
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Kenneth Bloom Publications Research Papers in Physics and Astronomy 

12-17-2001 

Search for Gluinos and Squarks Using Like-Sign Dileptons in Search for Gluinos and Squarks Using Like-Sign Dileptons in pp ̅ pp 

Collisions at √s= 1.8 TeV Collisions at s= 1.8 TeV 

T. Affolder 
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 

Kenneth A. Bloom 
University of Nebraska-Lincoln, kenbloom@unl.edu 

Collider Detector at Fermilab Collaboration 

Follow this and additional works at: https://digitalcommons.unl.edu/physicsbloom 

 Part of the Physics Commons 

Affolder, T.; Bloom, Kenneth A.; and Fermilab Collaboration, Collider Detector at, "Search for Gluinos and 
Squarks Using Like-Sign Dileptons in pp ̅Collisions at √s= 1.8 TeV" (2001). Kenneth Bloom Publications. 
78. 
https://digitalcommons.unl.edu/physicsbloom/78 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom 
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicsbloom
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicsbloom?utm_source=digitalcommons.unl.edu%2Fphysicsbloom%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsbloom%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicsbloom/78?utm_source=digitalcommons.unl.edu%2Fphysicsbloom%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages


VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001

Search for Gluinos and Squarks Using Like-Sign Dileptons in pp Collisions at
ppp

s 5 1.8 TeV

T. Affolder,23 H. Akimoto,45 A. Akopian,37 M. G. Albrow,11 P. Amaral,8 D. Amidei,25 K. Anikeev,24 J. Antos,1

G. Apollinari,11 T. Arisawa,45 A. Artikov,9 T. Asakawa,43 W. Ashmanskas,8 F. Azfar,30 P. Azzi-Bacchetta,31

N. Bacchetta,31 H. Bachacou,23 S. Bailey,16 P. de Barbaro,36 A. Barbaro-Galtieri,23 V. E. Barnes,35 B. A. Barnett,19

S. Baroiant,5 M. Barone,13 G. Bauer,24 F. Bedeschi,33 S. Belforte,42 W. H. Bell,15 G. Bellettini,33 J. Bellinger,46

D. Benjamin,10 J. Bensinger,4 A. Beretvas,11 J. P. Berge,11 J. Berryhill,8 A. Bhatti,37 M. Binkley,11 D. Bisello,31

M. Bishai,11 R. E. Blair,2 C. Blocker,4 K. Bloom,25 B. Blumenfeld,19 S. R. Blusk,36 A. Bocci,37 A. Bodek,36

W. Bokhari,32 G. Bolla,35 Y. Bonushkin,6 D. Bortoletto,35 J. Boudreau,34 A. Brandl,27 S. van den Brink,19

C. Bromberg,26 M. Brozovic,10 E. Brubaker,23 N. Bruner,27 E. Buckley-Geer,11 J. Budagov,9 H. S. Budd,36 K. Burkett,16

G. Busetto,31 A. Byon-Wagner,11 K. L. Byrum,2 S. Cabrera,10 P. Calafiura,23 M. Campbell,25 W. Carithers,23

J. Carlson,25 D. Carlsmith,46 W. Caskey,5 A. Castro,3 D. Cauz,42 A. Cerri,33 A. W. Chan,1 P. S. Chang,1 P. T. Chang,1

J. Chapman,25 C. Chen,32 Y. C. Chen,1 M.-T. Cheng,1 M. Chertok,5 G. Chiarelli,33 I. Chirikov-Zorin,9 G. Chlachidze,9

F. Chlebana,11 L. Christofek,18 M. L. Chu,1 Y. S. Chung,36 C. I. Ciobanu,28 A. G. Clark,14 A. Connolly,23

J. Conway,38 M. Cordelli,13 J. Cranshaw,40 R. Cropp,41 R. Culbertson,11 D. Dagenhart,44 S. D’Auria,15 F. DeJongh,11

S. Dell’Agnello,13 M. Dell’Orso,33 L. Demortier,37 M. Deninno,3 P. F. Derwent,11 T. Devlin,38 J. R. Dittmann,11

A. Dominguez,23 S. Donati,33 J. Done,39 M. D’Onofrio,33 T. Dorigo,16 N. Eddy,18 K. Einsweiler,23 J. E. Elias,11

E. Engels, Jr.,34 R. Erbacher,11 D. Errede,18 S. Errede,18 Q. Fan,36 R. G. Feild,47 J. P. Fernandez,11 C. Ferretti,33

R. D. Field,12 I. Fiori,3 B. Flaugher,11 G. W. Foster,11 M. Franklin,16 J. Freeman,11 J. Friedman,24 Y. Fukui,22 I. Furic,24

S. Galeotti,33 A. Gallas,16,* M. Gallinaro,37 T. Gao,32 M. Garcia-Sciveres,23 A. F. Garfinkel,35 P. Gatti,31 C. Gay,47

D. W. Gerdes,25 P. Giannetti,33 P. Giromini,13 V. Glagolev,9 D. Glenzinski,11 M. Gold,27 J. Goldstein,11 I. Gorelov,27

A. T. Goshaw,10 Y. Gotra,34 K. Goulianos,37 C. Green,35 G. Grim,5 P. Gris,11 L. Groer,38 C. Grosso-Pilcher,8

M. Guenther,35 G. Guillian,25 J. Guimaraes da Costa,16 R. M. Haas,12 C. Haber,23 S. R. Hahn,11 C. Hall,16 T. Handa,17

R. Handler,46 W. Hao,40 F. Happacher,13 K. Hara,43 A. D. Hardman,35 R. M. Harris,11 F. Hartmann,20 K. Hatakeyama,37

J. Hauser,6 J. Heinrich,32 A. Heiss,20 M. Herndon,19 C. Hill,5 K. D. Hoffman,35 C. Holck,32 R. Hollebeek,32

L. Holloway,18 R. Hughes,28 J. Huston,26 J. Huth,16 H. Ikeda,43 J. Incandela,11 G. Introzzi,33 J. Iwai,45 Y. Iwata,17

E. James,25 M. Jones,32 U. Joshi,11 H. Kambara,14 T. Kamon,39 T. Kaneko,43 K. Karr,44 H. Kasha,47 Y. Kato,29

T. A. Keaffaber,35 K. Kelley,24 M. Kelly,25 R. D. Kennedy,11 R. Kephart,11 D. Khazins,10 T. Kikuchi,43 B. Kilminster,36

B. J. Kim,21 D. H. Kim,21 H. S. Kim,18 M. J. Kim,21 S. B. Kim,21 S. H. Kim,43 Y. K. Kim,23 M. Kirby,10 M. Kirk,4

L. Kirsch,4 S. Klimenko,12 P. Koehn,28 K. Kondo,45 J. Konigsberg,12 A. Korn,24 A. Korytov,12 E. Kovacs,2 J. Kroll,32

M. Kruse,10 S. E. Kuhlmann,2 K. Kurino,17 T. Kuwabara,43 A. T. Laasanen,35 N. Lai,8 S. Lami,37 S. Lammel,11

J. Lancaster,10 M. Lancaster,23 R. Lander,5 A. Lath,38 G. Latino,33 T. LeCompte,2 A. M. Lee IV,10 K. Lee,40

S. W. Lee,39 S. Leone,33 J. D. Lewis,11 M. Lindgren,6 T. M. Liss,18 J. B. Liu,36 Y. C. Liu,1 D. O. Litvintsev,11

O. Lobban,40 N. Lockyer,32 J. Loken,30 M. Loreti,31 D. Lucchesi,31 P. Lukens,11 S. Lusin,46 L. Lyons,30 J. Lys,23

R. Madrak,16 K. Maeshima,11 P. Maksimovic,16 L. Malferrari,3 M. Mangano,33 M. Mariotti,31 G. Martignon,31

A. Martin,47 J. A. J. Matthews,27 J. Mayer,41 P. Mazzanti,3 K. S. McFarland,36 P. McIntyre,39 E. McKigney,32

M. Menguzzato,31 A. Menzione,33 C. Mesropian,37 A. Meyer,11 T. Miao,11 R. Miller,26 J. S. Miller,25 H. Minato,43

S. Miscetti,13 M. Mishina,22 G. Mitselmakher,12 N. Moggi,3 E. Moore,27 R. Moore,25 Y. Morita,22 T. Moulik,35

M. Mulhearn,24 A. Mukherjee,11 T. Muller,20 A. Munar,33 P. Murat,11 S. Murgia,26 J. Nachtman,6 V. Nagaslaev,40

S. Nahn,47 H. Nakada,43 I. Nakano,17 C. Nelson,11 T. Nelson,11 C. Neu,28 D. Neuberger,20 C. Newman-Holmes,11

C.-Y. P. Ngan,24 H. Niu,4 L. Nodulman,2 A. Nomerotski,12 S. H. Oh,10 Y. D. Oh,21 T. Ohmoto,17 T. Ohsugi,17 R. Oishi,43

T. Okusawa,29 J. Olsen,46 W. Orejudos,23 C. Pagliarone,33 F. Palmonari,33 R. Paoletti,33 V. Papadimitriou,40 D. Partos,4

J. Patrick,11 G. Pauletta,42 M. Paulini,23,† C. Paus,24 D. Pellett,5 L. Pescara,31 T. J. Phillips,10 G. Piacentino,33

K. T. Pitts,18 A. Pompos,35 L. Pondrom,46 G. Pope,34 M. Popovic,41 F. Prokoshin,9 J. Proudfoot,2 F. Ptohos,13

O. Pukhov,9 G. Punzi,33 A. Rakitine,24 F. Ratnikov,38 D. Reher,23 A. Reichold,30 A. Ribon,31 W. Riegler,16 F. Rimondi,3

L. Ristori,33 M. Riveline,41 W. J. Robertson,10 A. Robinson,41 T. Rodrigo,7 S. Rolli,44 L. Rosenson,24 R. Roser,11

R. Rossin,31 A. Roy,35 A. Ruiz,7 A. Safonov,5 R. St. Denis,15 W. K. Sakumoto,36 D. Saltzberg,6 C. Sanchez,28

A. Sansoni,13 L. Santi,42 H. Sato,43 P. Savard,41 P. Schlabach,11 E. E. Schmidt,11 M. P. Schmidt,47 M. Schmitt,16,*
L. Scodellaro,31 A. Scott,6 A. Scribano,33 S. Segler,11 S. Seidel,27 Y. Seiya,43 A. Semenov,9 F. Semeria,3 T. Shah,24

M. D. Shapiro,23 P. F. Shepard,34 T. Shibayama,43 M. Shimojima,43 M. Shochet,8 A. Sidoti,31 J. Siegrist,23 A. Sill,40

251803-1 0031-9007�01�87(25)�251803(6)$15.00 © 2001 The American Physical Society 251803-1



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001

P. Sinervo,41 P. Singh,18 A. J. Slaughter,47 K. Sliwa,44 C. Smith,19 F. D. Snider,11 A. Solodsky,37 J. Spalding,11

T. Speer,14 P. Sphicas,24 F. Spinella,33 M. Spiropulu,16 L. Spiegel,11 J. Steele,46 A. Stefanini,33 J. Strologas,18

F. Strumia,14 D. Stuart,11 K. Sumorok,24 T. Suzuki,43 T. Takano,29 R. Takashima,17 K. Takikawa,43 P. Tamburello,10

M. Tanaka,43 B. Tannenbaum,6 M. Tecchio,25 R. Tesarek,11 P. K. Teng,1 K. Terashi,37 S. Tether,24 A. S. Thompson,15

R. Thurman-Keup,2 P. Tipton,36 S. Tkaczyk,11 D. Toback,39 K. Tollefson,36 A. Tollestrup,11 D. Tonelli,33 H. Toyoda,29

W. Trischuk,41 J. F. de Troconiz,16 J. Tseng,24 N. Turini,33 F. Ukegawa,43 T. Vaiciulis,36 J. Valls,38 S. Vejcik III,11

G. Velev,11 G. Veramendi,23 R. Vidal,11 I. Vila,7 R. Vilar,7 I. Volobouev,23 M. von der Mey,6 D. Vucinic,24

R. G. Wagner,2 R. L. Wagner,11 N. B. Wallace,38 Z. Wan,38 C. Wang,10 M. J. Wang,1 B. Ward,15 S. Waschke,15

T. Watanabe,43 D. Waters,30 T. Watts,38 R. Webb,39 H. Wenzel,20 W. C. Wester III,11 A. B. Wicklund,2 E. Wicklund,11

T. Wilkes,5 H. H. Williams,32 P. Wilson,11 B. L. Winer,28 D. Winn,25 S. Wolbers,11 D. Wolinski,25 J. Wolinski,26

S. Wolinski,25 S. Worm,27 X. Wu,14 J. Wyss,33 W. Yao,23 G. P. Yeh,11 P. Yeh,1 J. Yoh,11 C. Yosef,26 T. Yoshida,29

I. Yu,21 S. Yu,32 Z. Yu,47 A. Zanetti,42 F. Zetti,23 and S. Zucchelli3

(CDF Collaboration)
1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439
3Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

4Brandeis University, Waltham, Massachusetts 02254
5University of California at Davis, Davis, California 95616

6University of California at Los Angeles, Los Angeles, California 90024
7Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

8Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
9Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

10Duke University, Durham, North Carolina 27708
11Fermi National Accelerator Laboratory, Batavia, Illinois 60510

12University of Florida, Gainesville, Florida 32611
13Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

14University of Geneva, CH-1211 Geneva 4, Switzerland
15Glasgow University, Glasgow G12 8QQ, United Kingdom

16Harvard University, Cambridge, Massachusetts 02138
17Hiroshima University, Higashi-Hiroshima 724, Japan

18University of Illinois, Urbana, Illinois 61801
19The Johns Hopkins University, Baltimore, Maryland 21218

20Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
21Center for High Energy Physics, Kyungpook National University, Taegu 702-701, Korea

Seoul National University, Seoul 151-742, Korea
and SungKyunKwan University, Suwon 440-746, Korea

22High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
23Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720

24Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
25University of Michigan, Ann Arbor, Michigan 48109

26Michigan State University, East Lansing, Michigan 48824
27University of New Mexico, Albuquerque, New Mexico 87131

28The Ohio State University, Columbus, Ohio 43210
29Osaka City University, Osaka 588, Japan

30University of Oxford, Oxford OX1 3RH, United Kingdom
31Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

32University of Pennsylvania, Philadelphia, Pennsylvania 19104
33Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy

34University of Pittsburgh, Pittsburgh, Pennsylvania 15260
35Purdue University, West Lafayette, Indiana 47907

36University of Rochester, Rochester, New York 14627
37Rockefeller University, New York, New York 10021
38Rutgers University, Piscataway, New Jersey 08855

39Texas A&M University, College Station, Texas 77843
40Texas Tech University, Lubbock, Texas 79409

41Institute of Particle Physics, University of Toronto, Toronto, Canada M5S 1A7
42Istituto Nazionale di Fisica Nucleare, University of Trieste, Udine, Italy

43University of Tsukuba, Tsukuba, Ibaraki 305, Japan

251803-2 251803-2



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001

44Tufts University, Medford, Massachusetts 02155
45Waseda University, Tokyo 169, Japan

46University of Wisconsin, Madison, Wisconsin 53706
47Yale University, New Haven, Connecticut 06520

(Received 18 June 2001; published 30 November 2001)

We present results of the first search for like-sign dilepton (e6e6, e6m6, m6m6) events associ-
ated with multijets and large missing energy using 106 pb21 of data in pp collisions at

p
s � 1.8 TeV

collected during 1992–1995 by the CDF experiment. Finding no events that pass our selection, we
examine pair production of gluinos (g̃) and squarks (q̃) in a constrained framework of the minimal su-
persymmetric standard model. At tanb � 2 and m � 2800 GeV�c2, we set 95% confidence level limits
of Mg̃ . 221 GeV�c2 for Mg̃ � Mq̃ , and Mg̃ . 168 GeV�c2 for Mq̃ ¿ Mg̃ , both with small variation
as a function of m.

DOI: 10.1103/PhysRevLett.87.251803 PACS numbers: 14.80.Ly, 11.30.Pb, 12.60.Jv, 13.85.Rm

The standard model (SM) of particle physics is enor-
mously successful in explaining a wide variety of phenom-
ena. In spite of this, there are a number of structural defects
in the model, such as the quadratic mass divergence of the
Higgs boson. Supersymmetry (SUSY) provides a promis-
ing solution and in the minimal supersymmetric standard
model (MSSM) [1] each SM particle has a SUSY part-
ner which is required to be lighter than or of the order of
1 TeV�c2 [1]. Conservation of R parity [2] requires SUSY
particles to be produced in pairs and the lightest SUSY par-
ticle (LSP) to be stable.

At the Fermilab Tevatron, pair production and sequen-
tial decays of supersymmetric quarks (squarks, q̃) and su-
persymmetric gluons (gluinos, g̃) can result in events with
final state leptons. The q̃ can decay to the lightest chargino
(x̃6

1 ) or the next-to-lightest neutralino (x̃0
2 ) via q̃ ! q0x̃

6
1

or q̃ ! qx̃
0
2 , and the q̃ ! qg̃ decay occurs when kine-

matically allowed. The decays of the g̃ are g̃ ! qq̄0x̃
6
1

or g̃ ! qq̄x̃
0
2 . Each q̃ and g̃ decay can eventually produce

isolated leptons and missing transverse energy (E�T ) [3] via
the decays x̃

6
1 ! �6n�x̃

0
1 or x̃

0
2 ! �1�2x̃

0
1 where x̃

0
1 is

the LSP [4] which exits the detector without interacting.
Thus, g̃g̃, g̃q̃, and q̃ ¯̃q production can lead to the like-sign
(LS) dilepton signatures of e6e6, e6m6, and m6m6 [5]
with two or more jets and appreciable E�T . The fraction of
dilepton events which are LS can be as large as 30% in
some regions of MSSM parameter space.

The �6�6 1 $ 2 jets 1 E�T channel is a clean signa-
ture to search for SUSY. It has an advantage over the
opposite-sign (OS) dilepton channel as there are only small
SM backgrounds. Even without the E�T requirement the LS
analysis is also useful for testing other theories beyond the
SM, including R parity violating SUSY [6]. The dilepton
decay channels are a natural complement to other direct
searches for squarks and gluinos in the E�T plus multijet
channel [7–12].

In this Letter, we present the results of the first search
for �6�6 1 $ 2 jets 1 E�T events using 106 pb21 of data
from pp collisions at

p
s � 1.8 TeV. The data were col-

lected by the Collider Detector at Fermilab (CDF) [13]
during the 1992–1995 run of the Tevatron. We briefly
describe the detector subsystems relevant to this analysis.

The location of the pp collision event vertex (zvertex) is
measured along the beam direction with a time projection
chamber. The pT of charged particles are measured in
the region jhj , 1.1 by a central tracking chamber (CTC)
which is located in a 1.4 T solenoidal magnetic field.
The momentum resolution is dpT�pT

2 � 0.001 where pT

is measured in GeV�c. Electromagnetic and hadronic
calorimeters are segmented in a projective tower geometry
surrounding the solenoid and cover the region jhj , 4.2.
A muon detector is located outside the hadron calorimeter
and covers the region jhj , 1.0.

The analysis begins with a sample of 515 699 loosely
selected dilepton events [14,15] from which we select
an initial dilepton plus dijet sample. To ensure that the
trigger is fully efficient, we require each event to have a
lepton with pT $ 11 GeV�c and jhj , 1.0 for electrons
or jhj , 0.6 for muons. A second electron or muon is
required with pT $ 5 GeV�c and jhj , 1.0. If there are
more than two isolated leptons, we take the two leading-
pT leptons. Each lepton is required to be isolated such
that there is no more than 4 GeV of transverse energy
(measured by the calorimeter or CTC) in a cone of
DR �

p
�Dh�2 1 �Df�2 � 0.4 around the direction of

the lepton. To ensure that both leptons originated from the
same collision event and are well measured, we require
jzvertexj # 60 cm and jzlepton 2 zvertexj # 5 cm for each
lepton, where zlepton is measured along the beam line. In
addition to the leptons, we require two or more jets with
ET $ 15 GeV and jhj , 2.4.

Since the OS sample is used as a check of our under-
standing of the LS backgrounds, we place the same cuts
on both samples in parallel, but with additional cuts on
the OS events so as to remove events which might give a
kinematic bias. To reduce the large J�c and Y compo-
nent of the background we remove the events with M�� ,

12 GeV�c2. A total of 239 OS and 16 LS dilepton events
pass the requirement.

The dominant SM backgrounds are from Drell-Yan
(g��Z0), tt̄, bb̄, cc̄, and diboson (W1W2, W6Z0, Z0Z0)
production. Each is estimated using the ISAJET Monte
Carlo (MC) event generator [16] and a simulation of
the CDF detector. The cross sections for g��Z0 and tt̄
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FIG. 1. Distributions for the dilepton 1 dijet data after the
M�� . 12 GeV�c2 and Z0 veto requirements. (a) and (b) show
the E�T distributions for OS and LS samples, respectively.
The data (points) are compared to the standard model back-
ground (shaded line) with a SUSY contribution (solid line)
for tanb � 2, m � 2800 GeV�c2, Mg̃ � 210 GeV�c2 , and
Mq̃ � 211 GeV�c2 . (c) and (d) show the M�� distributions in
the OS and LS samples for the same requirements.

production and contributions due to B0B̄0 mixing events
are normalized to CDF measurements [17–19]. We use
next-to-leading order (NLO) cross sections for diboson
production [20]. The contribution from W �! �n�� 1 $ 3
jets events where one of the jets is misidentified as a
lepton is found to be negligible.

Given the large E�T signature from SUSY, we require
at least 25 GeV of E�T for all dilepton events. In the OS
sample, we also remove all same-flavor OS dilepton events
with 76 , M�1�2 , 106 GeV�c2. Figure 1 compares the
E�T and M�� distributions for the data and the SM back-
grounds for the OS and LS samples after the Z0 veto but

before the E�T requirement. After all cuts, we observe
19 OS (4 ee, 10 em, 5 mm) events and no LS events in
agreement with the SM expectation of 14.1 6 1.3 �stat� 6
2.8 �syst� OS events and 0.55 6 0.25 6 0.08 LS events.
Tables I and II show a comparison of the data reduction
and the SM backgrounds. We note that tt and Z0 ! t1t2

are two major SM sources of the em events. The 19 event
sample also contains six dilepton (1 ee, 5 em) events out
of nine tt ! W1bW2b̄ ! ��1nb� ��2n̄b̄� event candi-
dates (1 ee, 7 em, 1 mm) from the CDF tt analysis in
the dilepton channel [21]. The remaining three top dilep-
ton event candidates are not in our final sample because
our lepton isolation requirement for the second lepton is
stricter than the top analysis. There is no evidence for new
particle production.

We examine the exclusion region of Mq̃ and Mg̃ in a con-
strained framework of the MSSM. We assume five squarks
(ũ, d̃, s̃, c̃, b̃) with nearly mass-degenerate left and right
helicity states. Production of top squarks is not consid-
ered even though the lighter of the two top-squark mass
eigenstates can be lighter than the other squarks [22]. We
impose common scalar and common gaugino masses at a
grand unified theory scale as in the minimal supergravity
model [23], and use the renormalization group equations
[24] that relate the mass parameters, leading to a general
prediction: Mq̃ * 0.9Mg̃. To avoid a region in MSSM pa-
rameter space where there are significant branching ratios
of chargino and neutralino decays into Higgs particles, the
pseudoscalar Higgs mass is set to 500 GeV�c2 which is
above the x̃

6
1 and x̃

0
2 masses. With these assumptions, the

sensitivity of our search can be studied as a function of
four parameters: the gluino mass (Mg̃), the squark mass
(Mq̃), the ratio of the vacuum expectation values of the
two Higgs fields (tanb), and the Higgs mass parameter
(m). Since we choose to decouple our search from the
Higgs sector we scan a range of m that is both consistent
with LEP results [9,25] and less than the SUSY mass scale:
100 & jmj & 1000 GeV�c2.

The acceptance for SUSY processes is estimated by per-
forming the final data selection on events simulated with
ISAJET [16] using CTEQ3L [26] parton distribution func-
tions (PDFs). These events are then passed through the
CDF detector simulation. We define the acceptance as the
ratio of the number of LS dilepton events that pass our cuts

TABLE I. A comparison of the event reduction for the data, standard model (SM) backgrounds
and a model of SUSY production with tanb � 2, m � 2800 GeV�c2, Mg̃ � 210 GeV�c2, and
Mq̃ � 211 GeV�c2.

Selection Data SM backgrounds SUSY

Dilepton dataset 515,699
Dilepton dijet 350
M�� $ 12 GeV�c2 255 279 6 9 6 79 27 6 1 6 5
Z0�! �1�2� veto 128 158 6 7 6 45 27 6 1 6 5
E�T $ 25 GeV 19 14.1 6 1.3 6 2.8 24 6 1 6 5
Like-sign dilepton 0 0.55 6 0.25 6 0.08 5.9 6 0.6 6 1.4
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TABLE II. The expected backgrounds from standard model
contributions to the final data selection after all but the LS
requirement in Table I. Opposite-sign and like-sign dilepton
events are listed.

Source Opposite-sign Like-sign

Drell-Yan 8.7 6 0.9 6 2.5 0.00 10.01
20.00

10.01
20.00

tt 4.0 6 0.3 6 1.2 0.08 6 0.04 6 0.02
bb�cc 0.9 6 0.9 6 0.3 0.23 6 0.23 6 0.07
Diboson 0.5 6 0.1 6 0.1 0.24 6 0.10 6 0.04

Total 14.1 6 1.3 6 2.8 0.55 6 0.25 6 0.08
Data 19 0

to the total number of generated SUSY events which con-
tain at least two leptons. For a nominal SUSY scenario of
Mg̃ � 200 GeV�c2, infinite squark mass (and hence infi-
nite slepton mass), tanb � 2 and m � 2800 GeV�c2, the
acceptance is 1%, due mostly to the lower pT values of
the leptons. For the case where Mq̃ � Mg̃ � 200 GeV�c2,
the slepton (�̃R) mass is lighter. This enhances the leptonic
branching ratio due to x̃

0
2 ! ��̃R , resulting in an increase

of LS dilepton events in g̃g̃, g̃q̃, q̃ ¯̃q production and a rise of
the overall acceptance to 3%. Table I and Fig. 1 compare
the data reduction, the expectations from SM processes,
and a SUSY scenario.

The total systematic uncertainty on the expected num-
ber of LS signal events comes from uncertainties on the
theoretical calculation of the production cross section of
gluinos and squarks, the event acceptance, and the inte-
grated luminosity. The NLO cross section depends mainly
on the choices of the QCD renormalization scale (Q2) and
PDFs [27]. The nominal choice of Q2 is m2, where m

is Mq̃, Mg̃, or 1
2

q
Mq̃

2 1 Mg̃
2 for q̃q̃�q̃ ¯̃q, g̃g̃, or q̃g̃ pro-

duction, respectively. The uncertainty due to the choice
of Q2 is determined to be 21% by taking the larger of
the variation of the cross section at Q2 � �m�2�2 and at
Q2 � �2m�2 from the nominal cross section value. Simi-
larly, the variation of the cross section due to the choice of
PDFs yields an 8% uncertainty, estimated as the maximum
deviation between the nominal choice of CTEQ3M [26]
and MRS(G) [28] or GRV94HO [29]. Uncertainty on the
signal acceptance is due to uncertainties on the efficiencies
of the lepton trigger, identification and isolation efficien-
cies, as well as on the jet energy scale and the amount
of gluon radiation. By varying the measured lepton trig-
ger and identification efficiencies by 1 standard deviation,
the acceptance uncertainties are estimated to be 5% and
3%, respectively. Since the lepton isolation efficiency de-
pends on jet multiplicity, the uncertainty is estimated using
Z0�! �1�2� 1 $ 2 jet events and is found to be 11%. By
varying the jet energy scale by 1 standard deviation, we
find a 5% effect on the acceptance. The uncertainty due to
the initial and final state gluon radiation (ISR and FSR) is
estimated by turning the ISR and/or FSR radiation off,
which gives at most 7% variation in the acceptance. Enough

MC events are generated so as to keep the statistical un-
certainty below 3%. The uncertainty on the luminosity is
4%. The combined uncertainty is calculated by adding all
uncertainties in quadrature, and is found to be 28%.

Since no LS events pass our cuts, we calculate the upper
limit on the number of SUSY events at the 95% confidence
level (C.L.) using a frequentist algorithm [30] with a sys-
tematic uncertainty of 28% and no background subtraction.
This corresponds to 3.46 events which we use to exclude
regions in the Mq̃-Mg̃ plane. Figure 2 shows the exclu-
sion region for tanb � 2 and m � 2800 GeV�c2. We set
95% C.L. limits at Mg̃ . 168 GeV�c2 for Mq̃ ¿ Mg̃ and
Mg̃ . 221 GeV�c2 for Mg̃ � Mq̃. These results are bet-
ter than the previous limits from complementary searches
by about 5 GeV�c2 [10,11].

We examine the dependence of the mass limit as tanb
and m are varied in the region Mg̃ � Mq̃. For m �
2800 GeV�c2, the variation in the mass limit is smaller
than 2% in the range of tanb between 1.7 and 10 if
the mixings of the third generation SUSY particles (es-
pecially t̃) are minimal. In the case of maximal t̃ mixing,
the mass limit remains the same for tanb up to about 3.
For tanb � 2, the limit deviates by at most 3.6% from
the 221 GeV�c2 limit in the range m # 2150 GeV�c2,
while the limits in m $ 150 GeV�c2 are systematically
8% 12% lower.

In conclusion, we have searched for new physics using
LS dilepton events in association with two or more jets
and E�T in pp collisions at

p
s � 1.8 TeV. Production of

both OS and LS dilepton events is consistent with the SM
expectations. Within a framework of constrained MSSM

FIG. 2. Limit in the Mq̃-Mg̃ plane at the 95% confidence level
for a constrained MSSM scenario (Mq̃ * 0.9Mg̃) for tanb � 2
and m � 2800 GeV�c2. The results of other direct, but com-
plementary, searches are also presented [8–11].
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(five degenerate squarks, Mq̃ * 0.9Mg̃), for small tanb

we set mass limits of Mg̃ . 168 GeV�c2 for Mq̃ ¿ Mg̃,
and Mg̃ . 221 GeV�c2 for Mq̃ � Mg̃, both with small
variation as a function of m.
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