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Abstract. Shishes are fibrillar crystallites that can be created by deforming a polymer melt. 
The formation of shishes takes place when flow is strong enough to stretch molecules. In the 
early stages, bundles of stretched molecules with pre-crystalline order form metastable 
precursors whose stability depends on their size and, hence, on the stress level. We find that for 
a specific isotactic polypropylene, close to the nominal melting point, a stress larger than 0.10 
MPa leads to stable fibrillar precursors that are partially crystalline immediately after flow. On 
the other hand, below 0.10 MPa, the aspect ratio of precursors tends to unity and the lack of 
crystallinity makes these structures prone to dissolution. 

1.  Introduction 
Shishes are fibrillar crystallites formed by macromolecules, extended under the influence of stress, 
both in melts as well as in solutions [1-3]. The interest in these structures arises from the large 
influence that they have on the properties of materials. Shishes promote anisotropic and well packed 
crystalline morphologies that enhance stiffness, wear and permeability. Elucidating the molecular 
mechanism for their formation offers the opportunity for designing molecules and processes to tailor 
material properties. 
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During flow-induced crystallization (FIC), in the early stages of shish formation, the stretch of the 
physical network of entangled molecules gives rise to fibrillar precursors of the emerging structures 
[4-9]. These flow induced precursors (FIPs) are bundles of stretched molecules with pre-crystalline 
order and density higher than the melt [10]. The dynamics of FIPs is suggested to be related to 
external conditions and their size [11-13], however little information is available. In this Article, we 
analyze quantitatively the effect of stress on the dynamics of FIPs using an isotactic polypropylene 
(iPP) as a model system. Experiments are carried out with time resolved X-ray scattering in 
combination with slit flow, a powerful tool for flow induced crystallization studies [14-16].  

2.  Material 
The material investigated is an isotactic polypropylene homopolymer (HD120M0, supplied by 
Borealis GmbH) with molecular weight Mw=365 kg/mol, molecular weight distribution MWD=5.4 
(i.e. Mn=68 kg/mol) and tacticity 97.5 %mmmm (from FTIR). The nominal melting point (DSC at 10 
°C/min) is 163 °C. From rheometry (dynamic measurements), the disengagement time, related to the 
high molecular weight tail is determined to be τD=25 s and the corresponding stretch relaxation time is 
τs=0.12 s at 165 °C [17]. 

3.  Methods 
Small and wide angle X-ray scattering (SAXS and WAXS) were performed at the beamline BM26B 
[18] of the European Synchrotron Radiation Facility (Grenoble, France) with a wavelength λ=1.0 Å. 
For SAXS, a gas filled detector with 512 x 512 pixels of 260 μm x 260 μm was used to collect images 
at 6.4 m from the sample with an exposure time of 3 s. While, for WAXS, a CCD detector (Photonic 
Science, UK) with 2000 x 1336 pixels of 44 μm x 44 μm was placed at 0.18 m and an exposure time 
of 5 s was used. SAXS and WAXS images were processed with the software Fit2D. 
Crystallization was investigated using a short term shear [15, 19] protocol in a custom-built slit flow 
cell mounted on a Multi-Pass Rheometer (MPR). The slit has cross section of 1.5 mm x 6 mm and 
length of 120 mm. The specimen is sheared by moving two pistons (diameter 12 mm), placed in 
reservoirs at both ends of the slit, simultaneously upwards or downwards. The maximum displacement 
of the pistons is designed in such a way that the material initially in the reservoir (going through a 
contraction) does not arrive in the observation window. For all experiments discussed in this here, the 
displacement of the pistons is 3 mm. To obtain an optimal filling of the slit and rule out wall slippage, 
prior to the actual experiment, the specimen is pressurized up to 100 bar by bringing the two pistons 
towarde each other. When the pistons move, the shear rate γ&  increases from the centerline (where 

0γ =& ) until the wall (where wγ γ=& & ). The wall shear rate wγ&  is determined by the speed of the 
pistons and geometrical parameters of the slit. More details are provided elsewhere [17]. When the 
rheology of the material is known, the stress profile in the specimen, which increases linearly from the 
centerline  (σ = 0), to the wall (σ = σw), can be calculated as well [20].  

4.  Results and Discussion 
Shearing a polymer melt can lead to the formation of a large number of flow induced precursors of 
crystallization (FIPs) also at temperatures close to the nominal melting point [4, 21, 22]. Depending on 
the conditions, FIPs eventually lead to fibrillar (needle-like) crystals with varying aspect ratio [23]. 
Here, we investigate the effect of the level of the shear stress on the average size and stability of FIPs 
after cessation of flow in isotactic polypropylene (iPP). The focus is on isothermal short term shear at 
165 °C, close to the nominal melting point (163 °C). The flow conditions, given in Table 1, are chosen 
to ensure a large Deborah stretch number ( s sDe γ τ= ⋅& ) and, therefore, orientation and stretch of 
molecular segments [24]. At every wall stress σw , the shear time ts is adjusted to keep the overall 
displacement of the pistons always at 3 mm. 
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Table 1. Experimental conditions at 165 °C. Pistons displacement = 3 mm (total shear γmax = 220). 
σw [MPa] ts [s] Wall shear rate wallγ&  [s-1] Wall Deborah stretch s

wall s wallDe τ γ= &  

0.19 0.182 1180 135
0.14 0.375 590 68 
0.12 0.500 442 51 
0.10 0.750 295 34 
0.08 1.500 147 17 

 

The formation of (a large amount of) fibrillar FIPs, aligned in the flow direction, is accompanied by 
the onset of an equatorial streak of intensity in the SAXS [4, 25, 26]. The images shown on the right 
side of Figure 1 indicate that the formation of these fibrillar FIPs occurs at stresses larger than 0.12 
MPa.  

 
Figure 1: left) Meridional and equatorial intensities from SAXS at 165 °C after application of shear. 
The lines in the plot of the equatorial intensity represent the Doi-Edwards memory function. right) 

SAXS patterns after cessation of flow for different flow conditions. 
 

A more thorough analysis of the images reveals that precursors are formed at lower stress too, but with 
different properties. To highlight these differences, the experiments of Figure 1 are grouped in two 
categories and discussed hereafter. 
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Stress larger than 0.12 MPa. - For σw≥0.12 MPa, stable fibrillar FIPs are formed. Despite the high 
temperature, these FIPs rapidly crystallize, perhaps already during the shear pulse. In fact, weak 
diffraction peaks are already observed in the first WAXS images after flow (see Fig. 2). The ratio 
between crystalline and amorphous scattering yields a crystallinity 0tX =  approximated with 0.2 % for 
0.19 MPa, 0.1 % for 0.14 MPa and not quantifiable for 0.12 MPa. Since FIPs are aligned oblong 
bundles of stretched molecules, the most efficient method to visualize the diffraction is sampling the 
intensity along the 2θ direction following the azimuthal positions of the maxima, after subtraction of 
the amorphous halo (melt frame), as illustrated in Figure 2a.  

 

 
Figure 2: a) 2θ path for visualizing the structure of fibrils. Azimuthal switches take place at 2θ=13 ° (β 

from -90 to -132 °) and at 2θ=14.1 ° (β from -132 to -130 °); b) Intensity scans on the first image 
acquired after flow. 

 

The result, shown in Figure 2b, indicates that the iPP fibrils are already partially crystalline with a well 
developed α crystal structure for a stress of 0.19 MPa. Intensities are taken from the first image 
acquired after flow. At lower stress, diffraction peaks are less intense (but still clear for a stress of 0.14 
MPa suggesting a lower crystallinity and possibly a less perfect structure. WAXS shows that, with 
time, FIPs crystallize and the intensity of the SAXS equatorial streak increases as shown in the top-left 
panel of Figure 1.  
The SAXS images provide the average dimensions of the fibrils for varying σw. The Guinier’s plot of 
the cross section [27], reveals that the average fibril diameter is D=26 nm. Length and orientation are 
determined from the equatorial streak using the deconvolution method proposed by Ruland [28-30]. 
The azimuthal width of the streak contains contributions from length and orientation of the fibrils 
(besides a negligible contribution from the beam size). With the assumption that both distributions 
have a Lorentzian profile, the individual contributions are separated using the Warren-Averbach 
theorem [31]: 

 1
obs orB B

L s
= +

⋅
 (1.1) 

where Bobs is the observed azimuthal width, L and Bor are, respectively, the average fibril length and 
orientation and 2 / sins λ θ= ⋅  is the modulus of the scattering vector (with 2θ being the scattering 
angle). To reduce the influence of noise, L and Bor are evaluated from an ‘artificial’ image obtained by 
summing up the first 20 images of the experiment, i.e. with an effective exposure time of 60 s and 
negligible noise. One of the corresponding Ruland’s plot is shown in Figure 3.  
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Figure 3: Ruland’s plot used to determine the length of fibrils from the width of the equatorial streak 

in SAXS. The line represents the fit with Eq. (1.1). 

 
The results for σw>0.12 MPa, given in Table 2, show that, despite the lower shear time, higher stresses 
generate longer fibrils. With these data at hand, the aspect ratio (L/D) of stable fibrils is 11.3 for 0.19 
MPa and 9.3 for 0.14 MPa.  

Table 2 Details on size and initial crystallinity of fibrils.  
 0.19 MPa / 0.182 s 0.14 MPa / 0.375 s 
L [nm] 293 242 
Bor [rad] 0.028 0.024 
L/D 11.3 9.3 
Xt=0 [%] 0.2 0.1 
 
Flow deforms molecules transforming coils into fibrils. The maximum deformation rate can be 
estimated as max 2flow gL Rγ= ⋅& & , where Rg=4.1 nm 1 is the radius of gyration. On the other hand, the 
minimum rate of transformation can be estimated from the experiments with the longitudinal growth 
rate of the fibrils expressed as min /flow sL L t=& , i.e. as the ratio between the length of the fibrils and the 

shear time. The values obtained for min
flowL&  are comparable with the highest growth rate in quiescent 

conditions [32] and are just about 1/10 of max
flowL& (see Table 3). 

Table 3 Maximum and minimum longitudinal growth rate of the fibrils.  
 0.19 MPa / 0.182 s 0.14 MPa / 0.375 s 

min
flowL&  [nm/s] 1.6·103 0.6·103 

max
flowL&  [nm/s] 9.7·103 4.8·103 

                                                      
1 / 6g mon monR N L= ⋅ , where the number of monomers / 42mon nN M=  and the length of a monomer 

2 1.54 (109.5 / 2)monL Sin= ⋅ ⋅  Å. 
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Stress smaller than 0.12 MPa. - When σw<0.12 MPa, no diffraction peak is observed in WAXS 
immediately after shear and FIPs are not stable. They have a limited lifetime and dissolve back in to 
the melt, decreasing the SAXS equatorial intensity. The poor stability of FIPs is attributed to their 
short length.  With the ends of the fibrils too close to each other, these precursors have a high 
concentration of defects that triggers the dissolution. The short length of FIPs is confirmed by 
scattered intensity that, though higher than the melt, does not vary in the azimuth, also at low 
scattering angles. This indicates that the aspect ratio of FIPs tends to unity, i.e. their length approaches 
their diameter that is 26 nm or lower. Despite the dissolution starts at different times (33 s for 0.08 and 
45 s for 0.10 MPa), the time constant of the process is the same (i.e. ~21 s) and matches the 
disengagement time of the high molecular weight tail τD. This suggests that dissolution of small FIPs 
is determined by reptation of the longest molecules of the melt. This hypothesis is strengthened by the 
good description that the Doi-Edwards memory function [4, 33]  

 2 0
2 2

8 1( ) exp
podd D

t tt p
p

μ
π τ

⎛ ⎞−
= ⋅ −⎜ ⎟

⎝ ⎠
∑  (1.2) 

with τD=21 s represents the drop of the equatorial intensity rather well (lines in the equatorial intensity 
plot of Figure 1). Such a scenario is consistent with short precursors based on a scaffold of the longest 
molecules. These molecules extended by the flow diffuse out of FIPs with reptative motions.  

5.  Conclusions 
In the early stages of the formation of shishes, metastable fibrillar bundles of stretched molecules 
(flow induced precursors of crystallization, FIPs) exhibit a size- and, therefore, stress-dependent 
dynamics. In iPP, at high stress, FIPs can reach a length close to 300 nm and are stabilized by 
crystallization immediately after flow. At low stress, FIPs are much shorter and their aspect ratio tends 
to unity. The lack of crystallinity immediately after flow makes these structures prone to dissolution. 
Interestingly, the dissolution time-scale matches the relaxation time of the longest molecules of the 
melt suggesting that the scaffold of small FIPs is based on high molecular weight molecules and the 
dissolution mechanism involves their reptation. 
 

This work is part of the Research Programme of the Dutch Polymer Institute (DPI), P.O. Box 902, 
5600 AX Eindhoven, The Netherlands, projectnrs. #634 and #714.  
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