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b Calicivirus Laboratory, Viral Gastroenteritis Section, Respiratory and Enteric Virus Branch, Centers for Disease Control and Prevention, Atlanta, USA

Accepted 13 November 2007

Abstract

Among enteric caliciviruses, noroviruses belong to the genus Norovirus, one of the four accepted genera in the family Caliciviridae.
These single-stranded, positive-sense RNA viruses are highly variable both genetically and antigenically. Several animal enteric caliciv-
iruses that are morphologically indistinguishable and genetically closely related to human noroviruses have been identified. The first
bovine enteric noroviruses were described in Great Britain and are known as Newbury Agent 2. At least three genetic clusters of porcine
noroviruses join together within genogroup II noroviruses. Human noroviruses are the most important cause of acute gastroenteritis
illness in people of all ages. In the USA, they are associated with approximately 30–50% of all food-borne outbreaks. Until now, noro-
viruses have not been associated with gastroenteritis outbreaks in immunocompetent animals. Neither bovine nor porcine noroviruses
can replicate in cell culture, although human norovirus can grow in a complex 3D culture system. However, the recently discovered mur-
ine noroviruses can replicate in cell culture and are therefore used as model viruses to study human noroviruses.

This review focusses on virus classification, virion structure, pathogenesis, epidemiology, immune response and diagnosis of animal
noroviruses in comparison with human noroviruses. The classification of animal enteric caliciviruses within the Norovirus genus raises the
question of whether transmission from an animal reservoir to humans could occur. Answering this question is important in determining
the risk of cross-species infections affecting the epidemiology and evolution of these viruses and so complicating the control of human
norovirus infections.
Published by Elsevier Ltd.
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Introduction

Noroviruses (NoVs) belong to the family Caliciviridae.
Caliciviruses are small non-enveloped viruses approxi-
mately 27–35 nm in diameter with a positive-sense, single-
stranded RNA genome (Green et al., 2001). They have a
broad host range and cause a wide spectrum of diseases
and lesions in their respective hosts, including digestive
tract infections (humans, pigs, cattle, dogs and mink),
vesicular lesions and reproductive failure (pigs, sea lions
and other marine mammal species), stomatitis, upper respi-

ratory tract and systemic diseases (cats), and haemorrhagic
disease (rabbits) (Bridger, 1990; Green et al., 2000, 2001;
Guo et al., 2001; Ohlinger et al., 1993; Smith et al.,
1998). Moreover, caliciviruses have also been isolated from
calves with clinical respiratory signs (Smith et al., 1983).

The first discovered NoV was associated with a human
outbreak of gastroenteritis in Norwalk, Ohio, which gave
the name Norwalk virus (NV) to the prototype strain of
NoV, in 1968 (Adler and Zickl, 1969). The virus was visu-
alised by immune electron microscopy (IEM) in 1972 in
stool samples from volunteers fed with faecal filtrates from
children who were affected during the outbreak (Kapikian,
2000). At almost the same time the family Caliciviridae was
created (Matthews, 1979). Discovery of both Norwalk
virus (Kapikian et al., 1972) and rotavirus (Adams and
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Kraft, 1967; Bishop et al., 1973; Bridger and Woode, 1975)
as enteric pathogens using IEM stimulated and ultimately
led to the discovery of a number of enteric viruses identified
as ‘small round-structured viruses’ (SRSV) for their general
appearance under EM (Appleton and Higgins, 1975; Chiba
et al., 2000; Madeley and Cosgrove, 1976).

In the early 1990s, the cloning and sequencing of the
entire NV genome (strain FIIa) contributed to a new era
in the study of these viruses (Jiang et al., 1993; Xi et al.,
1990). The NoV virions share several characteristics,
namely shedding into the faeces by patients affected with
gastroenteritis, a positive-sense single-stranded RNA gen-
ome, and buoyant density of 1.33–1.41 g/cm3 in CsCl
(Kapikian et al., 1996). As molecular techniques became
available in the 1990s, SRSV were divided into the Nor-
walk-like viruses (NLVs), now known as noroviruses, the
Sapporo-like viruses (SLVs), now called sapoviruses, and
the astroviruses.

Meanwhile, through the use of EM, several viruses with
typical calicivirus morphology were discovered in stool
samples of domestic animal species, namely calves (Woode
and Bridger, 1978) and pigs (Bridger, 1980; Saif et al.,
1980). Strain SW918, a prototype strain of porcine NoV,
was first detected in the caecal contents of a healthy pig
in Japan in 1997 (Sugieda et al., 1998). Other porcine
strains were then discovered in other continents (van der
Poel et al., 2000; Wang et al., 2005). Bovine NoV prototype
strains identified so far are the Newbury Agent 2, first iden-
tified in the faeces of diarrhoeic calves in 1978 (Woode and
Bridger, 1978), and the Jena agent, isolated in the 1980s
from cattle in Germany and molecularly characterised in
1999 (Granzow and Schirrmeier, 1985; Gunther and Otto,
1987; Liu et al., 1999).

Two other enteric bovine caliciviruses have been
described. These are the Newbury Agent 1 and the
Nebraska (NB) strain. Newbury Agent 1 was found with
Newbury Agent 2 in diarrhoeic calf samples in Great Brit-
ain and was characterised in 1984 (Bridger et al., 1984).
The NB strain was detected in cattle in the USA (Smiley
et al., 2002). According to Oliver et al. (2006a), the two
viruses form a phylogenetically distinct clade in the Calici-

viridae family and share 98% amino acids identity in their
complete capsid protein sequence. Recently, murine NoVs
(murine NoV-1, 2, 3, 4) were isolated from both immuno-
deficient and immunocompetent laboratory mice (Hsu
et al., 2006; Karst et al., 2003) (Fig. 1). A norovirus infec-
tion was also identified in a dead lion cub in Italy (Martella
et al., 2007).

Currently, no NoV has been discovered in other animal
species, but some caliciviruses, related to the genus Vesivi-

rus, have been found in dog faeces (Matsuura et al., 2002;
Mochizuki et al., 2002; Pratelli et al., 2000). Moreover, the
presence of vesivirus-specific antibodies was associated
with abortion in horses (Kurth et al., 2006b) and serologi-
cal evidence of vesivirus infection and also vesivirus vire-
mia have been detected in human sera (Smith et al.,
2006). Guo et al. (2001) found caliciviruses related to the

Sapovirus genus in mink. In addition, antibodies specific
to human NoVs have been detected in non-human prima-
tes (Jiang et al., 2004).

Classification

The classification of caliciviruses was first based on virus
morphology. The International Committee on Taxonomy
of Viruses (ICTV) proposed a new system for classification
and nomenclature of the caliciviruses in 1998 and it has
been further updated. The Caliciviridae family was divided
into four genera (Green et al., 2000; Mayo, 2002): Vesivi-

rus, Lagovirus, Norovirus, and Sapovirus and, more
recently, a fifth genus, provisionally named Nabovirus or
Becovirus, has been suggested (Oliver et al., 2006a) to
include Newbury Agent 1 and NB virus because they show
significant differences from the current four genera of the
Caliciviridae family.

Complete sequencing of the capsid gene has allowed
the classification of NoVs into five genogroups (G).
Human NoV strains are found in GI, II and IV (Fankha-
user et al., 2002; Green et al., 2000; Vinje and Koop-
mans, 2000). Bovine NoVs fall in GIII (Ando et al.,
2000; Oliver et al., 2003; van der Poel et al., 2003), the
murine NoVs in GV (Hsu et al., 2007; Karst et al.,
2003), the porcine NoVs in GII (Sugieda and Nakajima,
2002) and the lion NoV in GIV based on partial sequenc-
ing (Martella et al., 2007).

No consensus has been reached on the classification of
NoV strains within each genogroup. However a standar-
dised method was proposed by Zheng et al. (2006) and this
provides clear criteria for NoV nomenclature below the
genus level using the amino acid sequences of the major
capsid protein. They suggested dividing the five geno-
groups into 29 genetic clusters (genotypes): eight genotypes
in GI (GI.1–GI.8), 17 in GII (GII.1–GII.17) – extended to
19 by Wang et al. (2007) using the same method-, two in
GIII (GIII.1 and GIII.2), one in GIV and one in GV.
Because recombination can affect the correct classification
of NoVs (Kageyama et al., 2004), it is not recommended
to use partial sequences to classify new NoV strains but
rather full capsid sequencing should be performed (Zheng
et al., 2006).

Based on phylogenetic analyses (Zheng et al., 2006),
porcine NoVs belong to three distinct clusters in GII,
which is also the most widely detected genogroup in
humans. Porcine NoVs have been classified into GII.11,
which is the closest to human strains, and very recently into
two novel genotypes, GII.18 and GII.19 (Wang et al., 2005,
2007).

Molecular study of bovine NoVs has clarified their rela-
tionship with human NoVs, showing that they form a dis-
tinct third genogroup in the NoV genus. Historically, the
first genogroup in this genus was composed solely of ani-
mal enteric caliciviruses (Oliver et al., 2003). Bovine NoV
strains Jena and Newbury Agent 2 are the prototypes of
genotypes GIII.1 and GIII.2, respectively (Fig. 1).
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Virus and genomic organisation

Animal and human NoVs are non-enveloped, spherical
particles with an indistinct surface structure and a foamy
aspect outlined in EM. Studying human NoV, it was shown
that the capsid is made of 180 copies of a single protein and
its architecture is based on a T = 3 icosahedral symmetry
with 90 dimers. Its surface shows 32 cup-shaped depres-
sions and protruding arches (Prasad et al., 1999). These
properties are conserved across the family Caliciviridae

but structural variations between different members of
the family Caliciviridae have been observed and their func-
tional implications studied (Chen et al., 2004) (Figs. 2A
and B).

The NoV genome is positive-sense, single-stranded
RNA of around 7.5 kb and contains three open reading
frames (ORF) (Table 1). At the 50-end, there is a predicted
genome linked viral protein (VPg) (Daughenbaugh et al.,
2003). NoV possesses neither ribosomal entry site nor cap
structure typical of eukaryotic mRNA but their N-terminal
genome extremity is assumed to be bound to VPg, as has
been described for other animal caliciviruses (Burroughs
and Brown, 1978; Dunham et al., 1998; Herbert et al.,
1997; Schaffer et al., 1980). In vitro, this predicted VPg
interacts with components of the translation machinery
(eIF3, eIF4GI, eIF4E, and S6 ribosomal protein) through
unique protein–protein interactions and may play a role
in initiating translation of NoV RNA (Daughenbaugh

et al., 2003). There is no experimental proof of the linkage
of the predicted VPg to genomic NoV RNA except for
murine NoV (Daughenbaugh et al., 2006) (Fig. 3).

At the 50-end of the genomic RNA, ORF1 encodes a
polyprotein of approximately 195 kDa which is cleaved
by the ‘3C-like’ viral proteinase into at least six non-struc-
tural proteins: protein p48, which may play a role in intra-
cellular protein trafficking (Ettayebi and Hardy, 2003);
nucleoside triphosphatase (NTPase); protein p22, puta-
tively involved in cellular membrane trafficking and repli-
cation complexes; VPg; proteinase and RNA dependent
RNA polymerase (Belliot et al., 2003; Hardy, 2005).
ORF2 encodes the major capsid protein (VP1) of around
60 kDa which has the following functions: self assembly
and capsid formation, recognition of the receptor, host
specificity, strain diversity and immunogenicity (Chen
et al., 2004). A highly conserved genomic region in GI
and GII NoV, including a consensus sequence of 18 nucle-
otides, extends from the C-terminal part of polymerase
gene to the N-terminal part of the capsid coding region.
This sequence could be a packaging signal for the NoV
genome or a transcription initiation site (Lambden et al.,
1995) and could correspond to a hot spot of recombination
(Bull et al., 2005; Katayama et al., 2002).

The modular domain organisation of the VP1 subunit
consists of a shell (S) and a protruding (P) domain exhibit-
ing distinct differences. Significant structural variations are
present especially in the P domain composed of P1 and P2

Fig. 1. Phylogenic analysis of Caliciviridae. Multiple alignment was performed using the ClustalW program of the partial capsid protein sequence of
Alphatron norovirus (NoV) (bases 1–1668) with capsid protein sequences of representative members of the four genera of Caliciviridae. The numbers close
to the branches indicate bootstrap values. Capsid protein sequences were derived from human NoV Alphatron (GenBank accession no. AF195847),
murine NoV 1 (AY228235), porcine NoV SW918 (AB074893), human NoV Hawaii (U07611), bovine NoV Jena (AJ011099), bovine NoV Newbury Agent
2 (AF097917), bovine Newbury Agent 1 strain (DQ013304), bovine Nebraska strain (NC_004064), human NoV Norwalk (M87661), rabbit haemorrhagic
disease virus (RHDV; M67473), feline calicivirus (FCV; L40021), porcine sapovirus Cowden (AF182760).
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subunits (Chen et al., 2004) (Fig. 2C and D). P2 is the
hypervariable domain of NoV capsid and its outside local-
isation is compatible with its function as ligand to cell
receptor, found at the surface of intestinal cells (Tan
et al., 2004). ORF3 which is located at the 30-end of the
genome encodes a small minor structural protein, VP2, of

around 20 kDa, and is involved in expression and stability
of VP1 capsid protein (Bertolotti-Ciarlet et al., 2003).

Another trait of NoVs is the accumulation and expres-
sion of subgenomic RNAs during replication in infected
and cDNA transfected cells, as demonstrated for human
and murine NoVs (Asanaka et al., 2005; Wobus et al.,

Fig. 2. Capsid structure of the Norwalk virus-like particle solved by cryo-electron microscopic at 22 Å and by X-ray crystallography at 3.4 Å. (A) Surface
representation; (B) cross-section; (C) dimer of the capsid protein. Ninety dimers form the entire capsid protein; (D) Each monomeric capsid protein is
organised into domains and subdomains. The N-terminal arm region (green) is facing the interior of the VLP, a shell domain (S-domain, yellow) that
forms the continuous surface of the VLP and the protruding domain (P-domain) that constitutes the arch at the surface of the VLP. The P-domain is
further divided into subdomains P1 (red) and P2 (blue). The latter is implicated in virus–host interactions. Adapted with permission from Hutson et al.
(2004).

Table 1
Genome organisation of completely sequenced human and animal norovirus reference strains

Strain Genogroup GenBank access number Genome length (nt) Nucleotide position

ORF1 ORF2 ORF3

Hu/Norwalk I M87661 7654 5–5374 5358–6950 6950–7588
Hu/Hawaii II U07611 7513 5–5104 5085–6692 6692–7471
Bo/Jena III AJ011099 7338 22–5064 5051–6610 6600–7271
Bo/Newbury Agent 2 III AF097917 7311 22–5076 5063–6631 6423–7271
Mu/MNV1 V NC_08311 7382 6–5069 5056–6681 6681–7307

nt: nucleotide; ORF: open reading frame.

Fig. 3. Genomic organisation of noroviruses. VPg: predicted genome linked viral protein; p48: protein 48; NTPase: nucleotide triphosphatase; 3CLPro:
3C-like protease; RdRp: RNA dependent RNA polymerase; VP1: major structural protein (capsid protein); VP2: minor structural protein; ORF: open
reading frame.
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2004). This subgenomic expression is also used by other
positive-strand RNA viruses to regulate and to allow a suf-
ficient synthesis of structural proteins (Miller and Koev,
2000).

Virus–cell interactions

NoV infection is thought to occur in the small intestine,
but no studies have identified animal noroviruses in entero-
cytes. NoV replication may not be restricted to enterocytes.
The murine NoV revealed an unexpected tropism for the
haematopoietic cell lineages, in particular macrophages
and dendritic cells (Wobus et al., 2004). In the human gas-
trointestinal tract, intestinal dendritic cells can form trans-
epithelial dendrites and directly acquire antigens in the
lumen (Niess et al., 2005; Niess and Reinecker, 2005).

Human NoVs recognise carbohydrates linked to the
human histo-blood group antigens (HBGAs), ABH and
Lewis, as receptors (Hutson et al., 2002; Marionneau
et al., 2002). The C-terminal region (P domain) of the cap-
sid protein is involved in this attachment (Hutson et al.,
2002; Marionneau et al., 2002; Tan and Jiang, 2005b).
These carbohydrates are widely present and most mammal
species express such oligosaccharides on their tissues (Mar-
ionneau et al., 2001). Receptors for animal NoVs are not
yet characterised but it can be hypothesised that such mol-
ecules are involved. This hypothesis is supported by find-
ings in other caliciviruses. For example, rabbit
haemorrhagic disease virus, a lagovirus, binds to antigens
of the ABH histo-blood group family (Ruvoen-Clouet
et al., 2000). Interestingly, oysters, often the origin of
human food-borne NoV outbreaks, express carbohydrates
closely related to some HBGAs in their digestive tissues on
which human NoVs could be concentrated by binding,
allowing spreading when eaten (Le Guyader et al., 2006).

In vitro, human NoV-like particles were able to bind to
swine gastro-intestinal washings coated on plaques (Tian
et al., 2007). Furthermore, the binding of human NoVs
on swine gut tissues was reported in vivo with some indica-
tion of replication (Cheetham et al., 2007). On the another
hand, virus-like particles (VLP) from SW918 porcine strain
(GII.11, genetically related to human NoV) did not bind to
human saliva samples of the major histo-blood group types
(Farkas et al., 2005). These data suggest another receptor
type for this NoV, with sometimes the opportunity for
human NoVs to bind to naturally expressed carbohydrates
related to human HBGAs on swine gut tissues (Cheetham
et al., 2006, 2007). Another explanation may be the lack of
additional factors which could be essential for in vitro and
in vivo NoV replication, such as those that could be pro-
vided in cell culture in a ‘3D-conformation’ (Straub
et al., 2007). Bile acids from the intestinal content are
essential for the sapovirus porcine enteric calicivirus
(PEC)/Cowden strain replication in cell culture by increas-
ing cAMP concentration and down-regulation of the inter-
feron-mediated phosphorylation of the signal transducer
and activator of transcription 1 (STAT1), a key element

of innate immunity (Chang et al., 2004). Moreover, recent
findings imply that the proteolytic process mediated by
trypsin, for example, could be necessary for human NoV
replication in the host (Tan et al., 2006).

Like other members of the Caliciviridae family and posi-
tive-strand RNA viruses, the replication of animal NoVs
could occur in association with intracellular membranes
and disturb them as much as membrane associated trans-
port (Green et al., 2002; Schwartz et al., 2004; Studdert
and O’Shea, 1975). Indeed, cells transfected with a vector
plasmid that provides expression of the entire NV N-termi-
nal protein (amino acids 1-398 of the ORF1 polyprotein)
showed co-localisation of this protein with cellular proteins
of the Golgi apparatus (Fernandez-Vega et al., 2004). In
NoV transfected and infected cells, the loss of an intact
Golgi apparatus is also clearly obvious (Wobus et al.,
2004). Another viral protein, VPg, can inhibit host protein
synthesis (Daughenbaugh et al., 2003, 2006). In different
studies, animal calicivirus RNA treatment by proteinase
K abolished its infectivity suggesting an essential role of
VPg (Burroughs and Brown, 1978; Dunham et al., 1998).
In addition, the viral proteinase can also inhibit cellular
translation by cleavage of the poly-A binding protein
(Kuyumcu-Martinez et al., 2004).

Pathogenesis, clinical signs and lesions

The main transmission route is faecal–oral for both ani-
mal and human NoVs (Graham et al., 1994; Green et al.,
2001; Hall et al., 1984; Hsu et al., 2005). Both epidemiolog-
ical and experimental observations suggest that another
natural route of infection could be the respiratory tract
through aerosolised particles in vomitus (Karst et al.,
2003; Sawyer et al., 1988). Caliciviruses are characterised
by stability in the environment (Rzezutka and Cook,
2004) and relative resistance to inactivation (Duizer et al.,
2004a). In the absence of any culture system, stability
and resistance of NoVs were studied in correlation with
surrogates (VLPs, Feline calicivirus). Murine NoV offers
more possibilities to study these fields (Cannon et al.,
2006). Low infectious doses (Graham et al., 1994) and large
strain diversity (Ando et al., 2000) increase the risk of
infection.

Non-hemorrhagic enteritis, mild diarrhoea, transient
anorexia and xylose malabsorption were the common clin-
ical signs reported in gnotobiotic calves infected with the
bovine NoV Newbury Agent 2. Diarrhoea was more severe
in 3-week-old calves than in neonates. The same clinical
pattern was observed up to 2 months of age. This virus
seemed to be less virulent than the other bovine enteric
calicivirus Newbury Agent 1 (Bridger et al., 1984; Hall
et al., 1984; Woode and Bridger, 1978). Usually, the viral
shedding appeared shortly before or during the first clinical
signs. Using EM, viral excretion was noted over a short
period (Bridger et al., 1984), a longer faecal excretion per-
iod was seen by RT-PCR, which was more sensitive for
NoV detection (Han et al., 2005; Rabenau et al., 2003).

36 A. Scipioni et al. / The Veterinary Journal 178 (2008) 32–45



Histopathological lesions of calves infected with bovine
NoV Newbury Agent 2 and the Jena agent consisted of vil-
lous atrophy, crypt hyperplasia and oedema in the submu-
cosa in the proximal small intestine (Bridger et al., 1984;
Gunther and Otto, 1987). Gastric and rectal mucosae were
not affected (Bridger et al., 1984; Gunther and Otto, 1987;
Woode and Bridger, 1978).

Porcine NoVs have been exclusively detected in faecal
samples of adult swine without clinical signs (Wang
et al., 2005), but in vivo studies have not been carried
out. The real impact of porcine NoVs in swine diarrhoea
remains to be elucidated.

Murine NoV-1 infection is asymptomatic in wildtype
inbred 129 or outbred CD1 mice; on the other hand, mice
lacking recombination-activating gene 2 (RAG2) and
STAT1 will succumb to infection with this strain. The mice
show clinical signs of encephalitis, vasculitis in cerebral ves-
sels, pneumonia and hepatitis. In addition, the agent can be
serially passaged by intracerebral inoculation, suggesting a
wide NoV tropism and permissivity in immunodeficient
individuals (Karst et al., 2003). Murine NoV-1 RNA was
detected in spleen, mesenteric lymph nodes and jejunum
from mice experimentally infected 5 weeks post-inoculation
(Hsu et al., 2005). More recently, mouse lines of different
immunodeficient genotypes have been infected with murine
NoV-1 demonstrating systemic infections and signs of
inflammation in different tissues (lung, liver, peritoneal
and pleural cavities) (Ward et al., 2006). It is interesting
to note that symptoms in humans are usually mild, self-lim-
iting and of short duration (Rockx et al., 2002), except for
immunocompromised, elderly or patients with underlying
diseases (Goller et al., 2004; Lopman et al., 2003; Mattner
et al., 2006; Okada et al., 2006). Human NoVs cause acute
gastroenteritis and/or vomiting with a high secondary
attack rate, especially in communities (Caul, 1996), but
some human NoV case reports have documented a more
severe disease with symptoms like intravascular coagulation
disease or encephalitis (Brown et al., 2002; Ito et al., 2006).

In immunocompetent mice, histopathological changes
are the only signs of murine NoV-1 infection (Mumphrey
et al., 2007). Thus, it is assumed that disease only occurs
in mice lacking components of the innate immune system
(Karst et al., 2003). However, other murine NoV strains
(murine NoV-2, 3 and 4) have been isolated recently in dif-
ferent mouse research colonies in North America (Hsu
et al., 2006). These strains exhibited a different pathogenic
pattern than murine NoV-1 in experimentally inoculated
immunocompetent mice. While a transient infection was
observed with murine NoV-1, the three novel strains
showed more prolonged faecal shedding (8 weeks com-
pared to 1 week) and signs of chronic tissue infection. This
persistence could be associated with continuous replica-
tion, commonly observed with feline calicivirus (Wardley
and Povey, 1977). Similar features could be suggested with
other human or animal NoV strains with the outcome that
asymptomatic carriers could contribute to virus dissemina-
tion and outbreaks.

Few animal NoVs cause serious clinical signs. In fact,
such signs have only been noted in immunocomprised ani-
mals. In pigs, signs were only detected in asymptomatic
animals. In bovines, NoVs should be viewed as benign
pathogens that could facilitate or complicate gastroenteritis
particularly in neonates. Only murine NoVs cause severe
histopathological changes in their hosts.

Epidemiology

Epidemiological studies have repeatedly shown that
NoVs are widespread and that infection is common in
the human population as well as in the bovine, porcine
and murine species. However, the epidemiology is not well
understood and few studies have been carried out on ani-
mal NoV infections.

A serological prevalence of 22.1% was found in labora-
tory mice in North America, making murine NoV the most
prevalent virus infecting these animals (Hsu et al., 2005). In
The Netherlands, 31.6% of pooled stool specimens from
veal calf farms and 4.2% of individual stool specimens from
dairy cattle were positive for GIII NoV related to Newbury
Agent 2 (van der Poel et al., 2003). In the UK, NoVs were
detected in 11% of the cases of bovine diarrhoea tested
(Milnes et al., 2007). In the US, different prevalence level
of calicivirus shedding were found depending on the state:
72% in veal calves in Ohio (Smiley et al., 2003), 80% in
Michigan and 25% in Wisconsin (Wise et al., 2004). In Ger-
many, 9% of diarrhoea stool samples were positive for Jena
virus whereas 99% of the serum samples collected from
dairy cows were positive for the same GIII virus (Deng
et al., 2003). This attests that bovine NoVs are present in
cattle at a high rate in different countries.

Genogroup II NoVs were detected in pigs in Japan
(Sugieda et al., 1998), The Netherlands (van der Poel
et al., 2000), USA (Wang et al., 2005) and, recently, Hun-
gary (Reuter et al., 2007). The detection rate of porcine GII
NoV was low: 0.35% in Japan and 2% in The Netherlands
(van der Poel et al., 2003). No circulation of porcine NoV
was evidenced in Venezuela by RT-PCR screening (Marti-
nez et al., 2006). Seroprevalence of GII NoV in swine was
97% in USA and 36% in Japan (Farkas et al., 2005).

The first putative lion NoV was detected in Pistoia zoo
in Italy in a 4-week-old cub that died of severe haemor-
rhagic enteritis; it has not been demonstrated whether the
virus was the causative agent of this enteric disease (Mar-
tella et al., 2007).

Enteric caliciviruses have been described in other
domestic animal species, including cats and dogs (Herbst
et al., 1987; Mochizuki et al., 1993; Schaffer et al., 1985),
but until now none has been characterised as NoV.

Immune response

Initial data regarding host immune responses against
NoV infection were generated by human challenge with
stool filtrate or natural exposure during outbreaks, and
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have been complicated by non-immunological host factors.
These may be genetic (HBGAs for human strains) and
associated with susceptibility to infection (Tan and Jiang,
2005a). Early reports in humans indicated an unusual clin-
ical immunity pattern (Blacklow et al., 1987). Human vol-
unteer studies with NV strain established that short-term
immunity, lasting about 6 months, develops against homol-
ogous viruses (Johnson et al., 1990). This short-term immu-
nity did not necessarily extend the protection to
heterologous NoV infections (Matsui and Greenberg,
2000; Wyatt et al., 1974) and could be followed by renewed
susceptibility to infection 1–2 years later.

Thus, a single exposure to the virus does not necessarily
confer long-term immunity (Parrino et al., 1977). More-
over, individuals with high titres of pre-challenge antibody
levels to NV are not protected against reinfection and dis-
ease after a single exposure, but high antibody levels
become associated with protection after repeated exposures
(Johnson et al., 1990). Calves challenged with the Newbury
Agent 2 showed a homologous immunity that developed 3
weeks after first inoculation (Bridger et al., 1984). To our
knowledge, the duration of homologous immunity against
bovine NoV has not yet been studied.

Innate immunity

Innate immunity plays an important role in the control
of the murine NoV-1 infection, while B and T cell-depen-
dent adaptive immune responses are not required for pro-
tection and STAT1 is implied (Karst et al., 2003; Wobus
et al., 2004). Mice lacking both interferon (IFN)ab and
IFNc receptors are more susceptible to NoV lethal infec-
tion than immunocompetent mice (Karst et al., 2003). In
pigs inoculated with human NoV, intestinal IFNa is signif-
icantly elevated post-infection (Souza et al., 2007). In addi-
tion, self-replicating NV RNAs generated in transfected
cells are sensitive to the effects of exogenous IFNa (Chang
et al., 2006). The role of innate immunity in controlling
infection could explain that immunodeficient subjects can
develop a more severe disease and a systemic viral spread
following NoV infection.

Adaptive immunity

Essentially limited to the small intestine, NoV infection
stimulates the mucosal immune response and, following
human experimental inoculation, a specific serum IgA
response appears to be a constant feature (Erdman et al.,
1989). Salivary IgAs are not cross-reactive between geno-
groups and could be less cross-reactive than IgG within
genogroup (Lindesmith et al., 2005).

Lindesmith et al. (2003) identified two distinct patterns
of NV-specific salivary IgA increase after challenge of
human volunteers. Some genetically susceptible people that
did not succumb to infection after challenge showed an
early increase in secretory IgA, suggesting that a memory
immune response could be protective. However, it is not

known if this protective immunity represents short- or
long-term immunity. Immune mechanisms can differ
according to the animal species, but it could be assumed
that a similar immunity pattern may be observed in animal
NoVs. In humans, an IgM peak occurred about 2 weeks
after inoculation in association with illness, and a second-
ary IgM response occurred in the longer term after re-chal-
lenge. An IgM response to NoV is consequently not
restricted to a primary infection (Cukor et al., 1982) but
is rather a marker of recent infection (Brinker et al., 1999).

Also in humans, an IgG response is activated by infec-
tion, characterised by a fourfold increase in titres (Graham
et al., 1994; Lindesmith et al., 2005), which can remain high
for more than 2 years after infection (Iritani et al., 2007). In
calves, the antibody response raised after experimental
infection is similar to the serological response observed in
humans infected with human NoV. Serum IgGs are first
detected at 5 days post-infection and maximum titres are
reached about 3 weeks after inoculation with a genotype
2 bovine NoV (Han et al., 2005).

A characteristic of these non-enveloped viruses is the rel-
ative simplicity of the capsid. The protruding subdomain
P2 is the most antigenically variable region of the capsid
because it is likely to be influenced by immune pressure
(Nilsson et al., 2003). Monoclonal antibodies recognising
P2 epitopes block virus–cell interactions. This supports
increasing evidence that interactions between NoVs and
host cells rely on structures in the P2 domain of VP1
(Lochridge et al., 2005) and that VP1 possesses antigenic
determinants involved in protective immunity. Inter-geno-
group broadly reactive epitopes are localised in the shell
domain (Batten et al., 2006; Yoda et al., 2003). Indeed,
although viruses from different genogroups are antigeni-
cally distinct, bovine NoVs share a cross-reacting epitope
with a human GII.3 norovirus (Oliver et al., 2006b). This
epitope is localised in the N-terminal region belonging to
the inner shell domain of the capsid protein that is rela-
tively well conserved (Yoda et al., 2003).

In both pigs and humans, infection with a human GII
NoV elicits a predominant but not exclusive Th1 response
(Lindesmith et al., 2005; Souza et al., 2007). Numerous
experiments used NoV VLPs (self assembling of VP1) as
a surrogate to study NoV immunity. These VLPs are pro-
duced by different protein production systems, in particular
the baculovirus system, and are structurally, morphologi-
cally and antigenically similar to the infectious virus
(Han et al., 2005; Jiang et al., 1992, 1995; Le Guyader
et al., 2006). VLPs are immunogenic when they are given
to mice orally, intranasally or by the parenteral route (Ball
et al., 1998; Guerrero et al., 2001; Jiang et al., 1992), giving
rise to a systemic and mucosal immune response. Because
infection with NoVs is mainly localised in the small intes-
tine, induction of a local immunity may be important for
protection against infection and disease. The conclusion
from the many human studies is that immunity against
human NoVs is not determined by serum antibodies
(Baron et al., 1984) and pre-existing serum antibodies do
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not seem to be associated with protective immunity (John-
son et al., 1990).

Diagnosis

Electron microscopy, immunoassays (IA) and RT-PCR
are used for NoV diagnosis (Lopman et al., 2002). A major
problem for diagnosis using immunological or molecular
techniques is the high genetic and antigenic diversity of
NoVs. This is well known and described for human NoVs
(Zheng et al., 2006). Genetic (Smiley et al., 2003) and anti-
genic (Oliver et al., 2006b; Wang et al., 2007) diversity is
described in animal NoVs but is less than in human NoVs,
as is seen with the number of clusters described for each
NoV genogroup. This could be explained by detection bias
and the development of diagnostic assays able to recognise
the expected large diversity of animal noroviruses is
required. Moreover, the development of diagnostic meth-
ods has been hampered by the lack of a cell culture system
for NoVs (Duizer et al., 2004b), other than murine NoVs.
Recently, a complex 3D-cell culture system has allowed the
growth of GI and GII human NoVs (Straub et al., 2007)
and this may be the beginning of a new era in NoV diag-
nostic tools.

First generation tests such as EM, radio-IA, Western
blot or enzyme-IA have used reagents derived from previ-
ously infected humans. New generation tests following
the successful cloning of NoVs have allowed the produc-
tion of new reagents (such as VLPs) and new method devel-
opment (such as RT-PCR) for the diagnosis of NoV
infections.

Electron microscopy

Electron microscopy has been a fundamental tool for
investigators, and has led to the discovery of the first
NoVs, but it is a relatively insensitive method because a
high viral load is necessary (>106 particles per gram of
stool) (Atmar and Estes, 2001). Moreover, highly skilled
microscopists are required to detect NoVs from prepared
stool samples reliably. Some variants of these methods,
such as IEM (Kapikian, 2000), or solid phase IEM (Das-
tjerdi et al., 1999), can also be used and are based on anti-
gen–antibody reaction, visualised by negative staining EM.

ELISA

Expression of the NoV capsid protein in a baculovirus
system provides large amounts of VLPs, which are used
as antigens in IA. ELISA is the most widely used IA, using
hyperimmune sera generated by the immunisation of ani-
mals. These assays are highly sensitive compared to EM,
but their use in diagnostic laboratories is limited by their
narrow specificity (Jiang et al., 2000). In fact, they are
based on the detection of NoV antigens and could be ham-
pered by antigenic diversity. ELISAs are useful because of
their rapidity and simplicity for screening large number of

samples. Antibody detection is more broadly reactive than
antigen detection and is more suitable to identify hetero-
typic NoV infection (Atmar and Estes, 2001). For bovine
and porcine NoVs, antibody and antigen ELISAs have
been described (Cheetham et al., 2006; Farkas et al.,
2005; Han et al., 2005; Oliver et al., 2007). The bovine
NoVs (GIII) are divided into two serotypes, corresponding
to the two distinct genotypes represented by Jena and New-
bury Agent 2 strains (Oliver et al., 2006b). Antibodies
against murine NoVs can be detected by ELISA (Mum-
phrey et al., 2007) or by a fluorescent IA (Hsu et al., 2006).

Three common epitopes shared by NoVs have been
identified, one in the same genogroup, GI (Hale et al.,
2000), another between GII and GIII (Oliver et al.,
2006b), and the a third between GI and GIII (Batten
et al., 2006). These discoveries could lead to the develop-
ment of a broadly reactive antigen detection ELISA.

Reverse transcription polymerase chain reaction (RT-PCR)

Animal NoV strains can be detected by RT-PCR with
primers designed for human NoVs. The assay allows the
detection of porcine (Sugieda et al., 1998) and bovine (Das-
tjerdi et al., 1999; Liu et al., 1999; van der Poel et al., 2000)
NoVs, but it is less sensitive than assays using animal NoV-
specific primers. Therefore, once the presence of NoVs in
animal species is proven, specific detection methods can
be set up. For example, specific primers for RT-PCR and
ELISA for detection of pig (Farkas et al., 2005; Wang
et al., 2005) and calf NoVs (Deng et al., 2003; van der Poel
et al., 2003) have been developed.

The polymerase gene is highly conserved among NoVs
and numerous primer pairs have been published in this
region (Le Guyader et al., 1996b; van der Poel et al.,
2003; Vinje and Koopmans, 1996; Wang et al., 2006).
However, analysis of more than one region is important
for the detection of recombinant strains. By DNA sequenc-
ing of amplicons, information on viral phylogeny can be
obtained and recombinant viruses may be detected.

RT-PCR has been developed after full length sequencing
of different human NoV genomes (Jiang et al., 1993; Lamb-
den et al., 1993). The genetic diversity among NoVs makes
it impossible to develop a universal primer pair able to
detect all NoVs, but some primers have been developed
to detect most of circulating strains (Jothikumar et al.,
2005; Le Guyader et al., 1996a; Richards et al., 2004; Vinje
and Koopmans, 1996). A constant updating of primers is
thus necessary.

The sensitivity of RT-PCR may be much lower than
expected because of the presence of RT-PCR inhibitors
in the sample (Wilson, 1997). The use of an internal control
is strongly recommended to validate negative results and a
few have been described for animal NoV detection in pigs
(Cheetham et al., 2006; Wang et al., 2006) and cattle (Smi-
ley et al., 2003). RT-PCR remains the ‘gold standard’ for
NoV diagnosis because it is the most sensitive routine
method used. It is being progressively replaced by real-time
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RT-PCR, which is more sensitive and faster. Various meth-
ods, such as SYBRGreen and TaqMan, have been already
set up for human NoV (Jothikumar et al., 2005; Trujillo
et al., 2006). These may also be used for the detection of
animal NoVs, and some have recently been published for
pig (Cheetham et al., 2006) and cattle NoVs (Wolf et al.,
2007). Real-time RT-PCR using a Taqman probe gives
the advantage of confirmation in a single assay and the
opportunity of quantification if a standard is used (Jot-
hikumar et al., 2005). This last application is of great inter-
est as most NoVs cannot easily be cultivated in routine cell
culture for plaque assay quantification.

As there is no harmonisation to compare methods (as a
reference assay), the validation parameters reported in the
literature are not comparable. However, a conclusion from
the published assays is that RT-PCR is more sensitive than
EM and ELISA (Burton-MacLeod et al., 2004; de Bruin
et al., 2006; Richards et al., 2003) and it is now the mostly
used assay to identify animal and human NoV infections.

The hypothesis of zoonotic risk

The detection of NoVs in animal faeces (calves and
pigs), with or without clinical signs of gastroenteritis, is fre-
quent (Ando et al., 2000; Deng et al., 2003; van der Poel
et al., 2000). Molecular analyses have shown that animal
and human strains are closely related, especially porcine
NoVs, which are included in the same genogroup (GII)
as some human strains (Oliver et al., 2003; Sugieda et al.,
1998; Wang et al., 2005). Moreover, replication of a human
NoV GII was recently demonstrated in gnotobiotic pigs
(Cheetham et al., 2006).

Strengthening the hypothesis that animals may act as a
human NoV reservoir, a high prevalence of antibodies
against human NoVs was found in pigs in Venezuela. Sur-
prisingly, a higher level of antibody prevalence against GI
than GII human NoVs was observed (Farkas et al., 2005),
whereas all porcine NoV detected thus far clustered with
GII NoVs. These results may be explained by infection of
swine with human GI NoVs or by a putative circulation
of a yet undiscovered porcine NoV.

Although an animal reservoir and zoonotic transmission
could exist, genetic distances (Oliver et al., 2003) and differ-
ence between receptors (Farkas et al., 2005; Hutson et al.,
2003) do not support this hypothesis. Furthermore, the
lack of evidence that the same strains circulate in both
the human and bovine species suggests an absence of risk
to human health (Oliver et al., 2003). The recent detection
of sequences close to GII.4 human NoV in swine and cattle
in Canada could however modify this risk evaluation in the
future (Mattison et al., 2007).

Although animal NoVs have not yet been isolated from
humans, human infection with NoVs related to genogroup
III bovine NoV has been suggested by the presence of anti-
bodies against bovine GIII.2 in veterinarians in The Neth-
erlands (Widdowson et al., 2005). The existence of cross-
reactive epitopes between human and bovine NoVs (Batten

et al., 2006; Oliver et al., 2006b) may explain the detection
of antibodies against animal NoVs in humans. Otherwise,
bovine strains are unlikely to be a risk to humans because
they form a third genogroup genetically distinct from
human NoVs (Han et al., 2004; Oliver et al., 2003).

To date, NoV recombinants have been exclusively iden-
tified between NoVs belonging to the same genogroup and
from the same animal species within bovine (Han et al.,
2004; Oliver et al., 2004), porcine (Wang et al., 2005) and
human species (Jiang et al., 1999; Katayama et al., 2002;
Vinje and Koopmans, 2000). Bivalve molluscs present a
problem in that they are filter feeders capable of concen-
trating viruses present in the surrounding water. Outbreaks
associated with seafood are frequent, especially in countries
where their consumption is high and also because they are
often eaten raw (Lees, 2000). A natural co-infection with
GI and GII NoVs has already been described in humans
(Chan et al., 2006). Moreover, simultaneous presence of
human and animal NoVs has been detected in shellfish
(Costantini et al., 2006). These observations raise concern
about the risk of co-infection of humans with human and
animal NoVs, resulting in possible recombination and
emergence of new strains.

Some animal caliciviruses are able to cross the species
barrier and potentially use humans as an alternative host
(Smith et al., 1998). One serotype of the Snow Mountain
sea lion virus was reported to infect humans (Smith
et al., 1998) and antibodies against vesivirus were found
in cattle and horses (Kurth et al., 2006a; Kurth et al.,
2006b).

These data suggest that appropriate conditions could be
met to favour the emergence of recombinant viruses and/or
an interspecies transmission of genetically compatible
noroviruses.

Conclusions

NoVs are the most common cause of outbreaks of non-
bacterial gastroenteritis in humans, and are also the most
common cause of viral food-borne infection. In animal spe-
cies, their full impact is not known, but they have already
been detected in cattle, pigs and mice in several countries.
As animal NoVs are closely related to human NoVs, it
can be hypothesised that similar properties are shared by
both viruses. Murine NoV, the only easily cultivable
NoV, is useful as an animal model to study human NoVs
in vitro and in vivo. Also, GII human NoVs replicate in
gnotobiotic pigs, which may provide a heterologous model
to study the pathogenesis of human infection. Bovine and
porcine NoVs are the best candidates to be used as a
homologous animal model.

To date, few complete genomes of animal NoVs have
been published to better understand relatedness with
viruses causing disease in humans. Of great interest for
NoV researchers is the possibility of zoonotic transmission.
Animal NoVs are genetically close relatives to human
strains, especially porcine NoVs, which can be grouped
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with GII NoVs which are the viruses that are most fre-
quently associated with outbreaks. The sequence similarity
of porcine and bovine strains with human strains suggests
that an animal reservoir of NoV infection is plausible. Co-
infection and recombination between human and animal
strains might occur although they have not yet been
detected. Since intra-genogroup recombinants have been
characterised in both human and animal species, and
human and bovine NoVs have been detected in the same
oysters, their co-ingestion by the same person or animal
could potentially lead to the emergence of an inter-geno-
group recombinant strain.

The emergence of such recombinant has the highest like-
lihood to occur in countries where high densities of animal
and human populations where breeding practices put
humans and animals in close contact so increasing the risk
for cross species transmission.

Acknowledgements

This work was supported in part by SPF (Santé Publiq-
ue, Sécurité de la Chaı̂ne Alimentaire et Environnement)
(RF6185), by Belgian Science Policy – Science for a Sus-
tainable Development (SSD) (SD/AF/01), by the Région
Wallonne (415701) and the University of Liège. The
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