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to transmit more parameters than real temperature data at the beginning, however, 
with longer time period (1.5-14.5 hours), our approach has achieved significantly less 
energy consumption than the linear-increasing energy consumption of the General 
Data Aggregation approach when no parameters update is needed. 

5 Conclusions 

In this paper, we proposed a multilevel Bayesian modeling approach to the query 
application in the WSN multilevel architecture, utilizing both temporal and spatial 
correlation to predict parameters at different levels. Our approach relies mostly on lo-
cal Bayesian models computed and maintained at each sensor. In order to adapt the 
local model to variations in the data distribution, each sensor continuously maintains 
its local model, and notifies the sink only of significant changes. As we showed, our 

Figure 1. Predicted values of each sensor against estimated value by each cluster head in two ar-
eas over 14.5 hours
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approach can provide a significant reduction in communication load over the existing 
general data aggregation approach, and can also effectively predict future values with 
controllable error bounds. By using this approach, significant energy consumption is 
saved in typical data query applications. 
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