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Abstract

Providing QoS and performance guarantees to arbitrar-
ily divisible loads has become a significant problem for
many cluster-based research computing facilities. While
progress is being made in scheduling arbitrarily divisible
loads, existing approaches are not very efficient and can-
not scale to large clusters. In this paper we propose an
efficient algorithm for real-time divisible load schedul-
ing, which has a time complexity linear to the number
of tasks and the number of nodes in the cluster.

1 Introduction

Arbitrarily divisible or embarrassingly parallel work-
loads can be partitioned into an arbitrarily large
number of load fractions, and are quite common in
bioinformatics as well as high energy and particle
physics. For example, the CMS (Compact Muon
Solenoid) [10] and ATLAS (AToroidal LHC Appara-
tus) [6] projects, associated with LHC (Large Hadron
Collider) at CERN (European Laboratory for Particle
Physics), execute cluster-based applications with arbi-
trarily divisible loads. As such applications become a
major type of cluster workloads [25], providing QoS to
arbitrarily divisible loads becomes a significant problem
for cluster-based research computing facilities like the
U.S. CMS Tier-2 sites [26].

There has been extensive research on real-time di-
visible load scheduling [16, 18, 17, 19, 8, 9]. Focus-
ing on providing real-time guarantees and better utiliz-
ing the cluster, existing approaches give little emphasis
to scheduling efficiency. They assume that scheduling
takes much less time than the execution of a task, and
thus ignore the scheduling overhead.

Table 1: Sizes of OSG Clusters.
Host Name No. of CPUs
fermigrid1.fnal.gov 41863
osgserv01.slac.stanford.edu 9103
lepton.rcac.purdue.edu 7136
cmsosgce.fnal.gov 6942
osggate.clemson.edu 5727
grid1.oscer.ou.edu 4169
osg-gw-2.t2.ucsd.edu 3804
u2-grid.ccr.buffalo.edu 2104
red.unl.edu 1140

However, clusters are becoming increasingly bigger
and busier. In Table 1, we list the sizes of some OSG
(Open Science Grid) clusters. As we can see, these
clusters all have more than one thousand CPUs, with
the largest providing over 40 thousand CPUs. Figure 1
shows the number of waiting tasks in the OSG cluster
at University of California, San Diego for two 20-hour
periods, demonstrating that there could sometimes be
as many as 37 thousand tasks in the waiting queue of
a cluster. As the cluster size and workload increase, so
does the scheduling overhead. For a cluster with thou-
sands of nodes or thousands of waiting tasks, as will
be demonstrated in Section 5, the scheduling overhead
could be substantial and existing divisible load schedul-
ing algorithms are no longer applicable due to lack of
scalability. For example, to schedule the bursty work-
load in Figure 1a, the best-known real-time algorithm [8]
takes more than 11 hours to make admission control de-
cisions on the 14,000 tasks arrived in an hour, while our
new algorithm needs only 37 minutes.

To address the deficiency of existing approaches, in
this paper, we present an efficient algorithm for real-
time divisible load scheduling. The time complexity
of the proposed algorithm is linear to the number of
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Figure 1: Status of a UCSD Cluster.

tasks in the waiting queue and the number of nodes in
the cluster. In addition, the algorithm performs similar
to previous algorithms in terms of providing real-time
guarantees and utilizing the cluster.

The remainder of this paper is organized as follows.
Related work is presented in Section 2. We describe
both task and system models in Section 3. Section 4 dis-
cusses the real-time scheduling algorithm and Section 5
evaluates the algorithm performance. We conclude the
paper in Section 6.

2 Related Work

Divisible load theory (DLT) has long been studied and
applied in distributed systems scheduling [7, 25, 27]. It
provides the foundation for optimally partitioning ar-
bitrarily divisible loads to distributed resources. These
workloads represent a broad variety of real-world appli-
cations in cluster and grid computing, such as BLAST
(Basic Local Alignment Search Tool) [2], a bioinformat-
ics application, and high energy and particle physics
applications in ATLAS (AToroidal LHC Apparatus) [6]
and CMS (Compact Muon Solenoid) [10] projects. Cur-
rently, large clusters usually use batch schedulers [13] to
handle their workload. A Batch scheduler monitors the
task execution and sends queued jobs to a cluster node
when it becomes available. The goal is to optimize the
system utilization. Satisfying QoS and task real-time
constraints are, however, not a major objective of such
schedulers.

The scheduling models investigated for distributed
or multiprocessor systems most often (e.g., [1, 5, 14,
15, 21, 23, 24]) assume periodic or aperiodic sequen-
tial jobs that must be allocated to a single resource
and executed by their deadlines. With the evolution
of cluster computing, researchers have begun to inves-

tigate real-time scheduling of parallel applications on a
cluster [3, 4, 12, 22, 28]. However, most of these studies
assume the existence of some form of task graph to de-
scribe communication and precedence relations between
computational units called subtasks (i.e., nodes in the
task graph).

One closely related work is scheduling “scalable real-
time tasks” in a multiprocessor system [16]. Similar to
a divisible load, a scalable task can be executed on more
than one processor and as more processors are allocated
to it, its pure computation time decreases. If we use N
to represent the number of processors and n to denote
the number of waiting tasks in the system, the time com-
plexity of the most efficient algorithms (i.e., MWF-FA
and EDF-FA) proposed in that paper is O(n2+nN) [16].

There have been some existing work on cluster-based
real-time divisible load scheduling [8, 9], including our
own previous work [17, 18]. In [18], we have devel-
oped several scheduling algorithms for real-time divisi-
ble loads. Following those algorithms, a task must wait
until a sufficient number of processors become avail-
able. This could cause a waste of processing power
as some processors are idle when the system is wait-
ing for enough processors to become available. This
system inefficiency is referred to as the Inserted Idle
Times (IITs) [17]. To reduce or completely eliminate
IITs, several algorithms have been developed [17, 8, 9],
which enable a task to utilize processors at different pro-
cessor available times. Although those algorithms lead
to better cluster utilizations, they have high scheduling
overheads. The time complexity of algorithms proposed
in [8, 9] is O(nNlogN) and the algorithm in [17] has a
time complexity of O(nN3).

In this paper, we propose an efficient algorithm for
scheduling real-time divisible loads in clusters. Simi-
lar to algorithms in [17, 8, 9], our new algorithm elim-
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inates IITs. Furthermore, with a time complexity of
O(max(N,n)), the algorithm is efficient and can scale
to large clusters.

3 Task and System Models

In this paper, we adopt the same task and system mod-
els as our previous work [18]. For completeness, we
briefly present these below.

Task Model. We assume a real-time aperiodic task
model in which each aperiodic task τi consists of a single
invocation specified by the tuple (A, σ,D), where A is
the task arrival time, σ is the total data size of the
task, and D is its relative deadline. The task absolute
deadline is given by A + D.

System Model. A cluster consists of a head node,
denoted by P0, connected via a switch to N processing
nodes, denoted by P1, P2, . . . , PN . We assume that all
processing nodes have the same computational power
and all links from the switch to the processing nodes
have the same bandwidth. The system model assumes
a typical cluster environment in which the head node
does not participate in computation. The role of the
head node is to accept or reject incoming tasks, execute
the scheduling algorithm, divide the workload and dis-
tribute data chunks to processing nodes. Since different
nodes process different data chunks, the head node se-
quentially sends every data chunk to its corresponding
processing node via the switch. We assume that data
transmission does not occur in parallel.1 Therefore, only
after the head node P0 and the communication chan-
nel become available can a processing node get its data
transmission to start a new task. Since for arbitrar-
ily divisible loads, tasks and subtasks are independent,
there is no need for processing nodes to communicate
with each other.

According to divisible load theory, linear models are
used to represent processing and transmission times [27].
In the simplest scenario, the computation time of a load
σ is calculated by a cost function Cp(σ) = σCps, where
Cps represents the time to compute a unit of workload
on a single processing node. The transmission time of a
load σ is calculated by a cost function Cm(σ) = σCms,
where Cms is the time to transmit a unit of workload
from the head node to a processing node.

4 Algorithm

This section presents our new algorithm for schedul-
ing real-time divisible loads in clusters. Due to their

1It is straightforward to generalize our model and include the
case where some pipelining of communication may occur.

special property, when scheduling arbitrarily divisible
loads, the algorithm needs to make three important de-
cisions. First, it determines the task execution order,
which could be based on policies like EDF (Earliest
Deadline First) or MWF (Maximum Workload deriva-
tive First) [16]. Second, it decides the number n of
processing nodes that should be allocated to each task.
Third, a strategy is chosen to partition the task among
the allocated n nodes.

As is typical for dynamic real-time scheduling algo-
rithms [11, 20, 23], when a task arrives, the scheduler
determines if it is feasible to schedule the new task with-
out compromising the guarantees for previously admit-
ted tasks. Only those tasks that pass this schedulability
test are allowed to enter the task waiting queue (TWQ).
This decision module is referred to as the admission con-
troller. When processing nodes become available, the
dispatcher partitions each task and dispatches subtasks
to execute on processing nodes.

For existing divisible load scheduling algorithms [16,
17, 18, 8, 9], in order to do the schedulability test, the
admission controller generates a new schedule for the
newly arrived task and all tasks waiting in TWQ. If
the schedule is feasible, the new task is accepted; other-
wise, it is rejected. For these algorithms, the dispatcher
acts as an execution agent, which simply implements the
feasible schedule developed by the admission controller.
There are two factors that contribute to the large over-
head of these algorithms. First, to make an admission
control decision, they reschedule tasks in TWQ. Second,
they calculate in the admission controller the minimum
number nmin of nodes required to meet a task’s dead-
line so that it guarantees enough resources for each task.
The later a task starts, the more nodes are needed to
complete it before its deadline. Therefore, if a task is
rescheduled to start at a different time, the nmin of the
task may change and needs to be recomputed. This
process of rescheduling and recomputing nmin of wait-
ing tasks introduces a huge overhead.

To address the deficiency of existing approaches, we
develop a new scheduling algorithm, which reduces the
tight coupling between the admission controller and the
dispatcher. As a result, the admission controller no
longer generates an exact schedule, avoiding the high
overhead. To carry out the schedulability test, instead
of computing nmin and deriving the exact schedule, the
admission controller assumes that tasks are executed
one by one with all processing nodes. This simple and
efficient all nodes assignment (ANA) policy speeds up
the admission control decision. The ANA is, however,
impractical. In a real-life cluster, resources are shared
and each task is assigned just enough resources to sat-
isfy its needs. For this reason, when dispatching tasks
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for execution, our dispatcher needs to adopt a differ-
ent node assignment strategy. If we assume ANA in
the admission controller and let the dispatcher apply
the minimum node assignment (MNA) policy, we re-
duce the real-time scheduling overhead but still allow
the cluster to have a schedule that is appealing in the
practical sense. Furthermore, our dispatcher dispatches
a subtask as soon as a processing node and the commu-
nication channel become available, eliminating IITs.

Due to the superior property of EDF-based divisible
load scheduling [18], our new algorithm schedules tasks
in EDF order as well.2 In the following, we describe in
detail the two modules of the algorithm: admission con-
troller (Section 4.1) and dispatcher (Section 4.2). Since
the two modules follow different rules, sometimes an ad-
justment of the admission controller is needed to resolve
their discrepancy so that task real-time properties can
always be guaranteed (Section 4.3). Section 4.4 proves
the correctness of our algorithm.

4.1 Admission Controller

Upon task arrival, the admission controller determines
if it is feasible to schedule the new task without com-
promising the guarantees for previously admitted tasks.
In the previous work [16, 18, 17, 19, 8, 9], the admission
controller follows a brute-force approach, which inserts
the new task into TWQ, reschedules each task and gen-
erates a new schedule. Depending on the feasibility of
the new schedule, the new task is either accepted or re-
jected. As we can see, both accepting and rejecting a
task involve generating a new schedule.

In this paper, two significant changes are made in our
new admission control algorithm. First, schedulability
of a new task can be determined by checking the infor-
mation of the two neighboring tasks (i.e., the preceding
and succeeding tasks). Unlike the previous work, our
new algorithm could reject a task without generating a
new schedule. This significantly reduces the scheduling
overhead for heavily loaded systems. Second, we sepa-
rate the admission controller from the dispatcher, and
to make admission control decisions, an ANA policy is
assumed.

The new admission control algorithm is called AC-
FAST. Algorithm 1 presents its pseudo code. The ad-
mission controller assumes an ANA policy. We use E
and C to respectively denote the task execution time
and the task completion time. AC-FAST partitions each
task following the divisible load theory (DLT), which
states that the optimal execution time is obtained when

2Although in this paper we describe the algorithm assuming
EDF scheduling, the idea is applicable to other divisible load
scheduling such as MWF-based scheduling algorithms [16].

all nodes allocated to a task complete their computa-
tion at the same time [27]. Applying this optimal par-
titioning, we get the execution time of running a task
τ(A, σ,D) on N processing nodes as [18],

E(σ,N) =
1 − β

1 − βN
σ(Cms + Cps), (1)

where β =
Cps

Cms + Cps
. (2)

When a new task τ arrives, the algorithm first checks
if the head node P0 will be available for data transmis-
sion before τ ’s absolute deadline. If not so, task τ is
rejected (lines 1-4). As the next step, task τ is tenta-
tively inserted into TWQ following EDF order and τ ’s
two neighboring tasks τs and τp (i.e., the succeeding
and the preceding tasks) are identified (lines 5-6). By
using the information recorded with τs and τp, the al-
gorithm further tests the schedulability. First, to check
whether accepting τ will violate the deadline of any ad-
mitted task, the algorithm compares τ ’s execution time
τ.E with its successor τs’s slackmin. We use S to denote
the task start time. A task’s slack is defined as,

slack = A + D − (S + E), (3)

which reflects the scheduling flexibility of a task. Start-
ing a task slack time units later does not violate its dead-
line. Therefore, as long as τ ’s execution time is no more
than the slack of any succeeding task, accepting τ will
not violate any admitted task’s deadline. τi.slackmin

represents the minimum slack of all tasks scheduled af-
ter τi−1. That is,

τi.slackmin = min(τi.slack, τi+1.slack, · · · , τn.slack). (4)

If τ ’s execution time is less than its successor’s slackmin,
accepting τ will not violate any task’s deadline (lines 7-
10).

The algorithm then checks if task τ ’s deadline can be
satisfied or not. That is, to check if τ.(A+D−S) ≥ τ.E ,
where the task start time τ.S is the preceding task’s
completion time τp.C or τ ’s arrival time τ.A (lines 11-
31). If there is always a task in TWQ, then the cluster is
busy all the time. For a busy cluster, we do not need to
resolve the discrepancy between the admission controller
and the dispatcher and the task real-time properties are
still guaranteed (see Section 4.4 for a proof). However,
if TWQ becomes empty, the available resources could be
put idle and the admission controller must consider this
resource idleness. As a result, in our AC-FAST algo-
rithm, when a new task τ arrives into an empty TWQ,
an adjustment is made (lines 15-17). The purpose is to
resolve the discrepancy between the admission controller
and the dispatcher so that the number of tasks admitted
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will not exceed the cluster capacity. For a detailed dis-
cussion of this adjustment, please refer to Section 4.3.
Once a new task τ is accepted, the algorithm inserts τ
into TWQ and modifies the slackmin and the estimated
completion time of tasks scheduled after τ (lines 22-31).

Time Complexity Analysis. In our AC-FAST
algorithm, the schedulability test is done by checking
the information of the two neighboring tasks. Since
TWQ is sorted, locating τ ’s insertion point takes
O(lg n) time and so do functions getPredecessor(τ)
and getSuccessor(τ). Function adjust(τ) runs in O(N)
time (see Section 4.3) and it only occurs when TWQ is
empty. The time complexity of function updateSlacks
is O(n). Therefore, algorithm AC-FAST’s time com-
plexity is O(max(N,n)), linear to the number of nodes
and tasks in the cluster.

Algorithm 1 AC-FAST(τ(A, σ,D), TWQ)
1: //check head node’s available time
2: if (τ.(A + D) ≤ P0.AvailableTime) then
3: return false
4: end if
5: τp = getPredecessor(τ)
6: τs = getSuccessor(τ)
7: τ.E = E(τ.σ,N)
8: if (τs ̸= null && τ.E > τs.slackmin) then
9: return false

10: end if
11: if (τp = null) then
12: τ.S = τ.A
13: else
14: τ.S = τp.C
15: if (TWQ = ∅) then
16: adjust(τ)
17: end if
18: τ.S = max(τ.S, τ.A)
19: end if
20: if τ.(A + D − S) < τ.E then
21: return false
22: else
23: τ.slack = τ.(A + D − S − E)
24: τ.C = τ.(S + E)
25: TWQ.insert(τ)
26: updateSlacks(τ , TWQ)
27: for (τi ∈ TWQ && τi.(A + D) > τ.(A + D)) do
28: τi.C+ = τ.E
29: end for
30: return true
31: end if

Algorithm 2 updateSlacks(τ(A, σ,D),TWQ)
1: for (τi ∈ TWQ ) do
2: if (τi.(A + D) > τ.(A + D)) then
3: τi.slack = τi.slack − τ.E
4: end if
5: end for
6: i = TWQ.length;
7: τi.slackmin = τi.slack
8: for (i = TWQ.length - 1; i ≥ 1; i −−) do
9: τi.slackmin = min(τi.slack, τi+1.slackmin)

10: end for

4.2 Dispatcher

The dispatching algorithm is rather straightforward.
When a processing node and the communication chan-
nel become available, the dispatcher takes the first
task τ(A, σ,D) in TWQ, partitions the task and
sends a subtask of size σ̂ to the node, where σ̂ =
min (A+D−CurrentT ime

Cms+Cps
, σ). The remaining portion of

the task τ(A, σ−σ̂,D) is left in TWQ. As we can see, the
dispatcher chooses a proper size σ̂ to guarantee that the
dispatched subtask completes no later than the task’s
absolute deadline A + D. Following the algorithm, for
a given task, all its subtasks complete at the task ab-
solute deadline, except for the last one, which may not
be big enough to occupy the node until the task dead-
line. By dispatching the task as soon as the resources
become available and letting the task occupy the node
until the task deadline, the dispatcher allocates the min-
imum number of nodes to each task.

To illustrate by an example, if two tasks τ1 and τ2 are
put into TWQ, from the admission controller’s point of
view, they will execute one by one using all nodes of the
cluster (see Figure 2A); in reality, they are dispatched
and executed as shown in Figure 2B, occupying the min-
imum numbers of nodes needed to meet their deadline
requirements.

4.3 Admission Controller Adjustment

As discussed in previous sections, the admission con-
troller assumes a different schedule than adopted by the
dispatcher. If TWQ is not empty, the resources are
always utilized. In this case, the admission controller
can make correct decisions assuming the ANA policy
without accurate knowledge of the system. The admit-
ted tasks are dispatched following the MNA policy and
they are always successfully completed by their dead-
lines. However, if TWQ is empty, some resources may
be idle until the next task arrival. At that point, the ad-
mission controller has to know the system status so that
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Figure 2: An Example Scenario (A) Admission Con-
troller’s View (B) Actual Task Execution.

it takes resource idleness into account to make correct
admission control decisions.

Figure 3: An Illustration of the Problem (A) Admission
Controller’s View (B) An Incorrect Task Execution.

We illustrate the problem in Figure 3. τ1 arrives at
time 0. The admission controller accepts it and esti-
mates it to complete at time 7 (Figure 3A). However,
because τ1 has a loose deadline, the dispatcher does not
allocate all four nodes but the minimum number, one
node to τ1 and completes it at time 20 (Figure 3B). Task
τ2 arrives at an empty TWQ at time 6 with an absolute
deadline of 14. The nodes P2, P3, P4 are unused during
the time interval [4, 6]. If the admission controller were
not to consider this resource idleness, it would assume
that all four nodes are busy processing τ1 during the in-
terval [4, 6] and are available during the interval [7, 14].

And thus, it would wrongly conclude that τ2 can be fin-
ished with all four nodes before its deadline. However,
if τ2 were accepted, the dispatcher cannot allocate all
four nodes to τ2 at time 6, because node P1 is still busy
processing τ1. With just three nodes available during
the interval [6, 20], the dispatcher completes τ2 at time
15 and misses its deadline.

To solve this problem, when a new task arrives at
an empty TWQ, the admission controller invokes Algo-
rithm 3 to compute the idle time and make a proper
adjustment. The algorithm first computes the workload

Algorithm 3 adjust(τ)
1: TotalIdle = 0
2: for (i = 0; i < N ; i + +) do
3: r = max(Pi.AvailableTime, P0.AvailableTime)
4: TotalIdle += max(A − r, 0)
5: end for
6: σidle = TotalIdle

Cms+Cps

7: w = σidle ∗ 1−β
1−βN (Cms + Cps)

8: τ.S+ = w

(σidle) that could have been processed using the idled
resources (lines 1-6). With all N nodes, it takes w time
to execute the workload σidle (line 7). To consider this
idle time effect, the admission controller inserts an idle
task of size σidle before τ and postpone τ ’s start time
by w (line 8).

4.4 Algorithm Correctness

In this section, we prove all tasks that have been admit-
ted by the admission controller can be dispatched suc-
cessfully by the dispatcher and be finished before their
deadlines.

For simplicity, in this section, we use Ai, σi, and Di

to respectively denote the arrival time, the data size,
and the relative deadline of task τi. We prove by con-
tradiction that no admitted task misses its deadline. Let
us assume τm is the first task in TWQ that misses its
deadline at dm = Am + Dm. We also assume that tasks
τ0, τ1, · · · , τm−1 have executed before τm. Among these
preceding tasks, let τb be the latest one that has arrived
at an empty cluster. That is, tasks τb+1, τb+2, · · · , τm

have all arrived at times when there is at least one task
executing in the cluster.

σAN is defined as the total workload that has been
admitted to execute in the time interval [Ab, dm]. Since
only tasks that are assumed to finish by their dead-
lines are admitted, tasks execute in EDF order, and
τb, τb+1, · · · , τm are all admitted tasks, we conclude that
the admission controller has assumed that all these tasks
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can complete by τm’s deadline dm. That is,

σAN ≥
m∑

i=b

σi. (5)

Since all dispatched subtasks are guaranteed to fin-
ish by their deadlines (Section 4.2), task τm missing its
deadline means at time dm a portion of τm is still in
TWQ. That is, the total workload σMN dispatched to
execute in the time interval [Ab, dm] must be less than∑m

i=b σi. With Eq(5), we have,

σAN > σMN (6)

Next, we prove that Eq(6) cannot hold.
As mentioned, tasks τb+1, τb+2, · · · , τm have all ar-

rived at times when there is at least one task executing
in the cluster. However, at their arrival times, TWQ
could be empty. As described in Section 4.3, when a
task arrives at an empty TWQ, an adjustment func-
tion is invoked to allow the admission controller to take
resource idleness into account. Following the function
(Algorithm 3), the admission controller properly post-
pones the new task τ ’s start time by w, which is equiva-
lent to the case where the admission controller “admits”
and inserts before τ an idle task τidle of size σidle that
completely “occupies” the idled resources present in the
cluster. Let us assume that τ̄1, τ̄2, · · · , τ̄v are the idle
tasks “admitted” by the admission controller adjust-
ment function to “complete” in the interval [Ab, dm].

We define σ̂AN as the total workload, including those
σ̄i, i = 1, 2, · · · , v of idle tasks, that has been admitted
to execute in the time interval [Ab, dm]. σ̂MN is the
total workload, including those σ̄i, i = 1, 2, · · · , v of idle
tasks, that has been dispatched to execute in the time
interval [Ab, dm]. Then, we have,

σ̂AN = σAN +
v∑

i=1

σ̄i (7)

σ̂MN = σMN +
v∑

i=1

σ̄i (8)

Next, we first prove that σ̂MN ≥ σ̂AN is true.
Computation of σ̂AN : σ̂AN is the sum of work-

loads, including those
∑v

i=1 σ̄i of idle tasks, that are
admitted to execute in the time interval [Ab, dm]. To
compute σ̂AN , we leverage the following lemma.

Lemma 4.1 For an admission controller that assumes
the ANA policy, if h admitted tasks are merged into one
task T , task T’s execution time is equal to the sum of
all h tasks’ execution times. That is,

E(
h∑

i=1

σi, N) =
h∑

i=1

E(σi, N). (9)

Figure 4: Merging Multiple Tasks into One Task.

Proof If we run a single task of size σ on N nodes, the
execution time is

E(σ,N) =
1 − β

1 − βN
σ(Cms + Cps) (10)

If multiple tasks of size σ1, σ2, · · · , σh execute on N
nodes in order, their total execution time is

h∑
i=1

Ei(σi, N) =
h∑

i=1

(
1 − β

1 − βN
σi(Cms + Cps))

=
1 − β

1 − βN

h∑
i

σi(Cms + Cps) (11)

Therefore, we have,

h∑
i=1

E(σi, N) = E(
h∑

i=1

σi, N). (12)

Since σ̂AN = σAN +
∑v

i=1 σ̄i, according to the lemma,
we have E(σ̂AN , N) = E(σAN , N) +

∑v
i=1 E(σ̄i, N),

which implies that the sum of workloads σ̂AN admit-
ted to execute in the interval [Ab, dm], equals to the size
of the single workload that can be processed by the N
nodes in [Ab, dm]. According to Eq(10), we have

σ̂AN =
dm − Ab

1−β
1−βN (Cps + Cms)

. (13)

In addition, it is the sum of workloads assumed to be
assigned to each of the N nodes in the interval [Ab, dm].
We use σpk

to denote the workload fraction assumed
to be processed by node Pk in the interval [Ab, dm].
P1 is always transmitting or computing during [Ab, dm].
Therefore, the workload of node P1 is:

σp1 =
dm − Ab

Cms + Cps
(14)

Because the data transmission does not occur in par-
allel, other nodes are blocked by P1’s data transmission.
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We use Bpk
to denote the blocking time on node Pk. The

node P2’s workload is:

σp2 =
dm − Ab − σp1Cms

Cms + Cps
=

dm − Ab − Bp2

Cms + Cps
(15)

In general, we have,

σpk
=

dm − Ab −
∑k−1

j=1 σpj Cms

Cms + Cps
=

dm − Ab − Bpk

Cms + Cps

(16)
Thus, as shown in Figure 5, we have,

σ̂AN =
N∑

k=1

σpk
. (17)

Figure 5: All Node Assignment Scenario.

Computation of σ̂MN : σ̂MN denotes the total
workload processed in the time interval [Ab, dm]. With
idle tasks τ̄1, τ̄2, · · · , τ̄v completely “occupying” the idled
resources during the interval [Ab, dm], there are no gaps
between “task executions” and the cluster is always
“busy” processing σ̂MN = σMN +

∑v
i=1 σ̄i.

Unlike the admission controller, the dispatcher ap-
plies MNA policy. When a processing node becomes
available, the dispatcher starts to execute a task on the
node until the task’s deadline. Therefore, a task is di-
vided into subtasks, which can be dispatched to pro-
cessing nodes at different times. As illustrated by an
example in Figure 6, the σ31 of task 3 is dispatched to
P1 after σ1 of task 1 finishes and the remaining work-
load σ32 of task 3 is dispatched to P2 after σ22 of task
2 finishes. As we can see, MNA dispatcher leads to a
complicated node allocation scenario and it makes it dif-
ficult to compute the exact value of σ̂MN . Therefore, we
compute the lower bound of σ̂MN . If the lower bound of
σ̂MN is no less than σ̂AN , we prove that σ̂MN is alway
no less than σ̂AN .

Similar to computing σ̂AN , we calculate how much
workloads are processed by each of the N nodes in the
given interval. We use σ

′

pk
to denote the sum of work-

loads that are processed by node Pk in the interval
[Ab, dm]. We have,

σ̂MN =
N∑

k=1

σ
′

pk
. (18)

To compute the lower bound of σ̂MN , we first con-
sider the case, where computing nodes have priorities
that are indicated by their node numbers. The node
P1 has the highest priority, while PN has the lowest
priority. We also assume only high priority nodes can
block low priority nodes. We use B

′

pk
to denote the

actual blocking due to the data transmission. In this
case, since computing nodes have priorities, P1 is never
blocked in [Ab, dm]. Thus the actual workload on P1 in
[Ab, dm] is:

σ
′

p1
=

dm − Ab

Cms + Cps
(19)

Figure 6: A Minimum Node Assignment Scenario.

As shown in Figure 6, P1 could have multiple data
transmissions. However, not all data transmissions on
P1 block the effective use of P2. In Figure 6, the second
data transmission on P1 does not block and cause P2

idle, because P1’s data transmission overlaps with P2’s
computation. Therefore, the actual blocking time B

′

p2

is equal or less than the sum of data transmission time
on P1. That is:

B
′

p2
≤ σ

′

p1
Cms (20)

Therefore,

σ
′

p2
=

dm − Ab − B
′

p2

Cms + Cps
≥

dm − Ab − σ
′

p1
Cms

Cms + Cps
(21)

In general,

B
′

pk
≤

k−1∑
j=1

σ
′

pj
Cms k = 2, 3, · · · , N (22)

σ
′

pk
=

dm − Ab − B
′

pk

Cms + Cps
≥

dm − Ab −
∑k−1

j=1 σ
′

pj
Cms

Cms + Cps
(23)

So far, we have presented the estimated and actual
workloads that are allocated on each node by the admis-
sion controller and the dispatcher. We now show that
the actual dispatched workload σ̂MN is always no less
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than the estimated workload σ̂AN admitted by the ad-
mission controller. From Equations (14),(15),(19), and
(21), we have,

σ
′

p1
= σp1 (24)

and σ
′

p2
≥ σp2 (25)

From Eq(25), we can see that the actual workload
that is dispatched could be more that the estimated
workload on P2. If workload on P2 increases, it increases
the blocking time of the following nodes. In general,
if σ

′

pi
> σpi for any node Pi, the increased workload

σ∆i = (σ
′

pi
− σpi) increases the blocking time on the

following nodes Pi+1 to PN by σ∆iCms, as shown in
Figure 7.

Figure 7: Increased Blocking Time.

But we can show that the increased workload σ∆i

on Pi is no less than the workload that can be pro-
cessed in increased blocking time B∆i+1=σ∆i

Cms using
all nodes. Therefore, an increased workload on any node
contributes to an increase of the accumulated workload
σ̂MN .

Next, we prove this claim. If σ
′

pi
> σpi for node Pi,

then the increased blocking time is,

B∆i+1 = (σ
′

pi
− σpi)Cms (26)

The workload that can be processed during an interval
t using N nodes is,

σ =
t

1−β
1−βN (Cms + Cps)

(27)

Therefore, the workload that can be precessed in B∆i+1

time using N nodes is,

B∆i+1

1−β
1−βN (Cms + Cps)

=
(σ

′

pi
− σpi)Cms

1−β
1−βN (Cms + Cps)

=
(σ

′

pi
− σpi)Cms

Cms

1−βN

= (σ
′

pi
− σpi)(1 − βN )

≤ (σ
′

pi
− σpi)

That is,
B∆i+1

1−β
1−βN (Cms + Cps)

≤ σ∆i (28)

From Eq(28), we can see that the increased workload
σ∆2 on P2 is no less than the workload that could be
processed in σ∆2Cms time units on all following nodes.
Next, we prove by induction that for the first i nodes,
the actual accumulated workload is no less than the es-
timated workload.

Base: From Equations (24) and (25), we have,

2∑
k=1

σ
′

pk
≥

2∑
k=1

σpk
(29)

We assume

l∑
k=1

σ
′

pk
≥

l∑
k=1

σpk
(30)

We use σinc
l to denote the increase of the accumulated

workload on the first l nodes. That is

σinc
l =

l∑
k=1

σ
′

pk
−

l∑
k=1

σpk
(31)

σinc
l increases the blocking time on Pl+1 by σinc

l Cms.
From Eq(23) we have,

σ
′

p(l+1)
≥

dm − Ab −
∑l

k=1 σ
′

pk
Cms

Cms + Cps
(32)

Combining Eq(32) with with Eq(31), we have,

σ
′

p(l+1)
≥

dm − Ab − (
∑l

k=1 σpk
+ σinc

l )Cms

Cms + Cps

=
dm − Ab −

∑l
k=1 σpk

Cms

Cms + Cps
− σinc

l Cms

Cms + Cps

That is σ
′

p(l+1)
≥ σp(l+1) −

σinc
l Cms

Cms + Cps
(33)

For the first (l + 1) nodes:

l+1∑
k=1

σ
′

pk
=

l∑
k=1

σ
′

pk
+ σ

′

p(l+1)
(34)

Replace
∑l

k=1 σ
′

pk
with Eq(31), we have,

l+1∑
k=1

σ
′

pk
=

l∑
k=1

σpk
+ σinc

l + σ
′

p(l+1)
(35)
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Replace σ
′

pl+1
with Eq(33), we get,

l+1∑
k=1

σ
′

pk
≥

l∑
k=1

σpk
+ σinc

l + σp(l+1) − σinc
l

Cms

Cms + Cps

=
l+1∑
k=1

σpk
+ σinc

l − σinc
l

Cms

Cms + Cps

=
l+1∑
k=1

σpk
+ σinc

l (1 − Cms

Cms + Cps
)

=
l+1∑
k=1

σpk
+ σinc

l β

≥
l+1∑
k=1

σpk
(36)

That is,
l+1∑
k=1

σ
′

pk
≥

l+1∑
k=1

σpk
(37)

Eq(37) shows that the actual accumulated workload is
no less than the estimated workload. Thus, ∀ l ∈ [0, N ]
we have,

l∑
k=1

σ
′

pk
≥

l∑
k=1

σpk
(38)

⇒ σ̂MN ≥ σ̂AN (39)

We proved that if computing nodes have priorities,
the workload that is dispatched in [Ab, dm] is no less
than the estimated workload. In next step, we relax the
node priority constraint. Without priority, workloads
can be dispatched to any available node, such that high
index node can block low index nodes. As an exam-
ple shown in Figure 8A, data transmission σ1Cms on
P1 blocks P2, denoted as B

′

2. The dispatcher starts dis-
patching σ21 to P2 immediately after σ1’s data transmis-
sion. When P1 completes processing σ1, it is blocked by
P2 until σ21’s data transmission completes. This block-
ing is denoted as B

′

1. For this case, it is difficult to derive
the workload processed by each node. because a node
can be blocked by any other nodes. But we can show
that no-priority, mixed blocking case can be reduced to
a case, where the priority is enforced.

Assume a low index node can be blocked by a high
index node. Without loss of generality, we assume
node P1 is blocked by node P2 in B

′

1. If we remove

σ∆ = B
′
1

Cms+Cps
workload from P2 and assume that the

workload were assigned to P1, as shown in Figure 8B.
This workload can be processed in B

′

1 time. The σ∆

on P1 increases the blocking time on P2 by σ∆Cms, de-
noted as B

′

22, and reduces the computation time on P2

Figure 8: Another MNA Scenario.

by σ∆Cps, denoted as B
′

23, which corresponds to the re-
moved workload. Therefore, B

′

1 = B
′

22 + B
′

23. This way
as shown in Figure 8B, we can reverse the blocking time
order without changing the blocking amount. Next, we
justify the existence of the blocking time B

′

23, showing
that after the conversion, the blocking time on node P2

is still no more that the sum of data transmission time
on node P1. In Figure 8A,

B
′

1 = σ∆(Cms + Cps) ≤ σ21Cms (40)
σ21Cps = σ22(Cms + Cps) (41)

Multiply both sides of Eq (41) by Cms/Cps, we have,

σ21Cms = σ22(Cms + Cps)
Cms

Cps
(42)

From Eq(40) and Eq(42), we have,

σ∆(Cms + Cps) ≤ σ22(Cms + Cps)
Cms

Cps
(43)

Multiply both side of Eq(43) by Cps/(Cms + Cps), we
have,

σ∆Cps ≤ σ22Cms (44)

i.e., B
′

23 ≤ σ22Cms (45)

In converted case, B
′

21 + B
′

22 + B
′

23 ≤ (σ1 + σ∆ +
σ22)Cms. That is the total blocking time on P2 is no
more than the sum of data transmission time on P1.
This conforms to a scenario in the priority enforced case.
Same method can be applied to the multiple node sce-
nario, where the mixed blocking time can be reversed
among two nodes in each step until the we reach the
previous case.
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Therefore, the no priority case can be reduced to the
priority enforced case. Thus for both cases, we can con-
clude,

N∑
j=1

σ
′

pj
≥

N∑
j=1

σpj
(46)

σ̂MN ≥ σ̂AN (47)

With Equations (47), (7), and (8), we conclude that
σMN ≥ σAN is true, which contradicts Eq(6). There-
fore, the original assumption does not hold and no task
misses its deadline.

5 Evaluation

In the previous section, we presented an efficient divis-
ible load scheduling algorithm. Since the algorithm is
based on EDF scheduling and it eliminates IITs, we use
FAST-EDF-IIT to denote it. The EDF-based algorithm
proposed in [17] is represented by EDF-IIT-1 and that
in [8] by EDF-IIT-2. This section evaluates their per-
formance.

Cluster Configuration. We use a discrete simula-
tor to simulate a range of clusters that are compliant
with the system model presented in Section 3. For ev-
ery simulation, three parameters, N , Cms and Cps are
specified for a cluster.

5.1 Real-Time Performance

We first evaluate the algorithm’s real-time performance.
The workload is generated following the same approach
as described in [18, 17] and due to the space limitation,
we choose not to repeat the details here. We define
a metric SystemLoad = E(Avgσ, 1) λ

N to analyze how
loaded a cluster is for a simulation, where λ

N is the av-
erage task arrival rate per node, Avgσ is the average
task data size, and E(Avgσ, 1) is the execution time
of running a task of size Avgσ on a single node (see
Eq(10) for E ’s calculation). To evaluate the real-time
performance, we use two metrics — Task Reject Ratio
and System Utilization. Task reject ratio is the ratio
of the number of task rejections to the number of task
arrivals. The smaller the ratio, the better the perfor-
mance. In contrast, the greater the system utilization,
the better the performance. Figure 9 illustrates the al-
gorithm’s real-time performance. As we can see, among
the three algorithms, EDF-IIT-2 provides the best real-
time performance, achieving the least task reject ratio
and the highest system utilization, while FAST-EDF-
IIT performs no worse than EDF-IIT-1. The reason that
FAST-EDF-IIT does not have the best real-time per-
formance is due to its admission controller’s pessimistic

estimates of the data transmission blocking time (Sec-
tion 4). Focusing on reducing the scheduling overhead,
FAST-EDF-IIT trades real-time performance for algo-
rithm efficiency. In the next section, we use experimen-
tal data to demonstrate that FAST-EDF-IIT has huge
advantages in scheduling efficiency.
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Figure 9: Algorithm’s Real-Time Performance.

5.2 Scheduling Overhead

A second group of simulations are carried out to eval-
uate the overhead of the scheduling algorithms. Before
discussing the simulations, we first present some typical
cluster workloads, which lay out the rationale for our
simulations.

In Figure 1, we have shown the TWQ status of a
cluster at University of California, San Diego. From the
curves, we observe that 1) waiting tasks could increase
from 3, 000 to 17, 000 in one hour (Figure 1a) and in-
crease from 15, 000 to 25, 000 in about three hours (Fig-
ure 1b) and 2) during busy hours, there could be on av-
erage more than 5, 000 and a maximum of 37, 000 tasks
waiting in a cluster. Similarly busy and bursty work-
loads have also been observed in other clusters (Fig-
ures 10) and are quite common phenomena. Based on
these typical workload patterns, we design our simula-
tions and evaluate the algorithm scheduling overhead.
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(b) GLOW Cluster at Univ. of Wisconsin

Figure 10: Typical Cluster Status.

In this group of simulations, the following parameters
are chosen for the cluster: N = 512, Cms = 1 and
Cps=1000. In Table 1, we illustrate that it is common
for a cluster to have thousands of CPUs. However, we
simulate a cluster of a relatively small size, i.e., with
only 512 nodes. According to our analysis, the time
complexities of algorithms FAST-EDF-IIT, EDF-IIT-1
and EDF-IIT-2 are respectively O(max (N,n)), O(nN3)
and O(nNlog(N)). So, if we show by simulation data
that in a small cluster of N = 512 nodes FAST-EDF-
IIT leads to a much less overhead, then we know for
sure that it will be even more advantageous if we apply
it in larger clusters.

To create cases where we have a large number of tasks
in TWQ, we first submit a huge task to the cluster.
Since it takes the cluster a long time to finish process-
ing this one task, we can submit thousands of other
tasks and get them queued up in TWQ. As new tasks
arrive, the TWQ length is built up. In order to control
the number of waiting tasks and create the same TWQ
lengths for the three scheduling algorithms, tasks are as-
signed long deadlines so that they will all be admitted
and put into TWQ. That is, in this group of simulations,
we make task reject ratios be 0 for all three algorithms

so that the measured scheduling overheads of the three
are comparable.

Table 2: First n Tasks’ Average Scheduling Time (ms).
n FAST-EDF-IIT EDF-IIT-1 EDF-IIT-2
300 0.96 410.44 151.32
1000 4.84 1321.08 494.07
2000 20.46 3119.76 988.95
3000 48.87 6206.91 1494.91

We first measure the average scheduling time of the
first n tasks, where n is in the range [100, 3000]. The
simulation results are shown in Table 2 and Figure 11a.
From the data, we can see that for the first 3, 000 tasks,
FAST-EDF-IIT spends an average of 48.87ms to ad-
mit a task, while EDF-IIT-1 and EDF-IIT-2 average re-
spectively 6206.91ms and 1494.91ms, 127 and 30 times
longer than FAST-EDF-IIT. Because the scheduling
overhead increases with the number of tasks in TWQ, we
then measure the task scheduling time after n tasks are
queued up in TWQ. Table 3 shows the average schedul-
ing time of 10 new tasks after there are already n tasks
in TWQ. The corresponding curves are in Figure 11b.
As shown, when there are 3, 000 waiting tasks, FAST-
EDF-IIT takes 157ms to admit a task, while EDF-IIT-1
and EDF-IIT-2 spend about 31 and 3 seconds to make
an admission control decision.

Now, let us take the simulation results and analyze
what they imply for real-world clusters. It is shown in
Figure 1a that the TWQ length of a cluster could in-
crease from 3, 000 to 17, 000 in an hour. From Table 3,
we know that for EDF-IIT-1 and EDF-IIT-2, it takes
more than 31 and 3 seconds to admit a task when the
TWQ length is over 3,000. Therefore, to schedule the
14, 000 new tasks arrived in that hour, it takes more
than 7,000 and 700 minutes respectively. Even if we as-
sume that the last one of the 14, 000 tasks has arrived
in the last minute of the hour, its user has to wait for
at least 700-60=640 minutes to know if the task is ad-
mitted or not. On the other hand, if FAST-EDF-IIT is
applied, it takes a total of 37 minutes to make admis-
sion control decisions on the 14, 000 tasks. This exam-

Table 3: Average Task Scheduling Time (ms) after n
Tasks in TWQ.

n FAST-EDF-IIT EDF-IIT-1 EDF-IIT-2
300 1.71 850.01 349.22
1000 16.25 3006.01 1034.21
2000 67.24 7536.32 2030.48
3000 157 31173.86 3050.86
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Figure 11: Algorithm’s Real-Time Scheduling Over-
head.

ple has demonstrated that our new algorithm is much
more efficient than existing approaches. If we analyze
the algorithms using data in Figure 1b where waiting
tasks increase from 15, 000 to 25, 000, the difference in
scheduling time will be even more striking.

6 Conclusion

This paper presents a novel algorithm for scheduling
real-time divisible loads in clusters. The algorithm as-
sumes a different scheduling rule in the admission con-
troller than that adopted by the dispatcher. Since the
admission controller no longer generates an exact sched-
ule, the scheduling overhead is reduced significantly.
Unlike the previous approaches, whose time complex-
ities are O(nN3) [17] and O(nNlog(N)) [8], our new
algorithm has a time complexity of O(max (N,n)). We
prove that the new algorithm is correct, which provides
admitted tasks real-time guarantees, and it utilizes clus-
ter resources well. We also compare our algorithm with
existing approaches experimentally. Simulation results
demonstrate that it scales well and can schedule large
numbers of tasks efficiently. With growing sizes of clus-

ters, we expect it to be even more advantageous.
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