cluster.

To derive the optimal-power threshold, scenarios when ac-
tivating k + 1 servers is better than activatingk servers are
identified. In such scenarios,k servers are adequate to han-
dle the workload. But if we activatek + 1 servers, the system
consumes less power. We assume that the optimal power con-
sumption using the firstk servers to handleλcluster workload,
whereλcluster ∈ (0, Λck], is Ĵk(λcluster) (see Section 5.4 for
Ĵk(λcluster)’s derivation). It is a monotonically increasing func-
tion of λcluster . We analyze the following equation:

Ĵk(λcluster) = Ĵk+1(λcluster) (14)

According to characteristics of functionŝJk(λcluster) and
Ĵk+1(λcluster) (see Section 5.4), there is at most one solution
for Equation (14). If such a solutionλ′

cluster is found, then ac-
tivating k + 1 servers is more power efficient than activatingk
servers whenλcluster > λ′

cluster . The proof is as follows. 1)
Ĵk(λcluster) is less thanĴk+1(λcluster) for small λcluster ; 2)
functionsĴk(λcluster) and Ĵk+1(λcluster) increase monotoni-
cally with λcluster ; and 3) if and only ifλcluster = λ′

cluster ac-
tivatingk or k + 1 servers consumes the same amount of power.
Therefore, onceλcluster exceedsλ′

cluster , Ĵk+1(λcluster) be-
comes less than̂Jk(λcluster), i.e., it becomes more power effi-
cient to activatek + 1 servers.

Therefore, when there is a solutionλ′

cluster ∈ (0, Λck] for
Equation (14), we find the optimal-power thresholdΛpk =
λ′

cluster where activatingk + 1 servers is more power efficient
than activatingk servers whenλcluster exceeds this threshold;
otherwise, we assignΛpk = −1. After analyzing Equation (14)
for k = 1, 2, · · · , N − 1, we obtain another series of thresholds:
optimal-power thresholdsΛp1, Λp2, ..., Λp(N−1).

By combining capacity and optimal-power thresholds, we get
the server activation thresholdsΛk, k = 1, 2, · · · , N :

Λk =

{

Λck for Λpk = −1 or k = N

Λpk for Λpk 6= −1

We use the symbolCP to denote the aboveCapacity-Power-
based strategy. For comparison, a baselineCApacity-only strat-
egy, denoted asCA, is also investigated, for whichΛk = Λck.
In theActivateAll policy (AA), no server activation thresholds
are needed.

5.4 Workload Distribution

Last two sections solved the problem of deciding how many and
which back-end servers should be activated for a given work-
load. This section proposes a strategy to optimally distribute the
workload among active servers.

According to Section 5.1, if the firstk servers of theordered
server listare activated, the optimization problem becomes:

minimize

Jk =

k
∑

i=1

[ci + βi × (
λi

αi

+
1

αiR̂
)3] (15)

subject to:
{

∑k
i=1 λi = λcluster

0 ≤ λi ≤ αifi max − 1
R̂

, i = 1, 2, ..., k
(16)

The analysis is to find optimal solutions for allJk, k =
1, 2, · · · , N .

To solve the optimization forJk, we first assume that allk
back-end servers are running below their maximum capacities,
i.e, 0 ≤ λi < αifi max − 1

R̂
, i = 1, 2, ..., k. Since the second

constraint of the problem is satisfied, the optimization becomes:
minimize

Jk =

k
∑

i=1

[ci + βi × (
λi

αi

+
1

αiR̂
)3] (17)

subject to:
k

∑

i=1

λi = λcluster (18)

According toLagrange’s Theorem[7], the first-order necessary
condition forJk ’s optimal solution is:

∃δ, Jk(λi, δ) =
k
∑

i=1

[ci + βi × (λi

αi
+ 1

αiR̂
)3]

+δ(
k
∑

i=1

λi − λcluster)

(19)

and its first-order derivatives satisfy
{

∂Jk(λi,δ)
∂λi

= 0, i = 1, ...k
∂Jk(λi,δ)

∂δ
= 0

(20)

Solving the above condition, we obtain the optimal workload
distributionλi, i = 1, ..., k as:

λi =
αi(λcluster + k

R̂
)

k
∑

j=1

αj

√

αj

βj

√

αi

βi

−
1

R̂
(21)

The corresponding power consumption is:

Ĵk =

k
∑

i=1

ci +
(λcluster + k

R̂
)3

(
k
∑

j=1

αj

√

αj

βj
)2

(22)

The above solution is optimal when allk back-end servers are
running below their maximum capacities. That is, whenλi

(Equation (21)) satisfies the constraint that0 ≤ λi < αifi max−
1
R̂

, i = 1, 2, ..., k. Thus, the above condition holds true only for
light workloads. Asλcluster increases, servers start to be satu-
rated one after another. That is, a server’s shared workloadλi

reaches its maximum levelαifi max − 1
R̂

where we have:

λi =
αi(λcluster + k

R̂
)

k
∑

j=1

αj

√

αj

βj

√

αi

βi

−
1

R̂

= αifi max −
1

R̂
(23)

Solving Equation (23) for system workloadλcluster , we get:

5

λcluster = fi max

√

βi

αi

k
∑

j=1

αj

√

αj

βj

−
k

R̂
(24)

This result seems to indicate that among thek active servers, the

one with a smaller value offi max

√

βi

αi
reaches its full capacity

earlier asλcluster increases. We therefore order thek servers by

their fi max

√

βi

αi
values and generate thesaturated order list.

When a server gets saturated, its shared workload should notbe
increased any more. Otherwise its response timeRi will violate
the requirement. As a result, after the first server’s saturation,
i.e., the saturation of the first server on thesaturated order list,
we have the server’s shared workload asλ1 = α1f1 max − 1

R̂
and the system workload as:

λcluster = f1 max

√

β1

α1

k
∑

j=1

αj

√

αj

βj

−
k

R̂
(25)

The workload distribution problem becomes:
minimize

Jk =

k
∑

i=2

[ci + βi × (
λi

αi

+
1

αiR̂
)3]

+ (c1 + β1f
3
1 max) (26)

subject to:
k

∑

i=2

λi = λcluster − (α1f1 max −
1

R̂
) (27)

Here, servers are indexed following theirsaturated order list.
Similar to Equations (17) and (18), we solve the above problem
by applyingLarange’s Theoremand get the following optimal
solution forλi, i = 2, 3, · · · , k:

λi =
αi(λcluster − α1f1 max + k

R̂
)

k
∑

j=2

αj

√

αj

βj

√

αi

βi

−
1

R̂
(28)

The corresponding power consumption is:

Ĵk =

k
∑

i=1

ci +
(λcluster − α1f1 max + k

R̂
)3

(
k
∑

j=2

αj

√

αj

βj
)2

+ β1f
3
1 max (29)

Again, we letλi (Equation (28)) be equal to the maximum work-
loadαifi max − 1

R̂
and solve forλcluster . We get:

λcluster = fi max

√

βi

αi

k
∑

j=2

αj

√

αj

βj

+ α1f1 max −
k

R̂
(30)

This result verifies our hypothesis that servers saturate following

thesaturated order list— the smaller the value offi max

√

βi

αi
,

the earlier the server is saturated. The system workload that
starts to saturate the first two servers is:

λcluster = f2 max

√

β2

α2

k
∑

j=2

αj

√

αj

βj

+ α1f1 max −
k

R̂
(31)

We defineλm
k as:

λm
k = fm max

√

βm

αm

k
∑

j=2

αj

√

αj

βj

+
m−1
∑

i=1

αifi max −
k

R̂
(32)

In general, whenλcluster ∈ [λm
k , λm+1

k), m of the k ac-
tive servers are saturated. That is,λi = αifi max − 1

R̂
, i =

1, 2, · · · , m. The optimization problem becomes:
minimize

Jk =

k
∑

i=m+1

[ci + βi × (
1

αiR̂
+

λi

αi

)3]

+

m
∑

i=1

(ci + βif
3
i max) (33)

subject to:
k

∑

i=m+1

λi = λcluster −

m
∑

j=1

(αjfj max −
1

R̂
) (34)

and the optimal solution is :

λi =

αi(λcluster −
m
∑

j=1

αjfj max + k

R̂
)

k
∑

j=m+1

αj

√

αj

βj

√

αi

βi

−
1

R̂

for i = m + 1, m + 2, · · · , k (35)

Ĵk =

k
∑

i=1

ci +

(λcluster −
m
∑

j=1

αjfj max + k

R̂
)3

(
k
∑

j=m+1

αj

√

αj

βj
)2

+
m

∑

i=1

βif
3
i max (36)

Baseline Algorithms. We denote our algorithm proposed
above asOP , theOPtimal workload distribution. For compari-
son, the following three baseline algorithms are investigated:

• RANdom (uniform) workload distribution (RAN). In this
strategy, every incoming request is distributed to a ran-
domly picked active server.

• CApacity based workload distribution (CA). This strategy
distributes the workload among active servers in proportion
to their processing capacities, i.e.αifi max.

• One-by-One Saturation policy (OOS). In this policy, re-
quests are distributed to active servers following a default
order. For every incoming request, we pick the first active
server that is not saturated to process it.

5.5 Algorithm Nomenclature

The previous three subsections have respectively presented dif-
ferent strategies for deriving theordered server list, server ac-
tivation thresholdsandworkload distribution. By following the
proposed framework (Section 5.1), we could generate many dif-
ferent algorithms by combining different strategies for the three

6

Server fi max ci βi αi

1 1.8 44 2.915 495.00

2 2.4 53 4.485 548.75

3 3.0 70 2.370 287.00

4 3.4 68 3.206 309.12

Table 1. Parameters of a 4-Server Cluster

modules, for instance, TP-CP-OP, AA-AA-CA and SP-CA-CA.
The nomenclature of the algorithms includes three parts corre-
sponding to the three design decisions. The first part denotes the
adopted strategy for deciding theordered server list: TP, AA,
RAN, SP or PDP. The second part represents the choice for de-
riving server activation thresholds: CP, CA or AA. In the third
portion of the name, OP, RAN, CA or OOS denotes thework-
load distributionstrategy. However, not all combinations are
feasible. For instance, CP can only be combined with OP and
AA is combined with AA.

6 Performance Evaluation
In previous section, we proposed various threshold-based strate-
gies for the power management of heterogeneous soft real-time
clusters. In this section, we experimentally compare theirper-
formance relative to each other and to the optimal solution of the
power management problem (Equations (8) and (9)).

Cluster Configuration. We use a discrete simulator to sim-
ulate heterogeneous clusters that are compliant to the system
model presented in Section 3:
• First, we simulate a small cluster that consists of4 back-

end servers. They are all single processor machines:
server 1 has an AMD Athlon 64 3000+ 1.8GHz CPU;
server 2 has an AMD Athlon 64 X2 4800+ 2.4GHz CPU;
server 3 has an Intel Pentium 4 630 3.0GHz CPU and
server 4 has an Intel Pentium D 950 3.4GHz CPU. To de-
rive server parameters, experimental data from [17, 6, 9]
are referred. Table 1 lists the estimated parameters.
We simulate two cases: a) a server’s frequency can
be continuously adjusted in the(0, fi max] range; b) a
server’s frequency can only be set to discrete values in the
[fi min, fi max] range.

• Second, we simulate a large cluster that has128 back-end
servers of8 different types. They are all single processor
type of machines whose parameters are as shown in Ta-
ble 2.

Workload Generation. A request is specified by a tuple
(Ai, Ei), whereAi is its arrival time andEi is its execution
time on a default server when it is operating at its maximum fre-
quency. To generate requests, we assume that the inter-arrival
time follows a series of exponential distributions with a time-
varied mean of 1

λcluster(t) . As shown in Figure 2, we simulate
a workloadλcluster(t) that gradually increases from requiring
20% to 90% of the cluster capacity. Request execution time
Ei is assumed to follow a gamma distribution with a specified
mean of 1

µ′
, whereµ′ is the default server’s maximum process-

ing rate. The request execution time varies on different servers

Server fi max ci βi αi

Type1 1.8 65 7.5 222.22

Type2 1.8 75 5 250.00

Type3 2.4 60 60 229.17

Type4 2.4 75 5.2 250.00

Type5 3.0 90 4.5 250.00

Type6 3.0 105 6.5 266.67

Type7 3.2 90 4.0 237.50

Type8 3.2 105 4.4 253.13

Table 2. Parameters of a 128-Server Cluster

and is assumed to be reciprocally proportional to a server’sca-
pacity. Assuming small requests, their desired average response
time R̂ is set at1 second.

0 10 20 30 40 50 60 70 80 90 100 110
500

1000

1500

2000

2500

3000

3500

4000

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
eq

ue
st

 R
at

e
(R

eq
/S

ec
)

Figure 2. Average Request Rate

By offline analysis, a threshold-based algorithm derives the
ordered server list, server activation thresholdsandworkload
distribution formulasfor a cluster based on the server parame-
ters. Once these three modules are deployed on the head node,
the cluster is able to handle different levels of workload. To
evaluate an algorithm’s performance, we use two metrics: the
average response time and the consumed power. For all figures
in this paper, we demonstrate the algorithm’s performance with
the time-varied workloadλcluster(t) as shown in Figure 2. Each
simulation lasts3000 seconds. Periodically, i.e., every30 sec-
onds, the system measures the current workload and predictsthe
average request rateλcluster(t) for the next period. We adopt a
method proposed in [10] for the workload prediction. Based on
the range the predictedλcluster(t) falls into, the corresponding
power management decisions on server on/off (xi) and workload
distribution (λi) are followed. According toλi, the back-end
server DVS mechanism decides the server’s frequency setting
fi. In this paper, we use curves to show the average response
time, while for clarity, both curves and bar figures are used to
illustrate the power consumption.

7

We evaluate the effects of major design choices and com-
pare the proposed algorithms in Sections 6.1 and 6.2. Sec-
tion 6.3 compares the threshold-based algorithms with the op-
timal power management solution. In Section 6.4, we experi-
mentally evaluate the feedback control mechanism’s impacton
the back-end server DVS.

6.1 Effects of Ordered Server List
We first evaluate an algorithm’s performance with respect todif-
ferent policies in deciding theordered server list. Our heuris-
tic: Typical Power based policy (TP) and baseline strategies:
ActivateAll policy (AA), RANdom policy (RAN),Static Power
based policy (SP) andPseudoDynamic Power based policy
(PDP) are compared. We evaluate the following algorithms:
TP-CA-CA, AA-AA-CA, RAN-CA-CA, SP-CA-CA and PDP-
CA-CA. Except for AA-AA-CA, which activates all servers, the
other algorithms only differ in theordered server listbut have
the same capacity based (CA) strategies for decidingserver ac-
tivation thresholdsandworkload distribution. Figures 3 and 5
show the simulation results.

0 10 20 30 40 50 60 70 80 90 100 110
10

4

10
5

10
6

10
7

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

nc
on

d)

TP−CA−CA
AA−AA−CA
RAN−CA−CA
SP−CA−CA
PDP−CA−CA

Figure 3. Effects of Ordered Server List: Time

Since algorithms adopt capacity based (CA) strategies for de-
ciding server activation thresholdsand workload distribution,
we can see from Figure 3 they all achieve the response time goal
and keep the average response time around1 second. One inter-
esting observation is that theActivateAll policy (AA) does not
decrease the response time. The reason is on a back-end server,
the local DVS mechanism always sets the CPU frequency at the
minimum level that satisfies the time requirement. Therefore,
even though AA policy turns on all back-end servers, it does not
lead to reduced response times.

Figure 5 shows the power consumption with the increasing
cluster workload. Algorithm TP-CA-CA, built on ourTypical
Power based policy (TP), always consumes the least power. It
performs especially well at a low/medium cluster request rate
when a good power management mechanism is needed the most.
As workload increases, all back-end servers have to be activated
and the algorithms begin to have similar performance. From this
experiment, we demonstrate that theserver activation orderhas

0 10 20 30 40 50 60 70 80 90 100 110
50

100

150

200

250

300

350

400

450

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

TP−CA−CA
AA−CA−CA
RAN−CA−CA
SP−CA−CA
PDP−CA−CA

Figure 4. Effects of Ordered Server List: Power

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2112 2457 2747 3029 3352

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

Request Rate(Req/Sec)

TP-CA-CA
AA-CA-CA

RAN-CA-CA
SP-CA-CA

PDP-CA-CA

Figure 5. Effects of Ordered Server List: Power
a big impact on the power efficiency. When adopting a bad or-
der, such as that byRANdom policy (RAN) orPseudoDynamic
Power based policy (PDP), a high level of power is consumed.
Occasionally, thePseudoDynamicPower based policy (PDP-
CA-CA) performs even worse than theActivateAll policy (AA-
AA-CA). It shows under such scenarios activating more servers
consumes less power.

6.2 Effects of Activation Thresholds and Workload
Distribution

In this subsection, to evaluate polices that decideserver activa-
tion thresholdsandworkload distributionwe simulate the fol-
lowing algorithms: RAN-CP-OP that is based on our heuristic
and RAN-CA-OOS, RAN-CA-CA and RAN-CA-RAN baseline
algorithms. For RAN-CP-OP, the last two modules are com-
bined together since optimal-power thresholds depend on the
optimal workload distribution. Therefore we evaluate the two
polices together. For these algorithms, a commonRANdomly
generatedordered server listis used.

Figures 6 and 8 show the simulation results. From Figure 6,
we can see that algorithm RAN-CA-RAN fails to provide re-
sponse time guarantee: under several workload conditions,the
average response time goes above the1 second target. The
reason is for a heterogeneous cluster, thisRANdom (uniform)

8

0 10 20 30 40 50 60 70 80 90 100 110
10

4

10
5

10
6

10
7

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

co
nd

)

RAN−CP−OP
RAN−CA−OOS
RAN−CA−CA
RAN−CA−RAN

Figure 6. Effects of Activation Thresholds and
Workload Distribution: Time

0 10 20 30 40 50 60 70 80 90 100 110
50

100

150

200

250

300

350

400

450

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

RAN−CP−OP
RAN−CA−OOS
RAN−CA−CA
RAN−CA−RAN

Figure 7. Effects of Activation Thresholds and
Workload Distribution: Power

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2112 2457 2747 3029 3352

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

Request Rate(Req/Sec)

RAN-CP-OP
RAN-CA-OOS

RAN-CA-CA
RAN-CA-RAN

Figure 8. Effects of Activation Thresholds and
Workload Distribution: Power

workload distribution does not prevent a server from being over-
loaded. Even though theCApacity-based server activation pol-
icy has ensured that the cluster capacity is adequate to handle
the workload, the bad workload distribution still causes the QoS
violation. Since all other algorithms consider a server’s capacity
for workload distribution, they meet the time requirement.

Figure 8 illustrates the power consumption results. Under all
scenarios, the algorithm based on our heuristic, RAN-CP-OP,
always consumes the least power. In addition, unlike other three
algorithms, RAN-CP-OP’s power consumption increases mono-
tonically and smoothly with the workload. The main reasons
behind these results are as follows.

More Servers but Less Power. As discussed in Sec-
tion 5.3, more servers do not always consume more power. Our
Capacity-Power-based strategy (CP) takes this factor into ac-
count. For example, whileλcluster(t) = 929 req/sec, the base-
line CApacity-only based algorithms activate one server and
whenλcluster(t) = 2747 req/sec, they activate three servers.
In contrast, our algorithm RAN-CP-OP turns on two and four
servers respectively under these two scenarios. It leads tomuch
less power consumptions. Whenλcluster(t) increases to2800
req/sec, RAN-CA-CA algorithm turns on the forth server. The
result is that, with four servers its power consumption for aheav-
ier workload (say3029 req/sec) islessthan that of three servers
for a lighter workload (say2747 req/sec).

Optimal Workload Distribution. Our heuristic forms and
solves the workload distribution as an optimization problem.
The simulation results demonstrate that the resultant distribu-
tion is indeed optimal. In Figure 8, Whenλcluster(t) is greater
than2800 req/sec, four algorithms all activate the same number
of servers. But our algorithm RAN-CP-OP still consumes the
least power due to its optimal distribution of the workload.Un-
like RAN-CP-OP, algorithm RAN-CA-OOS experiences a sud-
den change of the consumed power whenever a new server is
activated. For thisOne-by-One Saturation strategy (OOS) on
workload distribution, after adding an active server, its static
power consumption increases but its dynamic power consump-
tion does not decrease because it does not reduce the workload
distributed to the other servers. Thus, their dynamic powercon-
sumption does not decrease. As we observe, this strategy leads
to the highest power consumptions.

6.3 Evaluation of Integrated Algorithms

This subsection evaluates the following integrated algorithms:
our heuristic TP-CP-OP and AA-AA-CA, SP-CA-CA and PDP-
CA-CA baseline algorithms. When choosing baseline algo-
rithms for comparison, we exclude the “deficient” algorithms,
i.e., those based on RAN and OOS workload distribution poli-
cies. In addition, we compare these algorithms with the optimal
power management solution: OPT-SOLN. To obtain the optimal
solution, we solve the power management problem, i.e., Equa-
tions (8) and (9), for all integer pointsλcluster in the (0,λ̂cluster]
range. The optimal server on/off (xi) and workload distribution
(λi) is recorded for everyλcluster . Dynamically, based on the
predictedλcluster(t), the corresponding optimal configuration
is followed.

9

0 10 20 30 40 50 60 70 80 90 100 110
10

4

10
5

10
6

10
7

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

co
nd

)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA
OPT−SOLN

Figure 9. Integrated Algorithms: Time

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

450

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA
OPT−SOLN

Figure 10. Integrated Algorithms: Power

Figures 9 and 11 respectively show the average response time
and the power consumption. As expected, our algorithm TP-
CP-OP performs better or as good as the baseline algorithms
under all scenarios. Compared to the results of OPT-SOLN,
our heuristic TP-CP-OP leads to only a negligible,0.09%, more
power consumption. In addition, for the simulated workload, the
OPT-SOLN algorithm switches on/off back-end servers for a to-
tal of 12 times, while our algorithm TP-CP-OP only turns on the
4 servers at their individual appropriate moments followingor-
dered server list. Although our current simulator does not sim-
ulate the server on/off overhead, in real clusters it usually takes
several minutes and consumes some extra power to turn on/off
a machine. Following the threshold-based approach, our algo-
rithm minimizes the server on/off overhead, which will leadto
better QoS performance and smaller power consumptions. As an
interesting future work, we plan to compare our algorithm TP-
CP-OP with the “optimal” algorithm OPT-SOLN to see which
algorithm will perform better in real cluster environments.

Effects of Discrete Frequencies.So far we have assumed
that the CPU frequency could be tuned continuously. However,

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2112 2457 2747 3029 3352

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

Request Rate(Req/Sec)

TP-CP-OP
AA-AA-CA
SP-CA-CA

PDP-CA-CA
OPT-SOLN

Figure 11. Integrated Algorithms: Power

current commercial processors only support DVS with a limited
number of frequencies. For example, Intel Pentium M1.6GHz
CPU supports 6 voltages from0.956V to 1.484V , thus leading
to 6 different frequencies.

Next we, therefore, evaluate our algorithm’s performance on
servers with discrete frequency settings. We simulate the same
4-server cluster but assume a server’s frequency can only beset
to 10 discrete values in the[fi min, fi max] range, wherefi min

is assumed to be37.5% of fi max. To satisfy the response time
requirement and to save power, out of the 10 levels, the back-end
server DVS chooses the smallest adequate frequency. We again
combine feedback control with queuing-theoretic prediction for
the DVS. A discrete feedback control approach similar to that
in [13] is adopted.

The simulation results are showed in Figures 12 and 14. We
can see in Figure 12 that due to the constraint of discrete fre-
quencies, the resultant response time has a larger fluctuation
around the target. Comparing Figure 14 with Figure 11, similar
power consumptions are achieved and the power consumption
ranking of the algorithms does not change and our algorithm
still consumes the least power.

0 10 20 30 40 50 60 70 80 90 100 110
10

3

10
4

10
5

10
6

10
7

10
8

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

co
nd

)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 12. Effects of Discrete Frequencies: Time

10

0 10 20 30 40 50 60 70 80 90 100 110
50

100

150

200

250

300

350

400

450

500

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 13. Effects of Discrete Frequencies:
Power

 50

 100

 150

 200

 250

 300

 350

 400

 450

929 1333 1727 2112 2457 2747 3029 3352

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

Request Rate(Req/Sec)

TP-CP-OP
AA-AA-CA
SP-CA-CA

PDP-CA-CA

Figure 14. Effects of Discrete Frequencies:
Power

6.4 Effects of Feedback Control
As described in Section 4, to overcome the inaccuracy of
M/M/1 queuing model, we apply a combined feedback con-
trol with queuing-theoretic prediction mechanism for back-end
server DVS. This section evaluates the feedback control mecha-
nism’s impact. We compare the combined DVS mechanism with
a queuing prediction only DVS mechanism where no feedback
control is applied.

Figure 15 shows the average response time when the feed-
back control is not applied. As we can see, due to the mod-
eling inaccuracy, the resultant response time is not close to
the 1 second target. In contrast, when the feedback control is
combined with the queuing-theoretic prediction, the average re-
sponse time, as shown in Figure 9, is kept around the target.
These results demonstrate that the feedback control mechanism
is effective in regulating the response time.

On the other hand, when comparing the power consumption
of DVS mechanisms with and without feedback control, the dif-
ferences are negligible. For illustration, Figure 16 presents the

power consumption curves of TP-CP-OP algorithm with and
without feedback DVS control. On average, the feedback con-
trol mechanism only reduces the frequency by0.000925GHz
and the power by0.66Watts.

The aforementioned results show that the average response
time is sensitive to the operating frequency changes. A small
frequency change can lead to a large difference in response time.
As a result, although the feedback control mechanism is effec-
tive in regulating the response time, it only slightly modifies the
queuing estimated frequencyfi and leads to a little bit better
power consumptions.

0 10 20 30 40 50 60 70 80 90 100 110
10

4

10
5

10
6

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

co
nd

)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 15. Effects of Feedback Control: Time

0 10 20 30 40 50 60 70 80 90 100 110
50

100

150

200

250

300

350

400

450

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

TP−CP−OP−NOFB
TP−CP−OP−FB

Figure 16. Effects of Feedback Control: Power

6.5 Performance on Large Cluster

In practice, large cluster typically runs with hundreds of back-
end nodes. Therefore, in this subsection, we evaluate the al-
gorithm’s performance on a large cluster with 8 types of 128
nodes (see Table 2 for their parameters). Similar to Section6.3,
we compare three baseline algorithms: AA-AA-CA, SP-CA-CA
and PDP-CA-CA with our heuristic: TP-CP-OP. Figures 17, 18

11

and 19 show the simulation results. As we can see, before
the system workload reaches around47444 req/sec, AA-AA-
CA consumes much more power than algorithms with power
on/off mechanisms. But as workload increases, AA-AA-CA
outperforms SP-CA-CA and PDP-CA-CA algorithms. This re-
sult again proves that more servers do not always consume more
power. Our algorithm TP-CP-OP considers both static and dy-
namic power efficiencies. Its mechanisms on power on/off and
workload distribution strive to achieve an optimal power con-
sumption. As a result, it always performs the best in all work-
load conditions.

0 10 20 30 40 50 60 70 80 90 100 110
10

3

10
4

10
5

10
6

10
7

10
8

Sampling Period (1 sampling period = 30 seconds)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(M
ic

ro
se

co
nd

)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 17. Performance on a Large Cluster: Time

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5
x 10

4

Sampling Period (1 sampling period = 30 seconds)

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

TP−CP−OP
AA−AA−CA
SP−CA−CA
PDP−CA−CA

Figure 18. Performance on a Large Cluster:
Power

7 Conclusion
In this paper, we present a new threshold-based approach for
efficient power management of heterogeneous soft real-time
clusters. Following this approach, a power management algo-
rithm needs to make three important design decisions onordered

 0

 5000

 10000

 15000

 20000

 25000

5011 16290 27340 37776 47444 56021 63335 69187 73412 75823

P
o
w
e
r

C
o
n
s
u
m
p
t
i
o
n

(
W
a
t
t
)

Request Rate(Req/Sec)

TP-CP-OP
AA-AA-CA
SP-CA-CA

PDP-CA-CA

Figure 19. Performance on a Large Cluster:
Power

server list, server activation thresholdsandworkload distribu-
tion. We systematically study this approach and the impact of
these design decisions. A new algorithm denoted as TP-CP-OP
is proposed. When deciding theserver activation order, the al-
gorithm considers both static and dynamic power efficiencies.
Its server activation thresholdsand workload distributionare
explicitly designed to achieve optimal power consumption.By
simulation, we clearly demonstrate the algorithm’s advantages
in power consumption: it incurs low overhead and leads to near-
optimal power consumption.

References
[1] L. A. Barroso. The price of performance.Queue, 3(7):48–53,

2005.
[2] R. Bianchini and R. Rajamony. Power and energy management

for server systems.Computer, 37(11):68–74, 2004.
[3] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,

C. McDowell, and R. Rajamony. The case for power manage-
ment in web servers. pages 261–289, 2002.

[4] J. Chase and R. Doyle. Balance of power: Energy management
for server clusters. InProceedings of the Eighth Workshop on
Hot Topics in Operating Systems (HotOS’01), May 2001.

[5] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam. Managing server energy and operational costs in
hosting centers. InSIGMETRICS ’05: Proceedings of the 2005
ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 303–314, New York,
NY, USA, 2005. ACM Press.

[6] M. Chin. Desktop cpu power survey.Silentpcreview.com, April
2006.

[7] E. Chong and S. H.̇Zak. An Introduction to Optimization. Wiley.
[8] M. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient

server clusters. InProceedings of the Second Workshop on Power
Aware Computing Systems, February 2002.

[9] T. Hardware. Cpu performance charts.Tom’s Hardware, 2006.
[10] J. P. Hayes. Self-optimization in computer systems viaon-line

control: Application to power management. InICAC’04: Pro-
ceedings of the First International Conference on Autonomic
Computing (ICAC’04), pages 54–61, Washington, DC, USA,
2004. IEEE Computer Society.

[11] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini.
Energy conservation in heterogeneous server clusters. InPPoPP

12

’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 186–195,
New York, NY, USA, 2005. ACM Press.

[12] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher. Integrating
adaptive components: An emerging challenge in performance-
adaptive systems and a server farm case-study. In28th IEEE In-
ternational Real-Time Systems Symposium, pages 227–238, Tus-
con, AZ,, December 2007.

[13] T. Horvath. Dynamic voltage scaling in multitier web servers
with end-to-end delay control.IEEE Trans. Comput., 56(4):444–
458, 2007. Member-Tarek Abdelzaher and Senior Member-
Kevin Skadron and Member-Xue Liu.

[14] L.Mastroleon, N.Bambos, C.Kozyrakis, and D.Economou. Auto-
nomic power management schemes for internet servers and data
centers. InProceedings of the IEEE Global Telecommunications
Conference (GLOBECOM),, 2005.

[15] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balanc-
ing and unbalancing for power and performance in cluster-based
systems. InProceedings of the International Workshop on Com-
pilers and Operating Systems for Low Power, May 2001.

[16] K. Rajamani and C. Lefurgy. On evaluating request-distribution
schemes for saving energy in server clusters. InISPASS ’03: Pro-
ceedings of the 2003 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, pages 111–122, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[17] C. Rusu, A. Ferreira, C. Scordino, A. Watson, R. Melhem,and
D. Mosse. Energy-efficient real-time heterogeneous serverclus-
ters. In Proceedings of the Twelfth Real-Time and Embedded
Technology and Applications Symposium (RTAS’06), April 2006.

[18] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queueing model based
network server performance control. InIEEE Real-Time Systems
Symposium, Austin, TX, December 2002.

[19] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu.
Power-aware QoS management in web servers. InRTSS ’03:
Proceedings of the 24th IEEE International Real-Time Systems
Symposium, page 63, Washington, DC, USA, 2003. IEEE Com-
puter Society.

13

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-24-2008

	Efficient Power Management of Heterogeneous Soft Real-Time Clusters
	Leping Wang
	Ying Lu

