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Abstract

Let R be a local ring of prime characteristic. We study the ring of Frobenius operat-
ors F(E), where E is the injective hull of the residue field of R. In particular, we ex-
amine the finite generation of F(E) over its degree zero component F(E), and show
that F(E) need not be finitely generated when R is a determinantal ring; nonetheless,
we obtain concrete descriptions of F(E) in good generality that we use, for example,
to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal
rings.

1. Introduction

Lyubeznik and Smith [LS] initiated the systematic study of rings of Frobenius oper-
ators and their applications to tight closure theory. Our focus here is on the Frobenius
operators on the injective hull of R/m, when (R, m) is a complete local ring of prime
characteristic.

T Supported by EPSRC grant EP/1031405/1.
% Supported by NSF grant DMS 1064485 and a Sloan Fellowship.
§ Supported by NSF grant DMS 1162585.
|| Supported by NSF grant DMS 1247354.
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Definition 1-1. Let R be a ring of prime characteristic p, with Frobenius endomorph-
ism F. Following [LS, section 3], we set R{F°} to be the ring extension of R obtained by
adjoining a noncommutative variable x subject to the relations xr = r”" x forall r € R.

Let M be an R-module. Extending the R-module structure on M to an R{F¢}-module
structure is equivalent to specifying an additive map ¢: M — M that satisfies

o(rm) = r” ¢(m), foreachr € Randm € M.

Define (M) to be the set of all such maps ¢ arising from R{F“}-module structures on M;
this is an Abelian group with a left R-module structure, where r € R acts on ¢ € F°(M) to
give the composition r o ¢. Given elements ¢ € F¢(M) and ¢’ € F¢ (M), the compositions
@ o ¢ and ¢’ o ¢ are elements of the module F¢*¢ (M). Thus,

FM)=F'M)eF' (M) SF M@ -
has a ring structure; this is the ring of Frobenius operators on M.

Note that F(M) is an N-graded ring; it is typically not commutative. The degree 0 com-
ponent (M) = Endz (M) is a subring, with a natural R-algebra structure. Lyubeznik and
Smith [LS, section 3] ask whether F (M) is a finitely generated ring extension of F(M).
From the point of view of tight closure theory, the main cases of interest are where (R, m)
is a complete local ring, and the module M is the local cohomology module HI™R(R)
or the injective hull of the residue field, Ex(R/m), abbreviated E in the following discus-
sion. In the former case, the algebra F (M) is finitely generated under mild hypotheses, see
Example 1-2.2; an investigation of the latter case is our main focus here.

It follows from Example 1-2.2 that for a Gorenstein complete local ring (R, m), the
ring F(E) is a finitely generated extension of F°(E) = R. This need not be true when R
is not Gorenstein: Katzman [Ka] constructed the first such examples. In Section 3 we study
the finite generation of F (E), and provide descriptions of F (E) even when it is not finitely
generated: this is in terms of a graded subgroup of the anticanonical cover of R, with a
Frobenius-twisted multiplication structure, see Theorem 3-3.

Section 4 studies the case of Q-Gorenstein rings. We show that 7 (E) is finitely generated
(though not necessarily principally generated) if R is Q-Gorenstein with index relatively
prime to the characteristic, Proposition 4-1; the dual statement for the Cartier algebra was
previously obtained by Schwede in [Se, remark 4-5]. We also construct a Q-Gorenstein ring
for which the ring F(E) is not finitely generated over F°(E); in fact, we conjecture that this
is always the case for a Q-Gorenstein ring whose index is a multiple of the characteristic,
see Conjecture 4-2.

In Section 5 we show that F(E) need not be finitely generated for determinantal rings,
specifically for the ring F[X]/I, where X is a 2 x 3 matrix of variables, and [ is the ideal
generated by its size 2 minors; this proves a conjecture of Katzman, [Ka, conjecture 3-1].
The relevant calculations also extend a result of Fedder, [Fe, proposition 4-7].

One of the applications of our study of F (E) is the discreteness of F'-jumping numbers; in
Section 6 we use the description of F(E), combined with the notion of gauge boundedness,
due to Blickle [BI2], to obtain positive results on the discreteness of F-jumping numbers for
new classes of rings including determinantal rings, see Theorem 6-4. In the last section, we
obtain results on the linear growth of Castelnuovo-Mumford regularity for rings with finite
Frobenius representation type; this is also with an eye towards the discreteness of F-jumping
numbers.
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To set the stage, we summarize some previous results on the rings F(M).

Example 1-2. Let R be a ring of prime characteristic.

(1) For each e > 0, the left R-module F°(R) is free of rank one, spanned by F¢; this
is [LLS, example 3-6]. Hence, F(R) =~ R{F}.

(2) Let (R, m) be a local ring of dimension d. The Frobenius endomorphism F of R
induces, by functoriality, an additive map

F: H(R) — HY(R),

which is the natural Frobenius action on HZ(R). If the ring R is complete and S,,
then F* (Hr‘f1 (R)) is a free left R-module of rank one, spanned by F*; for a proof of
this, see [LS, example 3-7]. It follows that

F(HL(R)) = R{F}.

In particular, F(HZ (R)) is a finitely generated ring extension of F°(HZ (R)).

(3) Consider the local ring R = F[[x, y, z]]/(xy, yz) where F is a field, and set E to be
the injective hull of the residue field of R. Katzman [Ka] proved that 7 (FE) is not a
finitely generated ring extension of F(E).

(4) Let (R, m) be the completion of a Stanley—Reisner ring at its homogeneous maximal
ideal, and let E be the injective hull of R/m. In [ABZ] Alvarez, Boix and Zarzuela
obtain necessary and sufficient conditions for the finite generation of F(E). Their
work yields, in particular, Cohen—Macaulay examples where F(E) is not finitely
generated over F°(E). By [ABZ, theorem 3-5], F(E) is either 1-generated or infin-
itely generated as a ring extension of F(E) in the Stanley—Reisner case.

Remark 1-3. Let R denote the R-bimodule that agrees with R as a left R-module, and
where the right module structure is given by

x-r=r"x, forallr € Randx € R“.
For each R-module M, one then has a natural isomorphism
F°(M) = Homg (R @z M, M)

where ¢ € F¢(M) corresponds to x ® m + x@(m) and ¥ € Homgz(R® ®z M, M)
corresponds to m — (1 ® m); see [LS, remark 3-2].

Remark 1-4. Let R be a Noetherian ring of prime characteristic. If M is a Noetherian
R-module, or if R is complete local and M is an Artinian R-module, then each graded
component F¢(M) of F(M) is a finitely generated left R-module, and hence also a finitely
generated left 7°(M)-module; this is [LS, proposition 3-3].

Remark 1-5. Let R be a complete local ring of prime characteristic p; set E to be the
injective hull of the residue field of R. Let A be a complete regular local ring with R = A/I.
By [BI1, proposition 3-36], one then has an isomorphism of R-modules
Jel Al

JTE(E) = Jpe]

2. Twisted multiplication

Let R be a complete local ring of prime characteristic; let £ denote the injective hull of
the residue field of R. In Theorem 3-3 we prove that F (E) is isomorphic to a subgroup of the
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anticanonical cover of R, with a twisted multiplication structure; in this section, we describe

this twisted construction in broad generality:

Definition 2-1. Given an N-graded commutative ring R of prime characteristic p, we
define a new ring 7 (R) as follows: Consider the Abelian group

T(R) =P Ry
e=0
and define a multiplication % on 7 (R) by
axb=ab”, foraeT(R), and b e T(R),.

It is a straightforward verification that s is an associative binary operation; the prime
characteristic assumption is used in verifying that + and % are distributive. Moreover, for
elements a € 7(R), and b € 7 (R), one has

p¢ , — /
ab € Rp”*ler”(p" -n = Rpew —1

and hence
T(R)e X T(R)e/ g T(R)e+e’-
Thus, 7 (R) is an N-graded ring; we abbreviate its degree ¢ component 7 (R), as 7Z,. The

ring 7 (R) is typically not commutative, and need not be a finitely generated extension ring
of 7y even when R is Noetherian:

Example 2-2. We examine 7 (R) when R is a standard graded polynomial ring over a
field F. We show that 7 (R) is a finitely generated ring extension of 7y = F if dimR < 2,
and that 7 (R) is not finitely generated if dim R > 3.

(1) If R is a polynomial ring of dimension 1, then 7 (R) is commutative and finitely
generated over F: take R = [F[x], in which case 7, = F - x”"~! and

e o ete _ ¢ e_
xP s xP T = xp D= xP =l xP 1,

Thus, 7 (R) is a polynomial ring in one variable.
(2) When R is a polynomial ring of dimension 2, we verify that 7 (R) is a noncommut-
ative finitely generated ring extension of [F. Let R = F[x, y]. Then

2Pyl = x”_lypz_" whereas y? ! x xP7! = x”z_”y”_l,
so 7 (R) is not commutative. For finite generation, it suffices to show that
Toy1 =T, %71, foreache > 1.
Set g = p¢ and consider the elements
Xy eT, 0<i<p—-1 and ¥y eT, 0<j<qg-1.
Then 7; % 7, contains the elements
(xiyp—l—i) x (xqu—l—j) — xi+pjypq—pj—i—l,

for0 <i < p—1and0 < j < g — 1, and these are readily seen to span 7., ;. Hence,
the degree p — 1 monomials in x and y generate 7 (R) as a ring extension of IF.
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(3) For a polynomial ring R of dimension 3 or higher, the ring 7 (R) is noncommutative
and not finitely generated over F. The noncommutativity is immediate from (2); we
give an argument that 7 (R) is not finitely generated for R = F[x, y, z], and this
carries over to polynomial rings R of higher dimension.

Set g = p° where e > 2. We claim that the element

xyq/pflzqfq/pfl e T,

does not belong to 7,, % 7,, for integers ¢; < e with e; 4+ e, = e. Indeed, 7,, % 7, is
spanned by the monomials

i o —i—j—=1Y < (+ky ! q2—k—1—1 i+q1k y,j+aqil q—i—j—qik—qil—1
(xly.lqu i—j )%(x vz ) = yita y./+q1 97 Tim k=

where g; = p® and

so it suffices to verify that the equations
i+qk=1 and j+ql=q/p—1

have no solution for integers i, j, k, [ in the intervals displayed above. The first of
the equations gives i = 1, which then implies that 0 < j < ¢; — 2. Since ¢,
divides g/ p, the second equation gives j = —1 mod g;. But this has no solution
with0 < j < g —2.

3. The ring structure of F(E)

We describe the ring of Frobenius operators F(E) in terms of the symbolic Rees al-
gebra R and the twisted multiplication structure 7 (R) of the previous section. First, a nota-
tional point: w”! below denotes the iterated Frobenius power of an ideal w, and ™ its
symbolic power, which coincides with reflexive power for divisorial ideals w. We realize
that the notation w!™ is sometimes used for the reflexive power, hence this note of caution.
We start with the following observation:

LEMMA 3-1. Let (R, m) be a normal local ring of characteristic p > 0. Let w be a
divisorial ideal of R, i.e., an ideal of pure height one. Then for each integer e > 1, the map

dimR (, [pF] dimR (, (p°)
Hy™ (@) — Hy™ (o)
induced by the inclusion w'?! C 0P, is an isomorphism.

Proof. Setd = dim R. Since R is normal and w has pure height one, wR,, is principal for
each prime ideal p of height one; hence () /w!P1)R, = 0. It follows that

dim (0 /0!") < d -2,
which gives the vanishing of the outer terms of the exact sequence
Hui_l (w(p")/w[p"]) N H;‘: (w[p"]) N ng (w(p")) N H;‘: (a)(pf)/w[p"])’

and thus the desired isomorphism.
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Definition 3-2. Let R be a normal ring that is either complete local, or N-graded and
finitely generated over Ry. Let @ denote the canonical module of R. The symbolic Rees

algebra
R= ot

n=0
is the anticanonical cover of R; it has a natural N-grading where R,, = o).

THEOREM 3-3. Let (R, m) be a normal complete local ring of characteristic p > 0. Set
d to be the dimension of R. Let w denote the canonical module of R, and identify E, the
injective hull of the R /m, with H% ().

(1) Then F(E), the ring of Frobenius operators on E, may be identified with

Dot F
e>0

where F¢ denotes the map H® () — HZ(w'P?) induced by » — P\,
(2) Let R be the anticanonical cover of R. Then one has an isomorphism of graded rings

F(E) =2 T(R),
where T (R) is as in Definition 2-1.
Proof. By Remark 1-3, we have
F*(H%(w)) = Homg (R @ Hi(w), Hl(w)).
Moreover,
RY @ Hi(w) = Hi (o) = HE ("),
where the first isomorphism of by [ILL, exercise 9-7], and the second by Lemma 3-1. By
similar arguments
Homg (Hi(w(”()), Hi(w)) ~ Hompg (Hs'1 (a) Qr w(”(_l)), Hi(w))

= Hompg (07" @ Ha (@), Hi(w))

= Homg (07" ™", Homg (HZ(0), Ha(w))),
with the last isomorphism using the adjointness of Hom and tensor. Since R is complete, the
module above is isomorphic to

Homy (0", R) = o7,

Suppose ¢ € F¢(M) and ¢' € F¢(M) correspond respectively to a F¢ and a'F¢', for
elements a € w7 and @’ € w' 7). Then ¢ o ¢’ corresponds to a F¢ o bF¢ = ab? F¢*+¢,
which agrees with the ring structure of 7 (R) since a % b = ab”".

Remark 3-4. Let R be a normal complete local ring of prime characteristic p; let A be a
complete regular local ring with R = A/I. Using Remark 1-5 and Theorem 3-3, it is now a
straightforward verification that 7 (E) is isomorphic, as a graded ring, to

D 1w,
LV
e>0

where the multiplication on this latter ring is the twisted multiplication . An example of
the isomorphism is worked out in Proposition 5-1.
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4. Q-Gorenstein rings

We analyze the finite generation of F(E) when R is Q-Gorenstein. The following result
follows from the corresponding statement for Cartier algebras, [Sc, remark 4-5], but we
include it here for the sake of completeness:

PROPOSITION 4-1. Let (R, m) be a normal Q-Gorenstein local ring of prime character-
istic. Let w denote the canonical module of R. If the order of w is relatively prime to the
characteristic of R, then F(E) is a finitely generated ring extension of F°(E).

Proof. Since F°(E) is isomorphic to the m-adic completion of R, the proposition reduces
to the case where the ring R is assumed to be complete.

Let m be the order of w, and p the characteristic of R. Then p mod m is an element of
the group (Z/m7Z)*, and hence there exists an integer ¢y with p® = 1 mod m. We claim
that F(E) is generated over F°(E) by [F(E)]<e,-

We use the identification F(E) = 7 (R) from Theorem 3-3. Since »™ is a cyclic module,
one has

"M = ™ *m - for all integers k, n.
Thus, for each e > ¢, one has
. 1—pe=0) o, (1—p
7;_60*7;0:60( L )
e—ey € €0
— PO, (w<1—p0>)[ﬂ ]
— QUP ) | (P OA=p0)
— =P O pY)
w17

=17,

which proves the claim.

We conjecture that Proposition 4-1 has a converse in the following sense:

Conjecture 4-2. Let (R, m) be a normal (Q-Gorenstein ring of prime characteristic, such
that the order of the canonical module in the divisor class group is a multiple of the charac-
teristic of R. Then F(E) is not a finitely generated ring extension of F°(E).

Veronese subrings. Let F be a field of characteristic p > 0, and A = F[xy,...,x,] a
polynomial ring. Given a positive integer n, we denote the n-th Veronese subring of A by

A(n) = @ Ank X
>0

this differs from the standard notation, e.g., [GW], since we reserve superscripts ()™
for symbolic powers. The cyclic module x; - - - x;A is the graded canonical module for the
polynomial ring A. By [GW, corollary 3-1-3], the Veronese submodule

(.X] o 'di)(n) = @ [xl o .di]nk

k>0



158 MORDECHAI KATZMAN ET AL

is the graded canonical module for the subring A ,,. Let m denote the homogeneous maximal
ideal of A(,. The injective hull of A,,/m in the category of graded A, -modules is

H,‘i((xl .. .di)(n)) = [Hr‘i(xl . -di)](n)

_[ Ay, ]
Zi X1 'dixl.“;,..“xd o)

see [GW, theorem 3-1-1]. By [GW, theorem 1-2-5], this is also the injective hull in the
category of all A,)-modules.

Let R be the m-adic completion of A,. As it is m-torsion, the module displayed above is
also an R-module; it is the injective hull of R/mR in the category of R-modules.

PROPOSITION 4-3. Let IF be a field of characteristic p > 0, and let A = F[xy, ..., x4]
be a polynomial ring of dimension d. Let n be a positive integer, and R be the completion of
the n-th Veronese subring of A at its homogeneous maximal ideal. Set E = M /N where

M =Ry

and N is the R-submodule spanned by elements xi' . ~x,';’ € M with iy > 1 for some k; the
module E is the injective hull of the residue field of R.
Then F¢(E) is the left R-module generated by the elements

1
a] ) ad ’
X1 Xq

where F is the pth power map, oy < p¢ — 1 for each k, and )_ o, = 0 mod n.

Remark 4-4. We use F for the Frobenius endomorphism of the ring M. The condition

%)

> = 0 mod n, or equivalently x{" - - - xj* € M, implies that
1
—— = F° € F*(M).
xl .. .xd

When o, < p® — 1 for each k, the map displayed above stabilizes N and thus induces an
element of 7¢(M/N); we reuse F for the pth power map on M/N.

Proof of Proposition 4-3 In view of the above remark, it remains to establish that the
given elements are indeed generators for F¢(E). The canonical module of R is

WR = (xl o 'di)(n)R
and, indeed, H? (wg) = E. Thus, Theorem 3-3 implies that
Jr:'e(E) — wg—q)Fe’

where g = p°. But a)g_‘” is the completion of the A, -module

[%A} = (ﬁ | o < g — 1foreachk, Zak = 0 mod n) Ay,
x;f ...x;l - Xy Xy
which completes the proof.
Example 4-5. Consider d = 2 and n = 3 in Proposition 4-3, i.e.,
R =TF[[x*, &%y, xy*, y*Il.
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Then w = (x%y, xy?) R has order 3 in the divisor class group of R; indeed,
o?® = (x*y? %y *yHR and 0 = (xPyHR.
(1) If p = 1 mod 3, then w'~% = (xy)'7¥R is cyclic for each ¢ = p¢ and
1
F(E)=———F°.
) (xy)e!
Since

1 1 1
F o e _ FE+1
(xy)r~! (xy)e! (xy)ra!

’

it follows that

1
F(E)=R { e F} .

(2) If p =2 mod 3 and g = p*, then w'=® = (xy)!~¥R for e even and

1 1 1
o™ — , , R
xq—3yq—1 xq—qu—Z xq—lyq—?a

for e odd. The proof of Proposition 4-1 shows that F(E) is generated by its elements
of degree < 2 and hence

1 1 1 1 ,
F(E) = R{xp_Syp_lF, oyt Ty b e }
In the case p = 2, the above reads
1
FE)Y=R{ZF F, 2F, —F?
y x o xdy?

(3) When p = 3, one has

for each ¢ = p°. In this case,

1 1 ) 1 ) 1 3 1 3
F(E)=R 02 Xy ’x7y8F’ x8y7F’ xzsyzeF’ x26y25F’ RN

and F(E) is not a finitely generated extension ring of F'(E) = R; indeed,

! (x%y, xy)R x
xIIyq V> Y i xq/yq,
! 2 2 29,9 14+,29
- x494'+aya4'+q 7y, xy7) - (Y, XyTOR

017 % 171 = (x%y, xy)R

1
= ey (x4%2y, x4ty2 2yt eyt R

1
- x99 ya4’ (?y, xy?) - (27, y)R

= (x4, y%) w1—49)

forg = p¢ and ¢’ = p°, where e and ¢’ are positive integers.
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5. A determinantal ring

Let R be the determinantal ring F[X]//, where X is a 2 x 3 matrix of variables over a
field of characteristic p > 0, and [ is the ideal generated by the size 2 minors of X. Set m to
be the homogeneous maximal ideal of R. We show that the algebra of Frobenius operators
F(E) is not finitely generated over F°(E) = ﬁ this proves [Ka, conjecture 3- 1] We also
extend Fedder’s calculation of the ideals I'7! : I to the ideals 19! : [ for all g =

The ring R is isomorphic to the affine semigroup ring

SX, Sy, Sz,
]F - IF 7t7 s ) .
|:tx, ty, tz] C Fls,1,x,y,2]

Using this identification, R is the Segre product A#B of the polynomial rings A = F[s, t]
and B = F[x,y, z]. By [GW, theorem 4-3-1], the canonical module of R is the Segre
product of the graded canonical modules st A and xyz B of the respective polynomial rings,
ie.,

wg = stA #xyzB = (s*txyz, st’xyz)R.
Let e be a nonnegative integer, and ¢ = p¢. Then

- 1 1
R = A#
(spye=t (xyz)!

is the R module spanned by the elements

1
(St)q—lxkylzm

withk+14+m=2g —2andk,l,m < g — 1.
View E as M /N where M = Ry, and N is the R-submodule spanned by the elements
s't/x*y'z™ in M that have at least one positive exponent. Then F*¢(E) is the left R-module

generated by

1
(st)q—lxkylzm

e
’

where F is the pth power map, k+[+m = 2q —2,and k, [, m < g — 1. Using this descrip-
tion, it is an elementary—though somewhat tedious—verification that F(E) is not finitely
generated over F 0(E ); alternatively, note that the symbolic powers of the height one prime
ideals (sx, sy, sz)R and (sx, tx)R agree with the ordinary powers by [BV, corollary 7-10].
Thus, the anticanonical cover of R is the ring R with

= ——(sx,5Y,8 "R
(sztxyz)”( y:52)
and so

1

= G e R
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Thus,
1, 1T, = ——(sx,5Yy,52 Ol - X, Sy, 52 a1
1 e (SztxyZ)ql—l( y ) (sztxyz)‘h—l( y )
1
= W(sx, 5y, 5277 ((sx, sy, sZ)qz—l)l‘]l]
1

= iyt Xy s (0 () )"

where g; = p®. We claim that

e—1
T+ YT % T,

e1=1

For this, it suffices to show that

st(sy)‘ﬁp—l (Sz)q_‘I/I’—l

does not belong to 7,, % 7., for integers ¢; < e with ¢; + e, = e. By the description of
T,, % 1,, above, this is tantamount to proving that

sx(sy)?P N (s2) 7P & (sx, sy, 527 ((sx)?, (sy), (Sz)ql)‘h*l’

but this is essentially Example 2-2-3.

Fedder’s computation. Let A be the power series ring F[[u, v, w, x, y, z]] for I a field of
characteristic p > 0, and let I be the ideal generated by the size 2 minors of the matrix

u vow
x y z)’
In [Fe, proposition 4-7], Fedder shows that
. = 22 + Pl
We extend this next by calculating the ideals /') : I for each prime power ¢ = p*.

PROPOSITION 5-1. Let A be the power series ring F[[u, v, w, x, y, z]] where K a field
of characteristic p > 0. Let I be the ideal of A generated by A| = vz —wy, Ay = wx —uz,
and A; = uy — vx.

(1) For g = p° and nonnegative integers s, t with s +t < g — 1, one has

V2 (A AT e T 4 x5 AL
(2) Forgq,s,t as above, let f;; be an element of A with
Y7 (A AT = X f,, mod 19,
Then f,, is well-defined modulo 1'9. Moreover, f,, € 1" :, I, and
19y I =14 (fi, | s+1<q—1)A.

For ¢ = p, the above recovers Fedder’s computation that /71 : [ = [?P=2 4 [P} though
for g > p, the ideal 17! : [ is strictly bigger than 127=2 4 [P,
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Proof. (1) Note that the element

V2 (A AT = 37 (wx — uz)? (uy — vx)?!

belongs to the ideals

(e w7 < 7wty (T, ud)
and also to

Y, )T e, T Syt 2T,y © (T 2, p).

Hence,

Y (AN e (T, wh)A N (2T, 29, y1)A
= (x**, u?z9, u?y?)A
c (X, Al AL ATA.

(2) The ideals I and I'! have the same associated primes, [ILL*, corollary 21-11]. As /
is prime, it is the only prime associated to /'9!. Hence x**' is a nonzerodivisor modulo 714!,
and it follows that f;, mod 79! is well-defined.

We next claim that

J24-1 c Jlal

By the earlier observation on associated primes, it suffices to verify this in the local ring R;.
But R, is a regular local ring of dimension 2, so I R; is generated by two elements, and the
claim follows from the pigeonhole principle. The claim implies that

xs-&-tfml c [[q]’

and using, again, that x**' is a nonzerodivisor modulo 719!, we see that f;,I C I'9, in other
words, that f;, € I'9 :, I as desired.

By Theorem 3-3 and Remark 3-4, one has the R-module isomorphisms

- 1924 1
op = FUE) =

Choosing a)ﬁ{l) = (x, y, )R, we claim that the map

Jl4l i

q—1
x, 9,97 R — Tiai

—l—s—t 5t
x4 ¥ e fu

is an isomorphism. Since the modules in question are reflexive R-modules of rank one, it
suffices to verify that the map is an isomorphism in codimension 1. Upon inverting x, the
above map induces

194, 1, TA,
[[qle
X7 (AA)TT!

R, —

which is readily seen to be an isomorphism since /A, = (A,, A3)A,.
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6. Cartier algebras and gauge boundedness

For a ring R of prime characteristic p > 0, one can interpret 7¢(E) in a dual way as a
collection of p~¢-linear operators on R. This point of view was studied by Blickle [BI2] and
Schwede [Sc].

Definition 6-1. Let R be a ring of prime characteristic p > 0. For each e > 0, set CX to
be set of additive maps ¢: R — R satisfying

P x) =re(x), forr,x eR.

The total Cartier algebra is the direct sum

ct=pek.

e>0

For ¢ € CF and ¢' € C§, the compositions ¢ o ¢’ and ¢’ o ¢ are elements of CX, . This
gives C® the structure of an N-graded ring; it is typically not a commutative ring. As pointed
out in [ABZ, 2-2-1], if (R, m) is an F-finite complete local ring, then the ring of Frobenius
operators F(E) is isomorphic to CX.

Each C® has a left and a right R-module structure: for ¢ € CX and r € R, we define r - ¢
to be the map x — re(x), and ¢ - r to be the map x — ¢(rx).

Definition 6-2. Blickle [BI2] introduced a notion of boundedness for Cartier algebras:
Let R = A/I for a polynomial ring A = F[xy, ..., x;] over an F-finite field F. Set R, to be
the finite dimensional [F-vector subspace of R spanned by the images of the monomials

I
xiteeexjt, for 0 < A < .

Following [An] and [BI2], we defineamap §: R — Z by é(r) =nifr € R, \ R,_;; the
map § is a gauge. If I = 0, then §(r) < deg(r) for each r € R. We recall some properties
from [An, proposition 1] and [BI2, lemma 4-2]:

§(r+7') < max{8(r), §(r)},
S(r-r) < 8(r)+8@").
The ring C® is gauge bounded if there exists a constant K, and elements ¢, ; in C¥ for
each e > 1 generating C® as a left R-module, such that

)
3(¢e,i(x)) < () + K, foreacheandi.
pe

Remark 6-3. We record two key facts that will be used in our proof of Theorem 6-4:
(1) If there exists a constant C such that /7! ;4 I is generated by elements of degree at

most Cp¢ for each e > 1, then C¥ is gauge bounded; this is [KZ, lemma 2-2].

(2) If C® is gauge bounded, then for each ideal a of R, the F-jumping numbers of
7(R, a") are a subset of the real numbers with no limit points; in particular, they
form a discrete set. This is [BI2, theorem 4-18].

We now prove the main result of the section:

THEOREM 6-4. Let R be a normal N-graded that is finitely generated over an F-finite
field Ry. (The ring R need not be standard graded.)

Suppose that the anticanonical cover of R is finitely generated as an R-algebra. Then C®
is gauge bounded. Hence, for each ideal a of R, the set of F-jumping numbers of T(R, a') is
a subset of the real numbers with no limit points.
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Proof. Let A be a polynomial ring, with a possibly non-standard N-grading, such that
R = A/I. It suffices to obtain a constant C such that the ideals 1'7! :, I are generated by
elements of degree at most Cp° for each e > 1.

There exists a ring isomorphism @, 0" 77 = @, (1" :x 1)/1'7") by Remark 3-4
that respects the eth graded components. After replacing @ by an isomorphic R-module
with a possible graded shift, we may assume that the isomorphism above induces degree
preserving R-module isomorphisms ! =79 =~ (117"1 :, 1)/IP"] for each e > 0. While w is
no longer canonically graded, we still have the finite generation of the anticanonical cover
@B, >0 » ™. It suffices to check that there exists a constant C such that w'~7") is generated,
as an R-module, by elements of degree at most Cp°.

Choose finitely many homogeneous R-algebra generators zy, ..., z; for @@0 @™, say
with z; € =, Set C to be the maximum of deg 7, .. ., deg z;. Then the monomials

=2y gt with Y aji=pt -1
generate the R-module w!' =7, and it is readily seen that
degz* =) hidegz < C ) h <C(p° =1

By [KZ, lemma 2-2], it follows that C® is gauge bounded; the assertion now follows from
[BI2, theorem 4-18].

COROLLARY 6-5. Let R be the determinantal ring F[X]/1, where X is a matrix of in-
determinates over an F-finite field F of prime characteristic, and I is the ideal generated
by the minors of X of an arbitrary but fixed size. Then, for each ideal a of R, the set of
F-jumping numbers of T(R, a') is a subset of the real numbers with no limit points.

Proof. Since R is a determinantal ring, the symbolic powers of the ideal w~" agree with
the ordinary powers by [BV, corollary 7-10]. Hence the anticanonical cover of R is finitely
generated, and the result follows from Theorem 6-4.

Remark 6-6. It would be natural to remove the hypothesis that R is graded in
Theorem 6-4. However, we do not know how to do this: when R is not graded, it is un-
clear if one can choose gauges that are compatible with the ring isomorphism

P = Puv . /v,

e=0 e=0

7. Linear growth of Castelnuovo—Mumford regularity for rings of finite Frobenius
representation type

Let A be a standard graded polynomial ring over a field F, with homogeneous maximal
ideal m. We recall the definition of the Castelnuovo-Mumford regularity of a graded module
following [Ei, chapter 4]:

Definition 7-1. Let M = .o Ma be a graded A-module. If M is Artinian, we set
reg M = max{d | My # 0} ;
for an arbitrary graded module we define

regM = rlzlgéc{reg H:;(M) + k}.
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Definition 7-2. Let I and J be homogeneous ideals of A. We say that the regularity
of A/(I + J'P*) has linear growth with respect to p, if there is a constant C, such that

reg A/(I + J¥7) < Cp°, foreache > 0.

It follows from [KZ, corollary 2-4] that if reg A/(I + J!P'1) has linear growth for each
homogeneous ideal J, then C4/! is gauge-bounded.

Remark 7-3. Let R = A/I for ahomogeneous ideal /. We define a grading on the bimod-
ule R introduced in Remark 1-3: when an element r of R is viewed as an element of R,
we denote it by . For a homogeneous element r € R, we set

1
deg r'@ = — degr.
p€
For each ideal J of R, one has an isomorphism

R© ®g R/J ——> R/JW¥]

under which 7® ® 5 +— rs?°. To make this isomorphism degree-preserving for a homogen-
eous ideal J, we define a grading on R/JP"! as follows:

1
deg'r = — degr, for a homogeneous element r of R.
pe

The notion of finite Frobenius representation type was introduced by Smith and Van den
Bergh [SV]; we recall the definition in the graded context:

Definition 7-4. Let R be an N-graded Noetherian ring of prime characteristic p. Then R
has finite graded Frobenius-representation type by finitely generated (Q-graded R-modules
M,, ..., My,if for every e € N, the Q-graded R-module R is isomorphic to a finite direct
sum of the modules M; with possible graded shifts, i.e., if there exist rational numbers ol

L] ’
such that there exists a Q-graded isomorphism
RO = @M (o).
iJj

Remark 7-5. Suppose R has finite graded Frobenius-representation type. With the nota-
tion as above, there exists a constant C such that

O‘i(;) <C, foralle,i,j;

see the proof of [TT, theorem 2-9].

We now prove the main result of this section; compare with [TT, theorem 4-8].

THEOREM 7-6. Let A be a standard graded polynomial ring over an F-finite field of
characteristic p > 0. Let I be a homogeneous ideal of A.

Suppose R = A/I has finite graded F-representation type. Then reg A/(I + J'P'1) has
linear growth for each homogeneous ideal J. In particular, C¥ is gauge bounded, and for
each ideal a of R, the set of F-jumping numbers of (R, a') is a subset of the real numbers
with no limit points.

Proof. We use J for the ideal of A, and also for its image in R. Let a’(HX (R/JP))
denote the largest degree of a nonzero element of HX (R/J!7'1) under the deg'-grading, i.c.,

d' (Hy(R/JPY)) = ﬁreg Hy (R/J™PY).
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Since we have degree-preserving isomorphisms R ® R/J =~ R/J”"!, and
R© ~ @ M (6) 7

it follows that
HE(R/JPYY = HE(RY ®p R/J)
~ @H" ) ®r R/J)
@H"(M /I M) ().

iJj

lle

The numbers ozi(_f) are bounded by Remark 7-5; thus,
d (HE(R/JPT)) < max {d' (HE(M; )T M) + C).

Since there are only finitely many modules M; and finitely many homological indices k, it
follows that a/(Hf;(R /JP 1)) < C’, where C’ is a constant independent of e and k. Hence

reg HX (R/J'y < C'p¢, foralle,k,

and so
regA/(1 4+ J7P) = max {reg Hy (R/J") + k} < C'p + dim A.

This proves that reg A/J 7] has linear growth; [KZ, corollary 2-4] implies that C¥ is gauge
bounded, and the discreetness assertion follows from [BI2, theorem 4-18].
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