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ABSTRACT 
 

In this work, molecular dynamics (MD) simulation based on the environment-dependent 

interatomic potential is carried out to explore the structure, atomic energy distribution, and 

thermophysical properties of single-wall Si nanotubes (SWSNTs). The unique structure of 

SWSNTs leads to a wider range energy distribution than crystal Si (c-Si), and results in a bond 

order in the range of 4.8~5. The thermal conductivity of SWSNTs is much smaller than that of 

bulk Si, and shows significantly slower change with their characteristic size than that of Si films. 

Out of the three types of SWSNTs studied in this work, pentagonal SWSNTs have the highest 

thermal conductivity while hexagonal SWSNTs have the lowest one. The specific heat of 

SWSNTs is a little larger than that of bulk c-Si. Pentagonal and hexagonal SWSNTs have close 

specific heats which are a little larger than that of rectangular SWSNTs. 

PACS: 67.80.Gb; 31.15.Qg; 61.46.Fg  

Keywords: Si nanotubes, atomic energy distribution, thermal conductivity, specific heat 
                                                 
* Corresponding author. Email: xwang3@unl.edu; Tel: (402) 472-3089; Fax: (402) 472-1465. 
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1. Introduction 

In the past decade, nanotechnology has been developed and applied broadly in various fields. 

The small scale of nanomaterials provides a lot of advantages for miniature device design and 

manufacture. As a result, various properties of nanomaterials have been studied. It is well 

documented that properties of nanomaterials can be much different from those of the bulk 

counterparts due to the unique structure and dimension of nanomaterials. After the discovery of 

carbon nanotubes (CNTs) [1], a wide spectrum of research has been carried out to study this kind 

of one dimensional nanostructure. It is shown the thermal conductivity of CNTs strongly 

depends on their length due to significant boundary scattering of energy carriers at the CNT ends 

[2]. Despite the similarity in the atomic structure between Si and C, Si nanotubes with a similar 

structure to CNTs or bulk crystal Si (c-Si) have not been found. Recently, single-wall Si 

nanotubes (SWSNTs) with stable structure of different cross section shapes: rectangular, 

pentagonal and hexagonal have been predicted using atomistic simulations [3]. The local 

geometric structure of SWSNTs is very different from that of bulk Si and surface-passivated 1D 

Si nanowires. It is also different from the “hypothetical” carbon-nanotube-like SWSNTs which 

are assumed to be composed of sp2 and sp3 bonds. Moreover, the ab initio calculation showed an 

entirely opposite trend in bond gap change compared with 1D Si nanowires [4]. SWSNTs are 

more likely metallic than semiconducting. It will be of great interest to explore the unique 

structure of SWSNTs, which is different from that of c-Si and to show how their unique structure 

affects their thermophysical properties. This knowledge is required in functionality and 

dependability design of SWSNT-based materials and devices in the future. 

 

In the past, both experiments and simulations have been reported on studying the thermal 
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conductivity of nanotube materials, largely CNTs. Experimentally, Hone et al. [5] measured the 

thermophysical properties of single wall CNTs and gave the temperature dependence of the 

thermal conductivity from 8 to 350 K. Yang et al. [6] and Wang et al. [7] studied the thermal 

conductivity of multiwall CNTs using photothermal experiments and found the thermal 

conductivity of multiwall CNTs is much less than the theoretical prediction. For numerical 

studies, molecular dynamics (MD) simulation has been widely employed to study the thermal 

transport in CNTs [2, 8]. Previous study by Chen and Volz [9] explored the thermal conductivity 

of another 1D structure allotrope of Si nanowires using equilibrium MD (EMD) simulation. The 

result showed the thermal conductivity was about two orders of magnitude smaller than that of 

bulk Si. In 1999, Volz and Chen [10] also used EMD to study the thermal conductivity of bulk c-

Si. Recent work on MD simulation of the thermal transport in c-Si includes that by Gomes et al. 

(for bulk Si) [11], Feng et al. [12] and Wang and Lawrence [13] (for c-Si thin films). Basically, 

there are two main methods in MD simulation to predict the thermal conductivity of materials. 

One method is EMD simulation using the Green-Kubo formula. This method has been used to 

study the thermophysical properties of amorphous [14] and crystalline [10] Si. The other one is 

nonequilibrium MD (NEMD) simulation which involves establishing a temperature gradient in 

the material. Using this method, the thermal conductivity of a two-dimensional crystal [15] and 

vitreous silica has been studied and the results are in good agreement with the experimental data 

[16].  

 

Each method reviewed above has its own advantages and drawbacks. Work by Schelling et al. 

[17] shows that the simulation time is a more significant consideration for the Green-Kubo 

method, where very slow convergence of the heat current correlation function is observed. The 



Acc
ep

te
d m

an
usc

rip
t 

 4

NEMD method can greatly reduce the computational cost to obtain the same statistical errors as 

the EMD method. Especially in systems with very small finite-size effect due to the very small 

mean free path of phonons, rather small systems sizes are required by the NEMD method. The 

NEMD method is more suitable to study interfacial effects. The drawback of NEMD is that the 

use of large temperature gradients may introduce significant nonlinear effects. 

 

In this work, NEMD simulation is used to explore the thermal conductivity of SWSNTs and 

EMD simulation is used to study the specific heat of SWSNTs. In addition to thermophysical 

properties, the structure and energy distribution of atoms in SWSNTs are also investigated to 

obtain better ideas about how and to what extent the structure of SWSNTs affects their 

thermophysical properties. Section 2 of this paper provides a brief introduction to the MD 

simulation method used in this work. Section 3 discusses the calculation results for SWSNTs and 

the comparison with crystal Si (c-Si) thin films. 

 

2. Methodologies  

2.1. MD simulation of Si using the environment-dependent interatomic potential 

In late 1990’s, Bazant et al. [18, 19] and Justo et al. [20] developed an empirical potential for 

bulk Si, named environment-dependent interatomic potential (EDIP). This potential contains two 

and three-body interactions with theoretically motivated functional forms that give a better 

prediction of bulk defect and disordered phase of Si. The numerical parameters in the function 

are obtained by fitting a set of ab initio results. Work by Justo et al. [20] using the EDIP 

predicted structural and thermodynamic properties of liquid and amorphous Si that are in good 

agreement with experimental and ab initio results. 
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The expression of the EDIP is a summation over the energy of each atom, and consists of two-

body and three-body interaction terms [20], 

),,(),(
,

32 iikij
ij jkik

iij
ij

i ZRRVZRVE ∑ ∑∑
≠ >≠≠

+=  (1) 

V2 (Rij, Zi) stands for the two-body interaction potential energy between atoms i and j. The term 

V3 ),,( iikij ZRR  represents the three-body potential energy among atoms i, j and k centered at i. 

The interaction of both types depends on the effective bond order which is defined as 

)(∑
≠

=
im

imi RfZ . In the definition of the effective bond order, the function f (Rim) is called cutoff 

function, a measurement of the contribution of the neighboring atom m to atom i in terms of their 

distance Rim. Definitions of the functions and values of parameters used in the EDIP can be 

found in work by  Justo et al. [20]. 

 

In this work, the physical domain of interest is divided into computational cells based on the 

cutoff distance of the potential energy to improve the computational efficiency [21]. If the 

distance between two atoms is longer than the cutoff distance, both the two-body and three-body 

interactions are ignored and set to zero. The cutoff distance for Si has been given in earlier work 

[20]. In this work, the computation is organized using the cell structure and the linked-list 

method. 

 

2.2. NEMD for thermal conductivity calculation 

In this method, a temperature gradient is established across the material. The thermal 

conductivity is calculated based on the heat flux and the temperature gradient established in the 
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sample. The first step of calculation is the equilibrium process to adjust the system to an 

expected temperature, which is 300 K in this work. In the equilibrium calculation, the scaling 

factor Sf introduced by Berendsen et al. [22] is used to adjust the velocity  

2/10 )]1(1[ −
∆

+=
T
TtS f τ

 (2) 

where t∆  is the time step in the simulation. Although a short time step will ensure accurate and 

reliable calculation, it will make the total computational time not practical. In this work, we take 

the time step 2 fs (1 fs=10-15 second) based on our calculation experience and literatures. In Eq. 

(2), τ  is the relaxation time, which is 2 ps (1 ps=10-12 second) in this work, T is the current 

kinetic temperature, and 0T  (=300 K) is the expected equilibrium temperature. This process takes 

0.5 ns to ensure the system reaches equilibrium. The computational domain is schematically 

shown in Fig. 1. For the SWSNTs studied in this work, periodical boundary conditions are used 

in the y (axial) direction. In the two other directions, free boundary conditions are used to give 

the sample certain freedom to move in space. 

 

In the original NEMD method developed by Evans [23], the equation of motion for each particle 

has an external force term. In our work, we employ hot and cold domains in the material [24] and 

adjust the velocities of atoms in the domain to achieve local heating and cooling [25]. The 

equation used to obtain the thermal conductivity (k) in NEMD is )//( xTqk ∂∂′′= , where xT ∂∂ /  

is the temperature gradient and q ′′  is the heat flux. Figure 1 shows how we establish a 

temperature gradient in the material. At each time step, a certain amount of energy is added in 

domain A and the same amount of energy is taken away from domain B. Since the nanotube has 

periodical boundary conditions in the axial direction, two heat fluxes will flow along both 

positive and negative directions from domains A to B. To establish the heat source and heat sink, 
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the velocities of atoms in domains A and B are scaled with a factor f. During this velocity scaling, 

the momentum of atoms in domains A and B is conserved by only scaling the random movement 

of atoms, not their average velocity. 

 

The size (δy) of domains A and B is chosen based on the length of the nanotube and ease of 

calculation. In this work, computation of the force between an atom and its neighbors is arranged 

by the cell structure and the linked-list method. The “cell size” used in this work is referred to 

the one used in the linked-list method. For SWSNTs longer than 0.5 µm, the typical values of δy 

are 40 to 60 cell sizes (12 to 18 nm). For short tubes, the size of domains is 5 to 10 cell sizes. In 

the NEMD technique, a sufficiently long computational time is needed to establish a stable 

temperature gradient in the material. In our work, the computational time (t) is estimated by 

calculating the thermal diffusion time from domains A to B: t=(L/2)2/α, where α  [=k/(ρcp)] and 

L are the thermal diffusivity and length of the SWSNT, respectively. In the estimation, ρ and cp 

take the bulk values and k takes the value of a shorter SWSNT calculated previously. In this 

work, the computational time for the shortest (34 nm) SWSNT is 0.5 ns. 

 

The temperature gradient in the tube is determined by linear fitting of the temperature 

distribution curve in the material. The thermal conductivity (k) of the SWSNT can be calculated 

as 

)///( 21 xTxTqk ∂∂−∂∂′′−=  (3) 

where xT ∂∂ /1  and xT ∂∂ /2  are the temperature gradients in the positive and negative y 

directions along the tube. The temperature of the nanotube is calculated as 
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MDBj

Nj

i
i TkNmv

2
3

2
1 2 =∑  (4) 

where <> denotes the statistical average over the entire simulation (chosen to be much longer 

than the typical fluctuation time), kB is the Boltzmann’s constant, and Nj is the number of atoms 

in the layers for temperature calculation. 15 to 40 atomic layers (depending on the total length of 

the nanotube) along the y direction are chosen to calculate one temperature point.  

 

It is expected that the thermal conductivity of SWSNTs is directly related to how its cross-

sectional area is defined. In this work, an annulus consisting of atoms in the SWSNTs is defined 

as the cross-sectional area. The annulus thickness takes two times the covalent radius of Si atoms, 

which is 1.175 Å [26]. 

 

In addition to thermal conductivity, we also study the specific heat of SWSNTs to attain the idea 

about how their unique structure affects their capability of storing thermal energy. The method 

used for specific heat calculation is the same as that employed in work by Wang and Xu [27]. In 

the calculation, a certain amount of energy ∆E is added to the system. This energy addition is 

achieved through a large number of time steps (10,000) to minimize the thermal and mechanical 

disturbance introduced to the system. Then the system is simulated for 0.3 ns to reach thermal 

equilibrium. The specific heat is calculated as 

[ ])(/ initialfinalp TTmEc −∆=  (5) 

where m is the mass of the entire tube, initialT  is the temperature before adding the energy, and 

finalT  is the temperature after energy addition. In our simulation, the temperature is calculated 

every 2 ps. initialT  and finalT  are obtained by averaging the temperatures of the last 120 ps. 



Acc
ep

te
d m

an
usc

rip
t 

 9

 

3. Results and discussion 

In this work, SWSNTs with three different structures are studied. Figure 2 shows the SWSNT 

structure and the bond length. Table 1 lists the length and number of atoms simulated for each 

type of nanotubes in this work. In our thermal conductivity study (3.2), comparison is also made 

with Si films of different thicknesses. The thickness and number of atoms for the simulated Si 

films are also summarized in Table 1. The initial temperature of the nanotube is set to 300 K, and 

the time step takes 2 fs. The system is first calculated for 500 ps to reach the thermal equilibrium 

state. Then calculation is carried out to establish a steady temperature gradient in the material. 

This calculation takes 0.5 to 8 ns, depending on the length of the nanotube as described in 

section 2.2. 

 

3.1. Structure of SWSNTs 

In order to have a better understanding of the structure of the three kinds of SWSNTs, the radial 

distribution function g(ri) and the atomic energy distribution are calculated and compared with 

those of bulk Si. Figure 3 shows the radial distribution function with r up to 8a. a is a parameter 

in the EDIP potential, and takes 3.1213820 Å. The position of the first peak for SWSNTs shows 

that the distance between an atom and its nearest neighbor is 2.34 Å, close to the bond length of 

c-Si at 300 K (2.35 Å). This result suggests that SWSNTs have bond length almost the same as 

that of bulk c-Si. The second peak of both SWSNTs and bulk Si represents the distance to the 

second nearest neighboring atom. For SWSNTs, the distance between an atom and its second 

nearest neighboring atom is shown in Fig. 2b. The ab initio prediction of the second nearest 

neighboring distance is 3.384 Å (1.084a), 3.386 Å (1.085a), and 3.360 Å (1.076a) for 
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rectangular, pentagonal, and hexagonal SWSNTs, respectively. Figure 3 indicates that using the 

bond length provided by ab initio calculations, the classical MD simulation based on the EDIP 

works well to preserve the structure of SWSNTs. The number of the second nearest neighboring 

atoms for an atom in pentagonal and hexagonal SWSNTs is 4, and 5 for rectangular SWSNTs. In 

our MD simulation, the outside of the SWSNT has no constraint. Some weak stress due to the 

initial configuration will twist the tube in space a little bit. Our careful observation of the tube 

structure confirms this point. This twist will affect the tube structure to a certain extent and make 

the second peak of SWSNTs lower and wider. Since the equilibrium angle of bulk Si is 109º, the 

second peak of bulk Si is shifted to a further distance (compared with SWSNTs) which is about 

3.85 Å (1.233a).  

 

The atomic energy distribution is related to the bond length and the physical properties of the 

material. It also indicates the probability of finding an atom at a certain energy level. In our work, 

after the system reaches thermal equilibrium, the kinetic energy distribution is calculated by 

counting the number of atoms in a certain energy range. After normalizing the distribution, we 

confirm that the kinetic energy closely follows the Maxwellian distribution. Therefore, only the 

potential energy distribution is discussed in detail, especially the two-body potential which plays 

a major role in the overall energy distribution. Equation (1) reveals that Z and r play major roles 

in determining the two-body potential energy. The sharpness of the first peak in the radial 

distribution of bulk Si (shown in Fig. 3) demonstrates that the first nearest neighboring distance 

is quiet uniform. Therefore, the major factor affecting the two-body potential is the value of Z. In 

this work, the value of Z is calculated for both SWSNTs and bulk c-Si.  
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Figure 4(a) shows the two-body potential energy distribution for SWSNTs and bulk Si. It can be 

seen that bulk Si has a sharp peak at -2.33 eV. The energy of the two-body potential of two Si 

atoms at equilibrium for bulk Si should be -1.16 eV for Z equal to 4 [20], meaning the two-body 

potential energy for bulk Si will be -2.32 eV since each atom has four neighboring atoms. This 

value is close to the energy of the first peak for bulk Si shown in Fig. 4. The two small peaks of 

energy distribution in Fig. 4(a) for bulk Si are related to the atoms at the boundary whose Z 

values are 3 or 2. In order to give a clearer view of the sharp peak energy of bulk Si, the first 

peak of the atomic energy distribution for bulk Si is detailed in the inset. It can be seen that the 

most prominent range for the two-body potential energy is -2.30 to -2.325 eV. 

 

As we stated before, SWSNTs were twisted a little bit during the calculation. This makes the 

distance between atoms reach the range where the cutoff function follows the exponential form 

in the EDIP, leading to non-integer Z values. Our calculation shows that the Z of SWSNTs 

largely falls in the range of 4.8~5.0, leading to a smoother and wider distribution of the two-body 

potential energy than bulk Si as shown in Fig. 4. In addition, the range of bond length 

distribution of SWSNTs is also an important reason for the smoother and wider distribution of 

the two-body potential energy. When Z is equal to 5, the theoretical two-body potential energy 

should be about -0.9 eV [20], meaning that the two-body potential energy for SWSNTs will be 

around -2.25 eV since SWSNTs have 5 neighboring atoms within the cutoff distance. The 

calculated peak of the two-body potential energy for SWSNTs is around -2.30 eV, close to the 

predicted value of -2.25 eV [20]. The value of Z reflects the electronic properties of materials. 

According to work by Justo et al. [20], Z larger than 4 means metallic bonds among atoms. 

When Z is less than or equal to 4, the atomic bonds tend to be covalent. The value of the 
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effective bond order Z obtained in our work for c-Si (which is 4) reflects the semiconducting 

nature of c-Si. On the other hand, the Z for SWSNTs is from 4.8 to 5.0 based on our calculation. 

This agrees with the ab initio prediction that metallic Si structures have a bond order larger than 

4 [3]. 

 

Figure 4(b) shows the overall energy (including kinetic, two-body potential, and three-body 

potential energies) distribution of bulk Si and SWSNTs. The overall energy distribution for bulk 

Si has a wider and smoother distribution than the two-body potential energy. Our calculation 

shows that the three-body potential energy for bulk Si has a sharp peak close to 0 eV, agreeing 

with the result by Justo et al. [20]. In comparison with the two-body potential energy, the peak of 

the total energy does not shift too much because both the three-body potential and kinetic 

energies are relatively small. In contrast to the small value of the three-body potential energy for 

c-Si, our calculation concludes that the three-body potential energy of SWSNTs is around 0.23 

eV. The reason is that the angle of the three-body potential in SWSNTs is different from that of 

c-Si, causing the three-body potential energy of SWSNTs to shift further from zero. Hence, the 

peaks of the total energy distribution of SWSNTs have a significant shift to right in comparison 

with their two-body potential energy distribution. 

 

3.2. Thermal conductivity and specific heat of SWSNTs 

In NEMD for thermal conductivity calculation, a stable temperature gradient has to be 

established in the material. Figure 5 shows a typical temperature distribution in a 485.8 nm long 

pentagonal SWSNT. It is evident that a sound linear temperature distribution is established in the 

material. In our work, since the number of atoms used for temperature calculation is small due to 
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the small size of the tube, a large temperature differential between domains A and B (refer to Fig. 

1) is needed to suppress the statistical uncertainty. The temperature differential between domains 

A and B is about 150 K, depending on the size of SWSNTs under study. In the area close to 

domains A and B, abrupt temperature drops (as shown in Fig. 5) usually exist due to the heating 

and cooling effects in these domains. These abrupt temperature drops are out of consideration in 

final data reduction to obtain a sound linear temperature distribution. Also shown in Fig. 5 is the 

linear fitting of the temperature distribution. It provides the temperature gradient used in Eq. (3) 

to determine the thermal conductivity of SWSNTs. 

 

In this work, SWSNTs with different lengths are studied to explore their thermal conductivity. 

Table 1 shows the length of SWSNTs studied in this work as well as the number of atoms in the 

tubes. In addition, the thermal conductivity (keff) in the thickness (L) direction for Si thin films is 

also calculated and compared with that of SWSNTs. The thickness of the films is listed in Table 

1 as well. It is found the keff~L relationship closely follows that obtained by LBM [28] 

1

21
−







 +=

L
l

k
k

b

eff  (6) 

where l is the mean free path of phonons in bulk Si. 

 

To obtain the idea about how the structure of SWSNTs affects their thermal conductivity, we 

plot out the thermal conductivity of three different types of SWSNTs in one plot for purpose of 

comparison (Fig. 6). Also shown in Fig. 6 is the error bar for uncertainty analysis. This 

uncertainty is evaluated by dividing the overall temperature differential across the sample with 

the standard deviation in linear fitting of the temperature gradient. Our study of the linear fitting 

for different samples reveals that the uncertainty is well within 15%. For Si thin films, the 
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uncertainty for thermal conductivity calculation is smaller (10%). It is observed in Fig. 6 that the 

thermal conductivity of SWSNTs is strongly dependent on their length. When the length reaches 

about 1 µm, the thermal conductivity reaches a level of about 30 W/m·K, which is still 

significantly less than the thermal conductivity of bulk c-Si at 300 K (148 W/m·K) [29]. On the 

other hand, the thermal conductivity of SWSNTs shown in Fig. 6 is much larger than that of Si 

nanowires (from 1 to 4 W/m·K) as reported in work by Chen and Volz [9]. This is attributed to 

the entirely different atomic structure of SWSNTs from Si nanowires. In Si nanowires, strong 

phonon boundary scattering occurs on the wire surface, leading to a much reduced thermal 

conductivity. In SWSNTs, the wall of the tube is a single atomic layer, and the phonon 

movement is largely constrained in the axial direction. Therefore, very little surface phonon 

scattering is permitted. 

 

Figure 6 shows that SWSNTs with hexagonal cross-sections have the lowest thermal 

conductivity, and the pentagonal SWSNTs have the highest one. It is clear that the thermal 

conductivity of Si thin films is very different from that of SWSNTs. The thermal conductivity of 

Si thin films increases quickly with the thickness and reaches 116.3 W/m·K at the thickness of 

300 nm. This thermal conductivity is only 17 percent less than the bulk value. However, with the 

similar characteristic size, the thermal conductivity of SWSNTs is 14.1 W/m·K for rectangular 

SWSNTs (263.2 nm), 19.8 W/m·K for pentagonal SWSNTs (272.00 nm), and 8.0 W/m·K for 

hexagonal SWSNTs (250.95 nm). The striking difference between Si thin films and SWSNTs 

about how the thermal conductivity changes with their thickness/length suggests that the 1D 

structure of SWSNTs leads to a stronger phonon boundary scattering effect at the tube end. 
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Recently, the relationship between the one dimensional anomalous heat conduction and the 

material dimension has been investigated by Li and Wang [30]. They proposed a thermal 

conductivity (k)-length (L) relationship of k=cLβ with β=2-2/α (0<α≤2). For normal diffusion α 

is equal to 1, and for superdiffusion α is greater than 1, meaning a divergent thermal 

conductivity (β>0). Subdiffusion (α<1) gives a convergent thermal conductivity (β<0). It is 

reported by Wang and Li [31] that in many 1D chains with momentum conservation, 1/3 and 2/5 

are the generic exponent for the divergent thermal conductivity. The coupling between the 

transverse motion of the atoms with the longitudinal motion will lead to a thermal conductivity 

diverging against the system size with 1/3 power law. On the other hand, in the weak coupling 

regime, a 2/5 power law is observed. One new work [32] showed that a finite thermal 

conductivity can be reached only when disorder exists in the 1D chain. Furthermore, Zhang and 

Li [33] reported the value of the exponent for (5, 5) and (10, 10) single-wall CNTs (SWCNTs) at 

300 K and 800 K. Their results showed that at 300 K the (5, 5) SWCNT follows the law of 2/5 

and the exponent of (10, 10) SWCNT is 0.36. Recently, the thermal conductivity of (10, 0) 

SWCNTs was suggested to be proportional to L1/2 [34]. In work by Maruyama [2], the thermal 

conductivity of (5, 5) SWCNTs is divergent with a power of 0.32. Maruyama pointed out that the 

structure will strongly affect the power. The β exponents for (5, 5), (8, 8) and (10, 10) are quite 

different, where the (5, 5) SWCNT has the biggest value and the (10, 10) has the smallest one. 

Our results indicate that the pentagonal SWSNTs follow the curve with a power of 2/5. On the 

other hand, the thermal conductivity of hexagonal and rectangular SWSNTs is proportional to 

L0.68 and L0.62, respectively. The difference in the power probably is due to the cross-section 

structures of the SWSNTs which favor different coupling between the transverse and 

longitudinal movements of atoms. 
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For specific heat, we first calculate the value of bulk c-Si at 300 K to explore the validity of the 

developed MD program. The sample of interest measures 6.52 nm in the x, y, and z directions, 

and consists of 13,824 atoms. The calculated specific heat for c-Si is 830 J/K·kg, a little larger 

than the experimental result of 712 J/K·kg [29]. In order to check the influence of the tube length 

on the calculated specific heat, three pentagonal SWSNTs samples have been studied, which are 

136.0, 233.1 and 485.8 nm long. Table 2 shows the calculated specific heat for c-Si and 

SWSNTs. It is clear that the largest difference between the three pentagonal SWSNTs is about 

5%. As can be seen from Table 2, the specific heat of SWSNTs is a little larger than that of bulk 

c-Si. Rectangular SWSNTs have the lowest specific heat, i.e. close to that of bulk Si, and 

pentagonal and hexagonal SWSNTs have similar specific heats. The uncertainty of specific heat 

calculation is estimated using the root mean square (RMS) of equilibrium temperature vibration 

as RMS/∆T, where ∆T is the average temperature increase after the system is heated. The 

uncertainty for specific heat calculation is estimated to be around 5%. 

 

4. Conclusion 

In this work, MD simulation was conducted to explore the structure and thermophysical 

properties of SWSNTs of different cross-section structures and lengths. The structure of 

SWSNTs led to a wider range of energy distribution than c-Si. It was found that the unique 

structure of SWSNTs resulted in a bond order in the range of 4.8~5. This range agreed with the 

ab initio prediction that metallic Si structures have a bond order larger than 4. The calculation 

showed that the thermal conductivity of SWSNTs was much smaller than that of bulk Si. There 

was a significant difference between SWSNTs and c-Si films on how their length/thickness 
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affected the thermal conductivity. This striking difference probably is due to the strong 

longitudinal movement of atoms in SWSNTs and weak coupling between the transverse and 

longitudinal movements. Out of the three types of SWSNTs under study, pentagonal SWSNTs 

had the highest thermal conductivity while hexagonal SWSNTs had the lowest one. Our study 

showed that the specific heat of SWSNTs was a little larger than that of bulk c-Si. Pentagonal 

and hexagonal SWSNTs had close specific heats which were a little larger than that of 

rectangular SWSNTs. 
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Table 1 Thickness (in nm) of Si films and length (in nm) of SWSNTs simulated in this 
work. The number of atoms in the sample is indicated in the parentheses. 

Table 2 Specific heat of bulk Si and SWSNTs. 

Figure 1 Schematic of the computational domain. Arrows in the tube represent the heat flux 
direction. 

Figure 2 Schematic of the structure of (a) rectangular, (b) pentagonal, and (c) hexagonal 
SWSNTs. 

Figure 3 The radial distribution function of SWSNTs versus that of bulk c-Si. 

Figure 4 Energy distribution of atoms in SWSNTs in comparison with that in bulk Si: (a) 
two-body potential energy, and (b) total atomic energy. The inset in figure (a) is a 
close view of the two-body potential energy distribution for bulk Si around the 
peak. A finer resolution is used for calculating the energy distribution shown in 
the inset. 

Figure 5 Temperature distribution in a pentagonal SWSNT 485.8 nm long. The solid line is 
the linear fitting of the temperature distribution. 

Figure 6 Variation of thermal conductivity against length for SWSNTs in comparison with 
that for bulk Si. 
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Table 1: Thickness (nm) of Si films and length (nm) of SWSNTs simulated in this work. The 

number of atoms in the sample is indicated in the parentheses. 

Si thin film Rectangular SWSNTs Pentagonal SWSNTs Hexagonal SWSNTs 

10 (16,000) 75.2 (1,240) 68 (1,400) 74.1 (1,860) 

32.5 (48,000) 148.4 (2,500) 136 (2,800) 149.4 (3,750) 

53.7 (79,200) 263.2 (4,400) 272 (5,600) 286.8 (7,200) 

70.1 (104,800) 526.5 (8,800) 485.8 (10,000) 501.9 (12,600) 

100 (148,800) 1052.9 (17,600) 971.6 (20,000) 1003.8 (25,200) 

200 (297,600) 1579.4 (26,400) 1457.4 (30,000) 1505.7 (37,800) 

300 (446,400) 2105.8 (35,200) 1943.2 (40,000) 2007.6 (50,400) 
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Table 2. Specific heat of bulk Si and SWSNTs. 

Materials Specific heat (J/K·kg) 

Bulk c-Si (experiment) 712 

Bulk c-Si (MD) 830 

Rectangular SWSNT (526 nm) 856 

Pentagonal SWSNT (136 nm) 937 

Pentagonal SWSNT (233 nm) 906 

Pentagonal SWSNT (486 nm) 891 

Hexagonal SWSNT (502 nm) 896 
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Figure 1. Schematic of the computational domain. Arrows in the tube represent the heat flux 
direction. 
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Figure 2. Schematic of the structure of (a) rectangular, (b) pentagonal, and (c) hexagonal 

SWSNTs. 
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Figure 3. The radial distribution function of SWSNTs versus that of bulk c-Si.  
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Figure 4. Energy distribution of atoms in SWSNTs in comparison with that in bulk Si: (a) two-
body potential energy, and (b) total atomic energy. The inset in figure (a) is a close view of the 

two-body potential energy distribution for bulk Si around the peak. A finer resolution is used for 
calculating the energy distribution shown in the inset. 
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Figure 5. Temperature distribution in a pentagonal SWSNT 485.8 nm long. The solid line is the 

linear fitting of the temperature distribution.  
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Figure 6. Variation of thermal conductivity against length for SWSNTs in comparison with that 

for bulk Si: 148 W/m·K [29].  
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