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FAST AND SLOW MAGNETIZATION PROCESSES IN MAGNETIC 
RECORDING MEDIA 
 
J. Zhou, R. Skomski, S. Michalski, R. D. Kirby, and D. J. Sellmyer 
Department of Physics and Astronomy and Center for Materials Research and Analysis, 
University of Nebraska, Lincoln, NE 68588 
 
ABSTRACT 
 
 Information loss due to thermal activation is a major concern in ultrahigh-density 
magnetic recording media. The usually considered mechanism is thermally activated 
magnetization reversal over micromagnetic energy barriers. However, micromagnetic 
approaches ignore local anisotropy fluctuations, which translate into a time-dependent 
reduction of the remanent magnetization. The effect is negligibly small in macroscopic 
magnets but becomes important on a scale of a few nanometers.  
 
INTRODUCTION 
 
 Magnetic recording has been a driving force in nanotechnology and electronics. 
The key advantage is the high storage density, corresponding to bit sizes much smaller 
than the wavelength of visible light. However, a fundamental bit-size limit is given by the 
thermal stability of the stored information [1]. In very small grains or particles, thermal 
activation leads to local magnetization reversal and to the decay of the stored 
information. In macroscopic magnets, there is a clear separation of time scales between 
fast atomic or intrinsic processes and slow extrinsic magnetization processes. Intrinsic 
properties can be treated by equilibrium statistical mechanics. For example, the local 
magnetic anisotropy K1(r) can be replaced by the time or ensemble average <K1(r)> 
[1, 2]. By contrast, extrinsic properties are related to hysteresis and often far from 
equilibrium [3, 4].  
 The question arises how magnetic systems behave on a length scale of a very few 
nanometers, where intrinsic phenomena become important. This applies, for example, to 
single-phase particles, core-shell structures, and exchange-coupled hard-soft structures, 
which have attracted renewed attention [5, 6] as magnetic-recording materials. This paper 
starts with a brief analysis of magnetization modes in the structures and then outlines how 
fluctuations of intrinsic properties affect the time-dependence magnetic properties.  
  
NUCLEATION MODES IN COMPOSITE NANOPARTICLES 
 
 The simplest model of magnetization reversal, the Stoner-Wohlfarth model, 
describes uniformly magnetized small particles of volume V. In zero field, it yields the 
energy barrier <K1>V and a dynamics described by the Arrhenius law exp(-<K1>V/kBT). 
In two-phase particles (Fig. 1), magnetization inhomogenities are essential, because the 
soft phase switches earlier than the hard phase. Figures 1(b) shows the nucleation mode, 
that is, the magnetization deviation from M = Ms ez at the onset of magnetization reversal.  
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   (a)            (b)             (c) 

 
Fig. 1. Two-phase nanoparticle consisting of hard (h) and soft (s) phases: (a) structure, 

(b) magnetization modes, and (c) two-particle model. In (b), a magnetization tail reaches 
into the hard phase and reduces the energy barrier of the particle. 

 
 The model of Fig. 1(c) approximates the composite nanoparticle by two particles 
interacting via an effective exchange J ~ 1/L2, where L is the particle size. The model has 
been used to discuss the coercivity of small permanent-magnet particles [7], but it can 
also be used to estimate the spin-wave dynamics of the system, in analogy to the well-
known treatment of ferromagnetic resonance by Kittel [8, 9]. The solution of the problem 
amounts to the diagonalization of a 2 × 2 matrix whose nondiagonal matrix elements are 
proportional to J and where the demagnetization field of [8] is replaced by a more general 
anisotropy field. Figure 2 shows the predicted resonance frequencies. For large particles, 
J ~ 1/L2 is negligible, and the system behaves like a superposition of hard and soft 
phases. On decreasing particle size, the modes hybridize and change their character. The 
lowest-lying mode can now be considered ferromagnetic, as in Fig. 1(b-c), whereas the 
excited mode is 'antiferromagnetic' with an oscillation 180º out of phase. 
 

 
 

Fig. 2. Resonance modes in two-phase nanoparticles. The calculation is based on the 
model of Fig. 1(c). 
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ROLE OF FLUCTUATIONS 
 
 Micromagnetic approaches, such as Stoner-Wohlfarth model and the models of Fig. 
1, start from thermally averaged intrinsic properties such as <K1(r)>. This is a good 
approximation for macroscopic magnets but not necessarily for small nanoparticles. 
Figure 3 illustrates this point for a specific class of systems, namely rare-earth transition-
metal intermetallics, for example SmCo5 and Sm2Fe17N3. In the intermetallics, the 
anisotropy is provided by the rare-earth sublattice, which consists of Sm3+ ions. It is well-
known [10] that the finite-temperature average anisotropy <K1(T)> ~ (3<Jz

2> - J2 - J) is 
caused by intramultiplet excitations (Jz < J) of the type shown in Fig. 3(b). On a 
micromagnetic level, this corresponds to the Arrhenius law τ = τo exp(-Ea(<K1(T)>kBT)) 
 

 
    (a)             (b) 
 
Fig. 3. Spin structure of rare-earth sublattices at (a) zero and (b) finite temperatures. The 
ellipsoids correspond to the 4f charge distribution of the Sm3+ ions, and the rare-earth 
moments are parallel to the axes of revolution. 
 
 However, nonzero fluctuations <(K1(r) - <K1>)2> facilitate the magnetization 
reversal by reducing the energy barriers, rather than driving the magnetization over the 
energy barrier. Figure 4 illustrates that the size of the maximum or 'giant' fluctuations 
increases with waiting time. In macroscopic systems, these fluctuations can be ignored, 
but in very small particles, they affect the long-time behavior of the magnet and add to 
the magnetization decay predicted from <K1>.  The effective anisotropy Keff = <K1> - δK 
obeys 

 
 
Fig. 4. Anisotropy fluctuations. Giant fluctuations, such as the negative fluctuation near 

the center of the right figure, require long waiting times. 
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Fig. 5. Gaussian anisotropy distribution, averaged over a volume ξd. The gray area is 
inversely proportional to the waiting time. 

 
 

    Keff(T, t) = <K1> - δKo 2 ln(τ/τ*)     (1) 
 
where δKo and τ* depend on temperature and one the volume over ξd over which the 
anisotropy is averaged. As it will be explained elsewhere, Eq. (1) involves a complicated 
random-anisotropy and time averaging over all spin configurations. In a simple interpre-
tation, Fig. 5, the logarithmic time dependence of Keff reflects the low-lying parts of the 
Gaussian anisotropy distribution, which is a consequence of the mechanism of Fig. 3(b). 
 To quantify the effect in an approximate manner, we have performed a numerical 
simulation using the OOMMF code by NIST (http://math.nist.gov/oommf). Thermal ex-
citations enter the calculation in form of a random anisotropy whose magnitude depends 
on the waiting time. In other words, we temporarily 'freeze' the dynamic spin con-
figuration to check whether the thermal disorder is sufficient to realize magnetization 
reversal in a given reverse field. The investigated cylindrical single-phase particle has a 
diameter of 8 nm and a height of 10 nm. The used materials parameters are <K1> = 5 
MJ/m3, A = 10 pJ/m, and Ms = 1100 MA/m. In the simulations δK = 1 – 3 MJ/m3. Figure 
6 shows the hysteresis of the particle for different waiting times (sweep rates). 

 
 

Fig. 6. Time-dependence of the hysteresis loop in the 'frozen' or 'snapshot' approximation. 
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DISCUSSION AND CONCLUSIONS 
 
 It is instructive to compare the present local-anisotropy picture to the Stoner-
Wohlfarth reversal in small particles. In the Stoner-Wohlfarth picture, Fig. 7(a), the spins 
remain parallel during magnetization reversal, but spin disorder (b) opens another 
channel for reversal. Usually, the random contribution is small, but in particles smaller 
than 10 nm, it may become nonnegligible. For example, in thins wires of cross section 
πR2, the activation volume scales as R2 and approaches zero for very small R. In this 
limit, local randomness becomes the main consideration. 
 

  
 

Fig. 7. Comparison of Stoner-Wohlfarth model (a) and atomically randomized spins (b). 
 
 Naturally, our quasistatic or 'frozen' Gaussian approximation is relatively crude. It 
can be shown that Eq. (1) requires some time averaging to ensure that the giant 
anisotropy fluctuation exists for about 1 ns, so that thermal reversal can occur. In Eq. (1), 
this averaging appears in for of the time constant τ*, which is larger than the time scale of 
atomic anisotropy fluctuations and reduces δK. This procedure ignores, for example, fast 
  

 
 

Fig. 8. Coercivity as a function of the size of bulk anisotropy fluctuations. 
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magnetization processes that have the character of spin precessions. The corresponding 
fast magnetization dynamics in nanostructures and multilayers is currently under 
experimental and theoretical investigation, but its discussion goes beyond the scope of 
this paper. 
 To gauge the effect of the anisotropy fluctuations, it is also necessary to consider 
their size ξ. Atomic-scale spin disorder occurs frequently but has very little effect on the 
anisotropy. To have a significant effect on the magnetization reversal, the fluctuation 
must comprise many atoms. In the simulations leading to Fig. 6, this effect is 
automatically included. Analytically, it is necessary to nucleation field in a random 
potential, as outlined in [3]. Figure 8 shows the corresponding result. 
 In conclusion, we have investigated how local anisotropy fluctuations affect the 
magnetization dynamics of small particles. Our preliminary numerical and analytic 
calculations quantify the effect by using the 'frozen' or 'snapshot' approximation, which 
maps the finite-temperature problem onto a problem onto a static but disordered system. 
The local fluctuations are most pronounced in small grains or particles and negatively 
affect the thermal stability. They amount to fluctuating energy barriers and reduce the 
remanent magnetization beyond the Arrhenius-Néel-Brown predictions. The effect, 
which we have treated in a static approximation, adds to the dynamics based on micro-
magnetic free energies, such as Arrhenius-Néel-Brown activation and ferromagnetic 
resonance. 
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