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Abstract 
Articulation-based silent speech interfaces convert silently 
produced speech movements into audible words. These systems 
are still in their experimental stages, but have significant 
potential for facilitating oral communication in persons with 
laryngectomy or speech impairments. In this paper, we report the 
result of a novel, real-time algorithm that recognizes whole-
words based on articulatory movements. This approach differs 
from prior work that has focused primarily on phoneme-level 
recognition based on articulatory features. On average, our 
algorithm missed 1.93 words in a sequence of twenty-five words 
with an average latency of 0.79 seconds for each word prediction 
using a data set of 5,500 isolated word samples collected from 
ten speakers. The results demonstrate the effectiveness of our 
approach and its potential for building a real-time articulation-
based silent speech interface for health applications. 
Index Terms: silent speech recognition, speech impairment, 
laryngectomy, support vector machine 

1. Introduction 
Persons who lose their voice due to the surgical removal of the 
larynx (i.e., laryngectomy) and who have moderate speech 
impairment struggle with daily communication [1]. Each year, 
about 15,000 new cases of laryngeal cancer and hyperlaryngeal 
cancer are diagnosed in the United States [2] and there are an 
estimated 16,500 tracheo-esophageal speech valve changes every 
year in the UK [3]. Currently, there are only limited treatment 
options for these individuals, which include (a) “esophageal 
speech”, which involves oscillation of the esophagus and is 
difficult to learn; (b) electrolarynx, which is a mechanical device 
resulting in a robotic-like voice; and (c) augmented and 
alternative communication (AAC) devices (e.g., text-to-speech 
synthesizers operated with keyboards), which are limited by slow 
manual text input [1]. New assistive technologies are needed to 
provide a more efficient oral communication mode with natural 
voice for these individuals. 

Articulation-based silent speech interfaces (SSIs), although 
still in early development stages [4], provide an alternative 
interaction modality for individuals with altered or missing 
larynxes. The common purpose of SSIs is to convert articulatory 
data (without using audio data) to text that drives a text-to-
speech (TTS) synthesizer to output sounds. SSIs may produce a 
more natural voice (using TTS) than electrolarynx does and SSIs 

may be more efficient (higher speaking rate) than AAC devices 
[2, 3, 4].  

Two major challenges for developing SSIs are designing (a) 
hardware devices for articulatory data collection that are suitable 
for clinical applications and (b) fast and accurate algorithms to 
convert articulatory observations to text. Different hardware 
technologies for SSI have been compared in [4], including the 
promising electromagnetic articulograph (EMA) [3] in which 
point sensors placed on the lips and tongue are tracked in three 
dimensions. Recent studies have shown the potential of EMA-
based silent speech interfaces with permanently affixed sensors 
for command-and-control applications [3, 5]. Our study is 
focused on the development of a fast and accurate algorithm for 
word recognition from continuous articulatory movements. 

Research has shown that articulatory data can improve the 
accuracy of word recognition from the voiced speech of both 
healthy [6, 7] and neurologically impaired individuals [8]. This 
typically involves the use of articulatory features (AFs) which 
include lip rounding, tongue tip position, and manner of 
production, for example. Phoneme-level AF-based approaches 
often obtain word recognition accuracies less than 50% [6] 
because articulation can vary significantly within those 
categorical features depending on the surrounding sounds and 
the speaking context [9]. These challenges motivate a higher unit 
level of recognition. 

Sentence-level recognition from articulatory data has 
recently been investigated, which is promising in terms of 
accuracy [2]. However, sentence-level recognition lacks the 
scalability of phoneme- and word-level recognition, because all 
sentences are required to be known prior to prediction. Word-
level recognition trades off relatively good scalability and the 
potential of higher accuracy than phoneme-level recognition. 

Word-level recognition from acoustic data has been 
investigated, which showed that word-level (and triphone-level) 
models outperform monophone models with approximately 25% 
in the relative reduction of error rate [10, 11]. However, whole-
word recognition has rarely been investigated in articulatory data 
due to logistic difficulty to collect articulatory data [5]. 

This paper investigates whole-word recognition from 
articulatory data for silent speech interfaces by applying a newly 
developed whole-unit articulatory recognition algorithm [2]. The 
algorithm is adapted to this project and is characterized by the 
following features: (1) recognition is at the whole-word level 
rather than the phoneme- or sentence-level; (2) recognition is 
based on articulatory movements rather than on derived AFs; (3) 



recognition is based on a dynamic thresholding technique based 
on patterns in the probability change returned by a classifier; and 
(4) the algorithm is extensible (i.e., it can be embedded with a 
variety of classifiers). In the future, this algorithm will serve as 
the recognition component of our articulation-based SSI. A 
phonetically-balanced and isolated word dataset was collected 
and used to evaluate the effectiveness and efficiency of this 
algorithm. 

2. Design & Method 
The design of our articulation-based SSI is illustrated in Figure 
1, which contains three components: (a) data acquisition, (b) 
online (whole-word) recognition, and (c) output (playback or 
synthesis) [2]. Data acquisition is performed using an EMA 
machine that tracks the motion of sensors attached on a speaker’s 
tongue and lips. The focus of this paper is the online recognition 
component whose goal is to recognize a set of phonetically-
balanced and isolated words from articulatory data only. The 
core recognition problem is to convert a time-series of spatial 
configurations of multiple articulators to time-delimited words. 
Here, a spatial configuration is an ordered set of 3D locations of 
the sensors. In the whole-word recognition algorithm, 
segmentation and identification are conducted together in a 
variable-size moving window. The algorithm is based on the 
premise that a word has its highest matching probability given an 
observation window with an appropriate starting point and 
width. A trained classifier that derives these matching 
probabilities is embedded into the algorithm, as described in the 
rest of this section. 

2.1. Model training (classification) 
A support vector machine (SVM) [12] was trained using pre-
segmented articulatory movement data from multiple sensors 
associated with known words. SVMs are widely used soft 
margin classifiers that find separating hyperplanes with maximal 
margins between classes in high dimensional space [13]. A 
kernel function is used to describe the distance between two data 
points (i.e., x and y in Equation 1). A radial basis function (RBF) 
was used as the kernel function in this experiment, where λ is an 
empirical parameter: 

||)||1exp(),( yxyxKRBF −−= λ              (1) 

The training component was developed off-line before the SSI 
was deployed in a real-time application. Therefore, we do not 
consider the time required to build the model as a relevant 
problem. Rather, the time taken for a trained model to predict 
words is an important measure for evaluating real-time 
applications. To obtain a high speed in prediction, a direct 
mapping strategy was used, in which the input data was 

minimally processed before being fed into the SVM (directly 
mapped to words). The sampled motion paths of all articulator 
were time-normalized to a fixed-width (SVMs require samples to 
have a fixed number of values) and concatenated as one vector of 
attributes, which formed a word sample. Furthermore, to 
determine the relative accuracy of our SVM classification to 
another commonly-used time-series classification approach, we 
also tested classification using dynamic time warping (DTW), 
which were used for the same application [3, 5]. 

2.2. Online recognition 
The trained classifier was then used to recognize words from 
continuous (unsegmented) tongue and lip movement data. A 
prediction window with variable boundaries was used to traverse 
the sequence of tongue and lip movement data to recognize 
words and their locations within the window based on the 
probabilities returned by LIBSVM, which extends the generic 
SVM by providing probability estimates transformed from SVM 
decision values [12]. Pseudo-code of the whole-unit recognition 
algorithm is in [2].  

In step 1 (Figure 2), word candidates are identified within the 
window according to probabilities returned from the trained 
SVM. All possible word lengths (within the length range of 
training words with a step size) are considered and the maximum 
probability is returned as the probability for a time point. The 
word length in our list ranges from 370 to 608 ms. The offset of 
the probability function varied considerably across words, which 
made it difficult to identify a sensitive candidate threshold. 
Therefore, the probability associated with each word was 
baseline-corrected by subtracting the average probability derived 
from the first 600 ms of the test sequence. Candidates are 
identified in a prediction window (represented by its left and 
right boundaries, wl and wr) when probability values exceeded a 
candidate threshold obtained empirically from training data. 

 
Figure 1. Design of the EMA-based silent speech interface 

 
Figure 2.  A schematic of the whole-word recognition algorithm 
from articulatory movement data. 



Each word has its own threshold in design [2], but in the early 
stage of this work, a single threshold 0.20 was used for all 
words. If no candidates are found, wr moves forward (to get 
more data), and the process returns to step 1. If a candidate is 
found, it is verified based on trends in its probability function 
(Step 3); if the probabilities for that word are decreasing in a 
time span of half of the minimum word length, implying ongoing 
decreases, the candidate is confirmed; otherwise, the decision-
making is delayed. In step 4, Temporal Proximity Constraint 
allows only one word to occur within each time span. A time 
span must not be less than the minimum word length in the 
training data (i.e., 370 ms). If more than one word candidate is 
found within a time span, only the one with the highest 
probability is retained. In step 5, after playing prerecorded audio 
samples of recognized words, the left boundary of the prediction 
window (wl) moves forward. The whole procedure is repeated 
until the rightmost boundary of the prediction window (wr) 
reaches the end of the input sequence. A word is recognized 
correctly if the word is identified within 100 ms of its actual 
occurrence time. Figure 3 illustrates the word probability 
distribution on a selected sequence.  

Two measures were used to evaluate the efficiency of this 
algorithm: prediction location offset (machine-independent) and 
prediction processing time, or latency (machine-dependent). 
Prediction location offset was defined as the difference in 
location on a sequence between where a word is actually spoken 
and where it is recognized. This provides a rough estimate of 
how much information is needed for predicting a word. Latency 
is the actual CPU time needed for predicting a word. 

3. Data Collection 

3.1. Participants, stimuli, and procedure 
Ten healthy native female English speakers participated in data 
collection. Each speaker participated in one session in which she 
repeated a sequence of twenty-five words (i.e., one of the four 
phonetically-balanced word lists in [14], see Figure 3) multiple 
times. In all, 5500 word samples (in 220 sequences) were 
obtained and used in this experiment.  

The electromagnetic articulograph (EMA) AG500 (Carstens 
Inc., Germany) was used to register the 3-D movements of the 
tongue, lips, and jaw when a subject was talking. The EMA 
records movements by establishing a calibrated electromagnetic 
field in a cube that induces electric current into tiny sensor coils 
that are attached to the surface of the articulators. Dental glue 
was used to attach the sensors. The spatial precision of motion 

tracking using EMA (AG500) is approximately 0.5 mm [15].  
Figure 4 shows the positions of 12 sensors attached to the 

head, face, and tongue. Movement of the three head sensors 
(Head Center, Head Left, and Head Right) were collected and 
used to perform head-orientation calibration. Data from the four 
tongue sensors (named T1, T2, T3, and T4, or Tongue Tip, 
Tongue Blade, Tongue Body Front, and Tongue Body Back) and 
two lip sensors (Upper Lip and Lower Lip) were used for 
analysis. The movements of three jaw sensors, JL (Jaw Left), JR 
(Jaw Right), and JC (Jaw Center), were recorded for future use. 

3.2. Data processing 
The time-series data of sensor locations recorded using EMA 
went through a sequence of preprocessing steps prior to analysis. 
First, the head movements and orientations were subtracted from 
the tongue and lip locations to give head-independent 
measurements of the analysis variables. The orientation of the 
derived 3-D Cartesian coordinate system is displayed in Figure 
4. Second, a zero phase lag low pass filter (i.e., 10 Hz) was 
applied for removing noise. Third, all sequences were manually 
segmented and annotated with words. Finally, only the y and z 
dimensions (Figure 4) of the sensors (i.e., T1, T2, T3, T4, UL, 
LL) were used for analysis because the movement along the 
side-to-side x axis is not significant in normal speech production. 

4. Results & Discussion 
Leave-one-out cross validation was conducted on the dataset 
from each subject in both training and online recognition, where 
one sequence of 25 words was used for testing and the rest 
sequences were for training. The classification (training) 
accuracy using our approach (direct mapping using SVM) was 

 
Figure 4.  Positions of sensors attached on the subject's head, 
face and tongue in data collection. 

 
Figure 3.  Example of probabilities (baseline removed) of 25 words on a test sequence. 



93.71% and was not significantly different with that obtained 
using DTW (92.69%), which showed that a direct mapping is 
probably sufficient to capture the speaker-dependent articulatory 
movement patterns of isolated words. However, a t-test showed 
our approach (which took 0.5 ms, in average, for a single word 
classification) was significantly faster (p < 0.00001) than DTW 
(which took 1287.5 ms) in the same setting. Thus, only the direct 
mapping approach using SVM was used in online recognition. 

On average, our online recognition algorithm failed to 
recognize 1.93 words (std. dev. σ=1.01) in a sequence of twenty-
five words. The average difference of predicted word locations 
and their actual locations was 45 ms (σ=13) for correctly 
predicted words. On average, 8.08 (σ=4.45) false positives 
(words identified when there was no word) were reported in a 
sequence. Average prediction location offset and latency were 
142 ms (σ=44) and 786 ms (σ=387) for a word prediction, 
respectively. The high accuracy shows the effectiveness of our 
proposed algorithm and the low prediction location offset and 
latency demonstrate the potential of our approach for real-time 
applications. Latency was measured on a PC with 3.1 GHz CPU 
and 8GB memory. The low standard deviations of the accuracy 
and other measures across subjects indicate that our approach 
can be applied generally with multiple subjects. 

5. Conclusion & Future Work 
Experimental results showed the potential of our whole-word 
recognition algorithm for building an articulation-based silent 
speech interface, which can be used in command-and-control 
systems using silent speech and may even enable voiceless 
patients to produce synthetic speech using their tongue and lips.  

Although the current results are encouraging, the recognition 
algorithm still has room for improvement. First, an automated 
approach to determine the optimal parameters (e.g., candidate 
thresholds) in online recognition can be developed. Second, the 
decision making in online prediction may be improved using 
some alternate strategies (e.g., area under curve and adaptive 
thresholds), which are particularly needed for reducing the 
number of false positives. Third, the recognition accuracy is 
dependent on the model training accuracy. Fortunately, our 
design is easily adapted to classifiers that associate candidates 
with probabilities. Faster DTW algorithms [16] and other 
classifiers (e.g., HMM [17, 18]) will be investigated. 

Additional future work will be conducted including 
collecting a larger dataset with more functional words (e.g., a 
core vocabulary of 250 words used by augmented 
communicators, which represent 78% of the total words used 
[19]) to determine the scalability of our design. Although the 
EMA was used for collecting data and evaluating our algorithm, 
it may be cumbersome in practice. A portable EMA (e.g., Wave 
Speech Research System, NDI Inc., Canada) will therefore be 
investigated for practical use. Finally, four tongue sensors may 
cause discomfort for users (patients) after extended use, although 
the sensors are tiny. A further study will determine the minimum 
number of tongue sensors that still maintain a high level of silent 
speech recognition accuracy. 
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