2014

Rings of Frobenius operators

Mordechai Katzman
University of Sheffield, M.Katzman@sheffield.ac.uk

Karl Schwede
The Pennsylvania State University, schwede@math.psu.edu

Anurag K. Singh
University of Utah, singh@math.utah.edu

Wenliang Zhang
University of Nebraska, Lincoln, wzhang15@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub
Rings of Frobenius operators

MORDECHAI KATZMAN, KARL SCHWEDE, ANURAG K. SINGH and WENLIANG ZHANG

DOI: 10.1017/S0305004114000176, Published online: 24 April 2014

Link to this article: http://journals.cambridge.org/abstract_S0305004114000176

How to cite this article:

Request Permissions : Click here
Rings of Frobenius operators

BY MORDECHAI KATZMAN†

Department of Pure Mathematics, University of Sheffield, Hicks Building,
Sheffield, S3 7RH.
e-mail: M.Katzman@sheffield.ac.uk

KARL SCHWEDE‡

Department of Mathematics, The Pennsylvania State University, University Park,
PA 16802, U.S.A.
e-mail: schwede@math.psu.edu

ANURAG K. SINGH§

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City,
UT 84112, U.S.A.
e-mail: singh@math.utah.edu

AND WENLIANG ZHANG∥

Department of Mathematics, University of Nebraska, Lincoln, NE 68505, U.S.A.
e-mail: wzhang15@unl.edu

(Received 25 April 2013; revised 6 January 2014)

Abstract

Let R be a local ring of prime characteristic. We study the ring of Frobenius operators $\mathcal{F}(E)$, where E is the injective hull of the residue field of R. In particular, we examine the finite generation of $\mathcal{F}(E)$ over its degree zero component $\mathcal{F}^0(E)$, and show that $\mathcal{F}(E)$ need not be finitely generated when R is a determinantal ring; nonetheless, we obtain concrete descriptions of $\mathcal{F}(E)$ in good generality that we use, for example, to prove the discreteness of F-jumping numbers for arbitrary ideals in determinantal rings.

1. Introduction

Lyubeznik and Smith [LS] initiated the systematic study of rings of Frobenius operators and their applications to tight closure theory. Our focus here is on the Frobenius operators on the injective hull of R/m, when (R, m) is a complete local ring of prime characteristic.

† Supported by EPSRC grant EP/I031405/1.
‡ Supported by NSF grant DMS 1064485 and a Sloan Fellowship.
§ Supported by NSF grant DMS 1162585.
∥ Supported by NSF grant DMS 1247354.
Definition 1.1. Let R be a ring of prime characteristic p, with Frobenius endomorphism F. Following [LS, section 3], we set $R(F^e)$ to be the ring extension of R obtained by adjoining a noncommutative variable χ subject to the relations $\chi r = r^{pe} \chi$ for all $r \in R$.

Let M be an R-module. Extending the R-module structure on M to an $R(F^e)$-module structure is equivalent to specifying an additive map $\varphi : M \to M$ that satisfies

$$\varphi(rm) = r^{pe} \varphi(m), \quad \text{for each } r \in R \text{ and } m \in M.$$

Define $\mathcal{F}^e(M)$ to be the set of all such maps φ arising from $R(F^e)$-module structures on M; this is an Abelian group with a left R-module structure, where $r \in R$ acts on $\varphi \in \mathcal{F}^e(M)$ to give the composition $r \circ \varphi$. Given elements $\varphi \in \mathcal{F}^e(M)$ and $\varphi' \in \mathcal{F}^e(M)$, the compositions $\varphi \circ \varphi'$ and $\varphi' \circ \varphi$ are elements of the module $\mathcal{F}^{e+e'}(M)$. Thus,

$$\mathcal{F}(M) = \mathcal{F}^0(M) \oplus \mathcal{F}^1(M) \oplus \mathcal{F}^2(M) \oplus \cdots$$

has a ring structure; this is the ring of Frobenius operators on M.

Note that $\mathcal{F}(M)$ is an \mathbb{N}-graded ring; it is typically not commutative. The degree 0 component $\mathcal{F}^0(M) = \text{End}_R(M)$ is a subring, with a natural R-algebra structure. Lyubeznik and Smith [LS, section 3] ask whether $\mathcal{F}(M)$ is a finitely generated ring extension of $\mathcal{F}^0(M)$. From the point of view of tight closure theory, the main cases of interest are where (R, m) is a complete local ring, and the module M is the local cohomology module $H^0_m(R)$ or the injective hull of the residue field, $E_R(R/m)$, abbreviated E in the following discussion. In the former case, the algebra $\mathcal{F}(M)$ is finitely generated under mild hypotheses, see Example 1.2.2; an investigation of the latter case is our main focus here.

It follows from Example 1.2.2 that for a Gorenstein complete local ring (R, m), the ring $\mathcal{F}(E)$ is a finitely generated extension of $\mathcal{F}^0(E) \cong R$. This need not be true when R is not Gorenstein: Katzman [Ka] constructed the first such examples. In Section 3 we study the finite generation of $\mathcal{F}(E)$, and provide descriptions of $\mathcal{F}(E)$ even when it is not finitely generated: this is in terms of a graded subgroup of the anticanonical cover of R, with a Frobenius-twisted multiplication structure, see Theorem 3.3.

Section 4 studies the case of \mathbb{Q}-Gorenstein rings. We show that $\mathcal{F}(E)$ is finitely generated (though not necessarily principally generated) if R is \mathbb{Q}-Gorenstein with index relatively prime to the characteristic, Proposition 4.1; the dual statement for the Cartier algebra was previously obtained by Schwede in [Sc, remark 4.5]. We also construct a \mathbb{Q}-Gorenstein ring for which the ring $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^0(E)$; in fact, we conjecture that this is always the case for a \mathbb{Q}-Gorenstein ring whose index is a multiple of the characteristic, see Conjecture 4.2.

In Section 5 we show that $\mathcal{F}(E)$ need not be finitely generated for determinantal rings, specifically for the ring $\mathbb{F}[X]/I$, where X is a 2×3 matrix of variables, and I is the ideal generated by its size 2 minors; this proves a conjecture of Katzman, [Ka, conjecture 3.1]. The relevant calculations also extend a result of Fedder, [Fe, proposition 4.7].

One of the applications of our study of $\mathcal{F}(E)$ is the discreteness of F-jumping numbers; in Section 6 we use the description of $\mathcal{F}(E)$, combined with the notion of gauge boundedness, due to Blickle [Bl12], to obtain positive results on the discreteness of F-jumping numbers for new classes of rings including determinantal rings, see Theorem 6.4. In the last section, we obtain results on the linear growth of Castelnuovo-Mumford regularity for rings with finite Frobenius representation type; this is also with an eye towards the discreteness of F-jumping numbers.
To set the stage, we summarize some previous results on the rings \(\mathcal{F}(M) \).

Example 1.2. Let \(R \) be a ring of prime characteristic.

1. For each \(e \geq 0 \), the left \(R \)-module \(\mathcal{F}^e(R) \) is free of rank one, spanned by \(F^e \); this is [LS, example 3.6]. Hence, \(\mathcal{F}(R) \cong R[F] \).

2. Let \((R, m) \) be a local ring of dimension \(d \). The Frobenius endomorphism \(F \) of \(R \) induces, by functoriality, an additive map

\[
F: H^d_m(R) \longrightarrow H^d_m(R),
\]

which is the natural Frobenius action on \(H^d_m(R) \). If the ring \(R \) is complete and \(S_2 \), then \(\mathcal{F}^e(H^d_m(R)) \) is a free left \(R \)-module of rank one, spanned by \(F^e \); for a proof of this, see [LS, example 3.7]. It follows that

\[
\mathcal{F}(H^d_m(R)) \cong R[F].
\]

In particular, \(\mathcal{F}(H^d_m(R)) \) is a finitely generated ring extension of \(\mathcal{F}^0(H^d_m(R)) \).

3. Consider the local ring \(R = \mathbb{F}[[x, y, z]]/(xy, yz) \) where \(\mathbb{F} \) is a field, and set \(E \) to be the injective hull of the residue field of \(R \). Katzman [Ka] proved that \(\mathcal{F}(E) \) is not a finitely generated ring extension of \(\mathcal{F}^0(E) \). By [ABZ, theorem 3.5], \(\mathcal{F}(E) \) is either 1-generated or infinitely generated as a ring extension of \(\mathcal{F}^0(E) \) in the Stanley–Reisner case.

Remark 1.3. Let \(R^{(e)} \) denote the \(R \)-bimodule that agrees with \(R \) as a left \(R \)-module, and where the right module structure is given by

\[
x \cdot r = r^{\varphi e} x, \quad \text{for all } r \in R \text{ and } x \in R^{(e)}.\]

For each \(R \)-module \(M \), one then has a natural isomorphism

\[
\mathcal{F}^e(M) \cong \text{Hom}_R \left(R^{(e)} \otimes_R M, M \right)
\]

where \(\varphi \in \mathcal{F}^e(M) \) corresponds to \(x \otimes m \mapsto x \varphi(m) \) and \(\psi \in \text{Hom}_R \left(R^{(e)} \otimes_R M, M \right) \) corresponds to \(m \mapsto \psi(1 \otimes m) \); see [LS, remark 3.2].

Remark 1.4. Let \(R \) be a Noetherian ring of prime characteristic. If \(M \) is a Noetherian \(R \)-module, or if \(R \) is complete local and \(M \) is an Artinian \(R \)-module, then each graded component \(\mathcal{F}^e(M) \) of \(\mathcal{F}(M) \) is a finitely generated left \(R \)-module, and hence also a finitely generated left \(\mathcal{F}^0(M) \)-module; this is [LS, proposition 3.3].

Remark 1.5. Let \(R \) be a complete local ring of prime characteristic \(p \); set \(E \) to be the injective hull of the residue field of \(R \). Let \(A \) be a complete regular local ring with \(R = A/I \). By [Bl1, proposition 3.36], one then has an isomorphism of \(R \)-modules

\[
\mathcal{F}^e(E) \cong \frac{I[\varphi^e]:_A I}{I[\varphi^e]}.
\]

2. Twisted multiplication

Let \(R \) be a complete local ring of prime characteristic; let \(E \) denote the injective hull of the residue field of \(R \). In Theorem 3.3 we prove that \(\mathcal{F}(E) \) is isomorphic to a subgroup of the
Thus, the twisted characteristic assumption is used in verifying that + and * are distributive. Moreover, for elements \(a \in T(\mathcal{R})_e \) and \(b \in T(\mathcal{R})_{e'} \) one has

\[
ab p_{e'} \in \mathcal{R}_{p_{e-1}+p_{e'}(p_{e-1})} = \mathcal{R}_{p_{e+e'}-1}
\]

and hence

\[
T(\mathcal{R})_e \star T(\mathcal{R})_{e'} \subseteq T(\mathcal{R})_{e+e'}.
\]

Thus, \(T(\mathcal{R}) \) is an \(\mathbb{N} \)-graded ring; we abbreviate its degree \(e \) component \(T(\mathcal{R})_e \) as \(T_e \). The ring \(T(\mathcal{R}) \) is typically not commutative, and need not be a finitely generated extension ring of \(T_0 \) even when \(R \) is Noetherian:

Example 2.2. We examine \(T(\mathcal{R}) \) when \(R \) is a standard graded polynomial ring over a field \(\mathbb{F} \). We show that \(T(\mathcal{R}) \) is a finitely generated ring extension of \(T_0 = \mathbb{F} \) if \(\text{dim } R \leq 2 \), and that \(T(\mathcal{R}) \) is not finitely generated if \(\text{dim } R \geq 3 \).

1. If \(R \) is a polynomial ring of dimension 1, then \(T(\mathcal{R}) \) is commutative and finitely generated over \(\mathbb{F} \): take \(R = \mathbb{F}[x] \), in which case \(T_e = \mathbb{F} \cdot x^{p_{e-1}} \) and

\[
x^{p_{e-1}} \star x^{p_{e'-1}} = x^{p_{e+e'-1}} = x^{p_{e-1}} \star x^{p_{e'-1}}.
\]

Thus, \(T(\mathcal{R}) \) is a polynomial ring in one variable.

2. When \(R \) is a polynomial ring of dimension 2, we verify that \(T(\mathcal{R}) \) is a noncommutative finitely generated ring extension of \(\mathbb{F} \). Let \(R = \mathbb{F}[x, y] \). Then

\[
x^{p-1} \star y^{p-1} = x^{p-1}y^{p-1-p} \quad \text{whereas} \quad y^{p-1} \star x^{p-1} = x^{p-1}y^{p-1},
\]

so \(T(\mathcal{R}) \) is not commutative. For finite generation, it suffices to show that

\[
T_{e+1} = T_1 \star T_e, \quad \text{for each } e \geq 1.
\]

Set \(q = p^e \) and consider the elements

\[
x^iy^{p-1-i} \in T_i, \quad 0 \leq i \leq p-1 \quad \text{and} \quad x^iy^{q-1-j} \in T_e, \quad 0 \leq j \leq q-1.
\]

Then \(T_1 \star T_e \) contains the elements

\[
(x^iy^{p-1-i}) \star (x^iy^{q-1-j}) = x^{i+p+j}y^{p+q-p-j-i-1},
\]

for \(0 \leq i \leq p-1 \) and \(0 \leq j \leq q-1 \), and these are readily seen to span \(T_{e+1} \). Hence, the degree \(p-1 \) monomials in \(x \) and \(y \) generate \(T(\mathcal{R}) \) as a ring extension of \(\mathbb{F} \).
(3) For a polynomial ring \mathcal{R} of dimension 3 or higher, the ring $\mathcal{T} (\mathcal{R})$ is noncommutative and not finitely generated over \mathbb{F}. The noncommutativity is immediate from (2); we give an argument that $\mathcal{T} (\mathcal{R})$ is not finitely generated for $\mathcal{R} = \mathbb{F} [x, y, z]$, and this carries over to polynomial rings \mathcal{R} of higher dimension.

Set $q = p^e$ where $e \geq 2$. We claim that the element

$$xy^q/p-1z^q/p-1 \in \mathcal{T}_e$$

does not belong to $\mathcal{T}_{e_1} \ast \mathcal{T}_{e_2}$ for integers $e_i < e$ with $e_1 + e_2 = e$. Indeed, $\mathcal{T}_{e_1} \ast \mathcal{T}_{e_2}$ is spanned by the monomials

$$(x^i y^j z^{q_1-i-j}) \ast (x^k y^l z^{q_2-k-l}) = x^{i+q_1} y^{j+q_1} z^{-q_1-i-j-q_1-k-l-1}$$

where $q_i = p^{e_i}$ and

$$0 \leq i \leq q_1 - 1, \quad 0 \leq j \leq q_1 - 1 - i, \quad 0 \leq k \leq q_2 - 1, \quad 0 \leq l \leq q_2 - 1 - k,$$

so it suffices to verify that the equations

$$i + q_1k = 1 \quad \text{and} \quad j + q_1l = q/p - 1$$

have no solution for integers i, j, k, l in the intervals displayed above. The first of the equations gives $i = 1$, which then implies that $0 \leq j \leq q_1 - 2$. Since q_1 divides q/p, the second equation gives $j \equiv -1 \mod q_1$. But this has no solution with $0 \leq j \leq q_1 - 2$.

3. The ring structure of $\mathcal{F}(E)$

We describe the ring of Frobenius operators $\mathcal{F}(E)$ in terms of the symbolic Rees algebra \mathcal{R} and the twisted multiplication structure $\mathcal{T} (\mathcal{R})$ of the previous section. First, a notational point: $\omega^{[p^e]}$ below denotes the iterated Frobenius power of an ideal ω, and $\omega^{(n)}$ its symbolic power, which coincides with reflexive power for divisorial ideals ω. We realize that the notation $\omega^{[n]}$ is sometimes used for the reflexive power, hence this note of caution. We start with the following observation:

Lemma 3.1. Let (R, \mathfrak{m}) be a normal local ring of characteristic $p > 0$. Let ω be a divisorial ideal of R, i.e., an ideal of pure height one. Then for each integer $e \geq 1$, the map

$$H^\dim R_m (\omega^{[p^e]}) \longrightarrow H^\dim R_m (\omega^{(p^e)})$$

induced by the inclusion $\omega^{[p^e]} \subseteq \omega^{(p^e)}$, is an isomorphism.

Proof. Set $d = \dim R$. Since R is normal and ω has pure height one, ωR_p is principal for each prime ideal p of height one; hence $(\omega^{(p^e)}/\omega^{[p^e]}) R_p = 0$. It follows that

$$\dim (\omega^{(p^e)}/\omega^{[p^e]}) \leq d - 2,$$

which gives the vanishing of the outer terms of the exact sequence

$$H^\dim -1 _m (\omega^{(p^e)}/\omega^{[p^e]}) \longrightarrow H^d _m (\omega^{[p^e]}) \longrightarrow H^d _m (\omega^{(p^e)}) \longrightarrow H^d _m (\omega^{(p^e)}/\omega^{[p^e]}),$$

and thus the desired isomorphism.
Definition 3.2. Let R be a normal ring that is either complete local, or \mathbb{N}-graded and finitely generated over R_0. Let ω denote the canonical module of R. The symbolic Rees algebra

$$\mathcal{R} = \bigoplus_{n \geq 0} \omega(-n)$$

is the anticanonical cover of R; it has a natural \mathbb{N}-grading where $\mathcal{R}_n = \omega(-n)$.

Theorem 3.3. Let (R, m) be a normal complete local ring of characteristic $p > 0$. Set d to be the dimension of R. Let ω denote the canonical module of R, and identify E, the injective hull of the R/\mathfrak{m}, with $H^d_m(\omega)$.

(1) Then $\mathcal{F}(E)$, the ring of Frobenius operators on E, may be identified with

$$\bigoplus_{e \geq 0} \omega^{(1-\varphi^e)} F^e,$$

where F^e denotes the map $H^d_m(\omega) \to H^d_m(\omega^{(\varphi^e)})$ induced by $\omega \to \omega^{(\varphi^e)}$.

(2) Let \mathcal{R} be the anticanonical cover of R. Then one has an isomorphism of graded rings

$$\mathcal{F}(E) \cong \mathcal{T}(\mathcal{R}),$$

where $\mathcal{T}(\mathcal{R})$ is as in Definition 2.1.

Proof. By Remark 1.3, we have

$$\mathcal{F}^{\varphi}(H^d_m(\omega)) \cong \text{Hom}_R \left(R^{(e)} \otimes_R H^d_m(\omega), H^d_m(\omega) \right).$$

Moreover,

$$R^{(e)} \otimes_R H^d_m(\omega) \cong H^d_m(\omega^{(\varphi^e)}) \cong H^d_m(\omega^{(\varphi^e)}),$$

where the first isomorphism of by [ILL⁺, exercise 9.7], and the second by Lemma 3.1. By similar arguments

$$\text{Hom}_R \left(H^d_m(\omega^{(\varphi^e)}), H^d_m(\omega) \right) \cong \text{Hom}_R \left(H^d_m(\omega \otimes_R \omega^{(\varphi^{e-1})}), H^d_m(\omega) \right)$$

$$\cong \text{Hom}_R \left(\omega^{(\varphi^{e-1})} \otimes_R H^d_m(\omega), H^d_m(\omega) \right)$$

$$\cong \text{Hom}_R \left(\omega^{(\varphi^{e-1})}, \text{Hom}_R \left(H^d_m(\omega), H^d_m(\omega) \right) \right),$$

with the last isomorphism using the adjointness of Hom and tensor. Since R is complete, the module above is isomorphic to

$$\text{Hom}_R \left(\omega^{(\varphi^{e-1})}, R \right) \cong \omega^{(1-\varphi^e)}.$$

Suppose $\varphi \in \mathcal{F}^{\varphi}(M)$ and $\varphi' \in \mathcal{F}^{\varphi}(M)$ correspond respectively to aF^e and $a'F^e$, for elements $a \in \omega^{(1-\varphi^e)}$ and $a' \in \omega^{(1-\varphi^e)}$. Then $\varphi \circ \varphi'$ corresponds to $aF^e \circ bF^e = ab^{\varphi^e} F^{e+e}$, which agrees with the ring structure of $\mathcal{T}(\mathcal{R})$ since $a \neq b = ab^{\varphi^e}$.

Remark 3.4. Let R be a normal complete local ring of prime characteristic p; let A be a complete regular local ring with $R = A/I$. Using Remark 1.5 and Theorem 3.3, it is now a straightforward verification that $\mathcal{F}(E)$ is isomorphic, as a graded ring, to

$$\bigoplus_{e \geq 0} \frac{I^{[\varphi^e]}}{I^{[\varphi^e]}} :_A I$$

where the multiplication on this latter ring is the twisted multiplication \ast. An example of the isomorphism is worked out in Proposition 5.1.
4. \(\mathbb{Q} \)-Gorenstein rings

We analyze the finite generation of \(\mathcal{F}(E) \) when \(R \) is \(\mathbb{Q} \)-Gorenstein. The following result follows from the corresponding statement for Cartier algebras, [Sc, remark 4.5], but we include it here for the sake of completeness:

Proposition 4.1. Let \((R, m)\) be a normal \(\mathbb{Q} \)-Gorenstein local ring of prime characteristic. Let \(\omega \) denote the canonical module of \(R \). If the order of \(\omega \) is relatively prime to the characteristic of \(R \), then \(\mathcal{F}(E) \) is a finitely generated ring extension of \(\mathcal{F}^0(E) \).

Proof. Since \(\mathcal{F}^0(E) \) is isomorphic to the \(m \)-adic completion of \(R \), the proposition reduces to the case where the ring \(R \) is assumed to be complete.

Let \(m \) be the order of \(\omega \), and \(p \) the characteristic of \(R \). Then \(p \mod m \) is an element of the group \((\mathbb{Z}/m\mathbb{Z})^\times \), and hence there exists an integer \(e_0 \) with \(pe_0 \equiv 1 \mod m \). We claim that \(\mathcal{F}(E) \) is generated over \(\mathcal{F}^0(E) \) by \(e_0 \). We use the identification \(\mathcal{F}(E) = T(R) \) from Theorem 3.3. Since \(\omega(n) \) is a cyclic module, one has

\[
\omega^{(n+km)} = \omega^{(n)} \omega^{(km)}, \quad \text{for all integers } k, n.
\]

Thus, for each \(e > e_0 \), one has

\[
\mathcal{T}_e = \mathcal{T}_{e_0} \ast \mathcal{T}_{e_0} = \omega^{(1-p^{-e_0})} \ast \omega^{(1-p^n)}
\]

\[
= \omega^{(1-p^{-e_0})} \cdot (\omega^{(1-p^n)})^{[p^{-e_0}]}
\]

\[
= \omega^{(1-p^{-e_0})} \cdot \omega^{(p^{-e_0}(1-p^n))}
\]

\[
= \omega^{(1-p^{-e_0}+p^{-e_0}-p)}
\]

\[
= \omega^{(1-p)}
\]

\[
= \mathcal{T}_e,
\]

which proves the claim.

We conjecture that Proposition 4.1 has a converse in the following sense:

Conjecture 4.2. Let \((R, m)\) be a normal \(\mathbb{Q} \)-Gorenstein ring of prime characteristic, such that the order of the canonical module in the divisor class group is a multiple of the characteristic of \(R \). Then \(\mathcal{F}(E) \) is not a finitely generated ring extension of \(\mathcal{F}^0(E) \).

Veronese subrings. Let \(\mathbb{F} \) be a field of characteristic \(p > 0 \), and \(A = \mathbb{F}[x_1, \ldots, x_d] \) a polynomial ring. Given a positive integer \(n \), we denote the \(n \)-th Veronese subring of \(A \) by

\[
A_{(n)} = \bigoplus_{k \geq 0} A_{nk};
\]

this differs from the standard notation, e.g., [GW], since we reserve superscripts \((\)^{(n)}\) for symbolic powers. The cyclic module \(x_1 \cdots x_d A \) is the graded canonical module for the polynomial ring \(A \). By [GW, corollary 3.1.3], the Veronese submodule

\[
(x_1 \cdots x_d A)_{(n)} = \bigoplus_{k \geq 0} [x_1 \cdots x_d A]_{nk}
\]
is the graded canonical module for the subring $A_{(n)}$. Let m denote the homogeneous maximal ideal of $A_{(n)}$. The injective hull of $A_{(n)}/m$ in the category of graded $A_{(n)}$-modules is

$$H^d_m\left((x_1 \cdots x_d A)_{(n)}\right) = \left[H^d_m\left(x_1 \cdots x_d A\right)\right]_{(n)} = \left[\sum_i x_1 \cdots x_d A_{x_1 \cdots x_d}\right]_{(n)},$$

see [GW, theorem 3.1.1]. By [GW, theorem 1.2.5], this is also the injective hull in the category of all $A_{(n)}$-modules.

Let R be the m-adic completion of $A_{(n)}$. As it is m-torsion, the module displayed above is also an R-module; it is the injective hull of R/mR in the category of R-modules.

Proposition 4.3. Let F be a field of characteristic $p > 0$, and let $A = \mathbb{F}[x_1, \ldots, x_d]$ be a polynomial ring of dimension d. Let n be a positive integer, and R be the completion of the n-th Veronese subring of A at its homogeneous maximal ideal. Set $E = M/N$ where

$$M = R^e_{x_1 \cdots x_d}$$

and N is the R-submodule spanned by elements $x_1^{i_1} \cdots x_d^{i_d} \in M$ with $i_k \geq 1$ for some k; the module E is the injective hull of the residue field of R.

Then $F^e(E)$ is the left R-module generated by the elements

$$1_{x_1^{a_1} \cdots x_d^{a_d}} F^e,$$

where F is the pth power map, $a_k \leq p^e - 1$ for each k, and $\sum a_k \equiv 0 \mod n$.

Remark 4.4. We use F for the Frobenius endomorphism of the ring M. The condition $\sum a_k \equiv 0 \mod n$, or equivalently $x_1^{a_1} \cdots x_d^{a_d} \in M$, implies that

$$1_{x_1^{a_1} \cdots x_d^{a_d}} F^e \in \mathcal{F}^e(M).$$

When $a_k \leq p^e - 1$ for each k, the map displayed above stabilizes N and thus induces an element of $\mathcal{F}^e(M/N)$; we reuse F for the pth power map on M/N.

Proof of Proposition 4.3 In view of the above remark, it remains to establish that the given elements are indeed generators for $\mathcal{F}^e(E)$. The canonical module of R is

$$\omega_R = (x_1 \cdots x_d A)_{(n)}R$$

and, indeed, $H^d_m(\omega_R) = E$. Thus, Theorem 3.3 implies that

$$\mathcal{F}^e(E) = \omega_R^{(1-q)} F^e,$$

where $q = p^e$. But $\omega_R^{(1-q)}$ is the completion of the $A_{(n)}$-module

$$\left[\frac{1}{x_1^{q-1} \cdots x_d^{q-1}} A\right]_{(n)} = \left[\frac{1}{x_1^{a_1} \cdots x_d^{a_d}} A_{x_1 \cdots x_d} \mid a_k \leq q - 1 \text{ for each } k, \sum a_k \equiv 0 \mod n\right] A_{(n)},$$

which completes the proof.

Example 4.5. Consider $d = 2$ and $n = 3$ in Proposition 4.3, i.e.,

$$R = \mathbb{F}[x^3, x^2y, xy^2, y^3].$$
Then $\omega = (x^2 y, x y^2) R$ has order 3 in the divisor class group of R; indeed,

$$\omega^{(2)} = (x^4 y^2, x^3 y^3, x^2 y^4) R \quad \text{and} \quad \omega^{(3)} = (x^3 y^3) R.$$

(1) If $p \equiv 1 \mod 3$, then $\omega^{(1-q)} = (xy)^{1-q} R$ is cyclic for each $q = p^e$ and

$$\mathcal{F}^e(E) = \frac{1}{(xy)^{q-1}} F^e.$$

Since

$$\frac{1}{(xy)^{p-1}} F \circ \frac{1}{(xy)^{q-1}} F^e = \frac{1}{(xy)^{pq-1}} F^{e+1},$$

it follows that

$$\mathcal{F}(E) = R \left\{ \frac{1}{(xy)^{p-1}} F \right\}.$$

(2) If $p \equiv 2 \mod 3$ and $q = p^e$, then $\omega^{(1-q)} = (xy)^{1-q} R$ for e even and

$$\omega^{(1-q)} = \left(\frac{1}{x^{q^2} y^{q-1}}, \frac{1}{x^{q-2} y^{q-2}}, \frac{1}{x^{q-1} y^{q-3}} \right) R$$

for e odd. The proof of Proposition 4-1 shows that $\mathcal{F}(E)$ is generated by its elements of degree ≤ 2 and hence

$$\mathcal{F}(E) = R \left\{ \frac{1}{x^{p-1} y^{p-1}} F, \frac{1}{x^{p-2} y^{p-2}} F, \frac{1}{x^{p-1} y^{p-3}} F, \frac{1}{x^{p-1} y^{p-1}} F^2 \right\}.$$

In the case $p = 2$, the above reads

$$\mathcal{F}(E) = R \left\{ \frac{x}{y} F, \frac{y}{x} F, \frac{1}{x^3 F^2} \right\}.$$

(3) When $p = 3$, one has

$$\omega^{(1-q)} = \frac{1}{x^{q^2} y^{q}} (x^2 y, x y^2) R = \left(\frac{1}{x^{q-2} y^{q-1}}, \frac{1}{x^{q-1} y^{q-2}} \right) R$$

for each $q = p^e$. In this case,

$$\mathcal{F}(E) = R \left\{ \frac{1}{x^2 y} F, \frac{1}{x^2 y} F, \frac{1}{x^7 y^8} F^2, \frac{1}{x^8 y^7} F^2, \frac{1}{x^{25} y^{26}} F^3, \frac{1}{x^{26} y^{25}} F^3, \ldots \right\},$$

and $\mathcal{F}(E)$ is not a finitely generated extension ring of $\mathcal{F}^0(E) = R$; indeed,

$$\omega^{(1-q)} \ast \omega^{(1-q')} = \frac{1}{x^{q^2} y^{q}} (x^2 y, x y^2) R \ast \frac{1}{x^{q^2} y^{q}} (x^2 y, x y^2) R$$

for $q = p^e$ and $q' = p^{e'}$, where e and e' are positive integers.
5. A determinantal ring

Let R be the determinantal ring $\mathbb{F}[X]/I$, where X is a 2×3 matrix of variables over a field of characteristic $p > 0$, and I is the ideal generated by the size 2 minors of X. Set m to be the homogeneous maximal ideal of R. We show that the algebra of Frobenius operators $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^0(E) = \hat{R}$; this proves [Ka, conjecture 3.1]. We also extend Fedder’s calculation of the ideals $I^{[p]} : I$ to the ideals $I^{[q]} : I$ for all $q = p^e$.

The ring R is isomorphic to the affine semigroup ring

$$\mathbb{F}\left[\frac{sx, sy, sz}{tx, ty, tz} \right] \subseteq \mathbb{F}[s, t, x, y, z].$$

Using this identification, R is the Segre product $A \# B$ of the polynomial rings $A = \mathbb{F}[s, t]$ and $B = \mathbb{F}[x, y, z]$. By [GW, theorem 4.3.1], the canonical module of R is the Segre product of the graded canonical modules stA and $xyzB$ of the respective polynomial rings, i.e.,

$$\omega_R = stA \# xyzB = (s^2txyz, st^2xyz)\hat{R}.$$

Let e be a nonnegative integer, and $q = p^e$. Then

$$\omega_R^{(1-q)} = \frac{1}{(st)^{q-1}}A \# \frac{1}{(xyz)^{q-1}}B$$

is the R module spanned by the elements

$$\frac{1}{(st)^{q-1}x^k y^l z^m}$$

with $k + l + m = 2q - 2$ and $k, l, m \leq q - 1$.

View E as M/N where $M = R_{s^2txyz}$, and N is the R-submodule spanned by the elements $s^i t^j x^k y^l z^m$ in M that have at least one positive exponent. Then $\mathcal{F}^e(E)$ is the left \hat{R}-module generated by

$$\frac{1}{(st)^{q-1}x^k y^l z^m}F^e,$$

where F is the pth power map, $k + l + m = 2q - 2$, and $k, l, m \leq q - 1$. Using this description, it is an elementary—though somewhat tedious—verification that $\mathcal{F}(E)$ is not finitely generated over $\mathcal{F}^0(E)$; alternatively, note that the symbolic powers of the height one prime ideals $(sx, sy, sz)\hat{R}$ and $(sx, tx)\hat{R}$ agree with the ordinary powers by [BV, corollary 7.10]. Thus, the anticanonical cover of \hat{R} is the ring \mathcal{R} with

$$\mathcal{R}_n = \frac{1}{(s^2txyz)^n}(sx, sy, sz)^n\hat{R}$$

and so

$$\mathcal{T}_e = \frac{1}{(s^2txyz)^{q-1}}(sx, sy, sz)^{q-1}\hat{R}.$$
Thus,
\[T_{e_1} \ast T_{e_2} = \frac{1}{(s^2txyz)^{q_i-1}}(sx, sy, sz)^{q_i-1} \ast \frac{1}{(s^2txyz)^{q_j-1}}(sx, sy, sz)^{q_j-1} \]
\[= \frac{1}{(s^2txyz)^{q_i+q_j-1}}(sx, sy, sz)^{q_i-1} \cdot ((sx, sy, sz)^{q_j-1})^{[q_1]} \]
\[= \frac{1}{(s^2txyz)^{q_i+q_j-1}}(sx, sy, sz)^{q_i-1} \cdot ((sx)^{q_i}, (sy)^{q_i}, (sz)^{q_i})^{q_j-1} \]

where \(q_i = p^{e_i} \). We claim that
\[T_e = \sum_{e_1=1}^{e-1} T_{e_1} \ast T_{e-e_1}. \]

For this, it suffices to show that
\[\frac{1}{(s^2txyz)^{q_i-1}}sx(sy)^{q_i/p-1}(sz)^{q_j/p-1} \]
does not belong to \(T_{e_1} \ast T_{e_2} \) for integers \(e_1 < e \) with \(e_1 + e_2 = e \). By the description of \(T_{e_1} \ast T_{e_2} \) above, this is tantamount to proving that
\[sx(sy)^{q_i/p-1}(sz)^{q_j/p-1} \notin (sx, sy, sz)^{q_i-1} \cdot ((sx)^{q_i}, (sy)^{q_i}, (sz)^{q_i})^{q_j-1}, \]
but this is essentially Example 2.2.3.

Fedder’s computation. Let \(A \) be the power series ring \(\mathbb{F}[[u, v, w, x, y, z]] \) for \(\mathbb{F} \) a field of characteristic \(p > 0 \), and let \(I \) be the ideal generated by the size 2 minors of the matrix
\[
\begin{pmatrix}
 u & v & w \\
 x & y & z
\end{pmatrix},
\]
In [Fe, proposition 4.7], Fedder shows that
\[I^{[p]} : I = I^{2p-2} + I^{[p]}. \]

We extend this next by calculating the ideals \(I^{[q]} : I \) for each prime power \(q = p^e \).

Proposition 5.1. Let \(A \) be the power series ring \(\mathbb{F}[[u, v, w, x, y, z]] \) where \(K \) a field of characteristic \(p > 0 \). Let \(I \) be the ideal of \(A \) generated by \(\Delta_1 = vz - wy, \Delta_2 = wx - uz, \) and \(\Delta_3 = uy - vx. \)

1. For \(q = p^e \) and nonnegative integers \(s, t \) with \(s + t \leq q - 1 \), one has
\[y^s z^t (\Delta_2 \Delta_3)^{q-1} \in I^{[q]} + x^{s+t} A. \]

2. For \(q, s, t \) as above, let \(f_{s, t} \) be an element of \(A \) with
\[y^s z^t (\Delta_2 \Delta_3)^{q-1} = x^{s+t} f_{s, t} \mod I^{[q]}. \]

Then \(f_{s, t} \) is well-defined modulo \(I^{[q]} \). Moreover, \(f_{s, t} \in I^{[q]} : A, I, \) and
\[I^{[q]} : A I = I^{[q]} + (f_{s, t} | s + t \leq q - 1) A. \]

For \(q = p \), the above recovers Fedder’s computation that \(I^{[p]} : I = I^{2p-2} + I^{[p]} \), though for \(q > p \), the ideal \(I^{[p]} : I \) is strictly bigger than \(I^{2p-2} + I^{[p]} \).
Proof. (1) Note that the element
\[y^s z'(\Delta_2 \Delta_3)^{q-1} = y^s z'(w x - u z)^{q-1} (u y - v x)^{q-1} \]
belongs to the ideals
\[(x, u)^{2q-2} \subseteq (x^{q-1}, u^q) \subseteq (x^{s+t}, u^q) \]
and also to
\[y^s z'(x, z)^{q-1} (x, y)^{q-1} \subseteq y^s z'(x^t, z^{q-t})(x^s, y^{q-t}) \subseteq (x^{s+t}, z^q, y^q). \]
Hence,
\[y^s z'(\Delta_2 \Delta_3)^{q-1} \in (x^{s+t}, u^q)A \cap (x^{s+t}, z^q, y^q)A \]
\[= (x^{s+t}, u^q z^q, u^q y^q)A \]
\[\subseteq (x^{s+t}, \Delta_1^q, \Delta_2^q, \Delta_3^q)A. \]

(2) The ideals \(I \) and \(I^{[q]} \) have the same associated primes, [ILL⁺, corollary 21-11]. As \(I \) is prime, it is the only prime associated to \(I^{[q]} \). Hence \(x^{s+t} \) is a nonzerodivisor modulo \(I^{[q]} \), and it follows that \(f_{s,t} \mod I^{[q]} \) is well-defined.

We next claim that
\[I^{2q-1} \subseteq I^{[q]}. \]
By the earlier observation on associated primes, it suffices to verify this in the local ring \(R_I \). But \(R_I \) is a regular local ring of dimension 2, so \(I R_I \) is generated by two elements, and the claim follows from the pigeonhole principle. The claim implies that
\[x^{s+t} f_{s,t} I \in I^{[q]}, \]
and using, again, that \(x^{s+t} \) is a nonzerodivisor modulo \(I^{[q]} \), we see that \(f_{s,t} I \subseteq I^{[q]} \), in other words, that \(f_{s,t} I^{[q]} :_A I \) as desired.

By Theorem 3.3 and Remark 3.4, one has the \(R \)-module isomorphisms
\[\omega^{(1-q)}_R \cong \mathcal{F}^o(E) \cong \frac{I^{[q]} :_A I}{I^{[q]}}. \]
Choosing \(\omega^{(-)}_R = (x, y, z)R \), we claim that the map
\[h : (x, y, z)^{q-1} R \rightarrow \frac{I^{[q]} :_A I}{I^{[q]}}, \]
\[x^{q-1-s-t} y^s z^t \mapsto f_{s,t} \]
is an isomorphism. Since the modules in question are reflexive \(R \)-modules of rank one, it suffices to verify that the map is an isomorphism in codimension 1. Upon inverting \(x \), the above map induces
\[Rx \rightarrow \frac{I^{[q]} A_x :_{A_x} I A_x}{I^{[q]} A_x}, \]
\[x^{q-1} \mapsto (\Delta_2 \Delta_3)^{q-1} \]
which is readily seen to be an isomorphism since \(I A_x = (\Delta_2, \Delta_3) A_x \).
Rings of Frobenius operators

6. Cartier algebras and gauge boundedness

For a ring R of prime characteristic $p > 0$, one can interpret $\mathcal{F}^e(E)$ in a dual way as a collection of p^{-e}-linear operators on R. This point of view was studied by Blickle [Bl12] and Schwede [Sc].

Definition 6.1. Let R be a ring of prime characteristic $p > 0$. For each $e \geq 0$, set C^R_e to be set of additive maps $\varphi : R \to R$ satisfying

$$\varphi(p^r x) = r \varphi(x), \quad \text{for } r, x \in R.$$

The *total Cartier algebra* is the direct sum

$$C^R = \bigoplus_{e \geq 0} C^R_e.$$

For $\varphi \in C^R_e$ and $\varphi' \in C^R_e$, the compositions $\varphi \circ \varphi'$ and $\varphi' \circ \varphi$ are elements of $C^R_{e+e'}$. This gives C^R the structure of an \mathbb{N}-graded ring; it is typically not a commutative ring. As pointed out in [ABZ, 2.2.1], if (R, m) is an F-finite complete local ring, then the ring of Frobenius operators $\mathcal{F}(E)$ is isomorphic to C^R.

Each C^R_e has a left and a right R-module structure: for $\varphi \in C^R_e$ and $r \in R$, we define $r \cdot \varphi$ to be the map $x \mapsto r \varphi(x)$, and $\varphi \cdot r$ to be the map $x \mapsto \varphi(r x)$.

Definition 6.2. Blickle [Bl12] introduced a notion of boundedness for Cartier algebras: Let $R = A/I$ for a polynomial ring $A = \mathbb{F}[x_1, \ldots, x_d]$ over an F-finite field \mathbb{F}. Set R_n to be the finite dimensional \mathbb{F}-vector subspace of R spanned by the images of the monomials

$$x_1^{\lambda_1} \cdots x_d^{\lambda_d}, \quad \text{for } 0 \leq \lambda_j \leq n.$$

Following [An] and [Bl12], we define a map $\delta : R \to \mathbb{Z}$ by $\delta(r) = n$ if $r \in R_n \smallsetminus R_{n-1}$; the map δ is a gauge. If $I = 0$, then $\delta(r) \leq \deg(r)$ for each $r \in R$. We recall some properties from [An, proposition 1] and [Bl12, lemma 4.2]:

$$\delta(r + r') \leq \max\{\delta(r), \delta(r')\},$$

$$\delta(r \cdot r') \leq \delta(r) + \delta(r').$$

The ring C^R is *gauge bounded* if there exists a constant K, and elements $\varphi_{e,i}$ in C^R_e for each $e \geq 1$ generating C^R_e as a left R-module, such that

$$\delta(\varphi_{e,i}(x)) \leq \frac{\delta(x)}{p^e} + K, \quad \text{for each } e \text{ and } i.$$

Remark 6.3. We record two key facts that will be used in our proof of Theorem 6.4:

1. If there exists a constant C such that $I^{[p^e]} : A I$ is generated by elements of degree at most $C p^e$ for each $e \geq 1$, then C^R is gauge bounded; this is [KZ, lemma 2.2].

2. If C^R is gauge bounded, then for each ideal \mathfrak{a} of R, the F-jumping numbers of $\tau(R, \mathfrak{a})$ are a subset of the real numbers with no limit points; in particular, they form a discrete set. This is [Bl12, theorem 4.18].

We now prove the main result of the section:

Theorem 6.4. Let R be a normal \mathbb{N}-graded that is finitely generated over an F-finite field R_0. (The ring R need not be standard graded.)

Suppose that the anticanonical cover of R is finitely generated as an R-algebra. Then C^R is gauge bounded. Hence, for each ideal \mathfrak{a} of R, the set of F-jumping numbers of $\tau(R, \mathfrak{a})$ is a subset of the real numbers with no limit points.
Proof. Let \(A \) be a polynomial ring, with a possibly non-standard \(\mathbb{N} \)-grading, such that \(R = A/I \). It suffices to obtain a constant \(C \) such that the ideals \(I^{[p^e]} : A \mathcal{I} \) are generated by elements of degree at most \(C^p e \) for each \(e \geq 1 \).

There exists a ring isomorphism \(\bigoplus_{e \geq 0} \omega^{(1-p^e)} \cong \bigoplus_{e \geq 0} (I^{[p^e]} : A \mathcal{I})/I^{[p^e]} \) by Remark 3.4 that respects the \(e \)th graded components. After replacing \(\omega \) by an isomorphic \(R \)-module with a possible graded shift, we may assume that the isomorphism above induces degree preserving \(R \)-module isomorphisms for each \(e \geq 0 \). While \(\omega \) is no longer canonically graded, we still have the finite generation of the anticanonical cover \(\bigoplus_{n \geq 0} \omega^{(-n)} \). It suffices to check that there exists a constant \(C \) such that \(\omega^{(1-p^e)} \) is generated, as an \(R \)-module, by elements of degree at most \(C^p e \).

Choose finitely many homogeneous \(R \)-algebra generators \(z_1, \ldots, z_k \) for \(\bigoplus_{n \geq 0} \omega^{(-n)} \), say with \(z_i \in \omega^{(-j_i)} \). Set \(C \) to be the maximum of \(\deg z_1, \ldots, \deg z_k \). Then the monomials

\[
z^\lambda = z_1^{\lambda_1} z_2^{\lambda_2} \cdots z_k^{\lambda_k}, \quad \text{with} \quad \sum \lambda_i j_i = p^e - 1
\]
generate the \(R \)-module \(\omega^{(1-p^e)} \), and it is readily seen that

\[
\deg z^\lambda = \sum \lambda_i \deg z_i \leq C \sum \lambda_i \leq C(p^e - 1).
\]

By [KZ, lemma 2-2], it follows that \(C^R \) is gauge bounded; the assertion now follows from [Bl2, theorem 4.18].

Corollary 6.5. Let \(R \) be the determinantal ring \(\mathbb{F}[X]/I \), where \(X \) is a matrix of indeterminates over an \(\mathbb{F} \)-finite field \(\mathbb{F} \) of prime characteristic, and \(I \) is the ideal generated by the minors of \(X \) of an arbitrary but fixed size. Then, for each ideal \(\mathfrak{a} \) of \(R \), the set of \(\mathbb{F} \)-jumping numbers of \(\tau(R, \mathfrak{a}^t) \) is a subset of the real numbers with no limit points.

Proof. Since \(R \) is a determinantal ring, the symbolic powers of the ideal \(\omega^{(-1)} \) agree with the ordinary powers by [BV, corollary 7.10]. Hence the anticanonical cover of \(R \) is finitely generated, and the result follows from Theorem 6.4.

Remark 6.6. It would be natural to remove the hypothesis that \(R \) is graded in Theorem 6.4. However, we do not know how to do this: when \(R \) is not graded, it is unclear if one can choose gauges that are compatible with the ring isomorphism

\[
\bigoplus_{e \geq 0} \omega^{(1-p^e)} \cong \bigoplus_{e \geq 0} (I^{[p^e]} : A \mathcal{I})/I^{[p^e]}.
\]

7. Linear growth of Castelnuovo–Mumford regularity for rings of finite Frobenius representation type

Let \(A \) be a standard graded polynomial ring over a field \(\mathbb{F} \), with homogeneous maximal ideal \(\mathfrak{m} \). We recall the definition of the Castelnuovo-Mumford regularity of a graded module following [Ei, chapter 4]:

Definition 7.1. Let \(M = \bigoplus_{d \in \mathbb{Q}} M_d \) be a graded \(A \)-module. If \(M \) is Artinian, we set

\[
\reg M = \max\{d \mid M_d \neq 0\};
\]

for an arbitrary graded module we define

\[
\reg M = \max_{k \geq 0} \{\reg H^k_{\mathfrak{m}}(M) + k\}.
\]
Rings of Frobenius operators

Definition 7.2. Let I and J be homogeneous ideals of A. We say that the regularity of $A/(I + J^{[p^e]})$ has linear growth with respect to p^e, if there is a constant C, such that

$$\text{reg} \ A/(I + J^{[p^e]}) \leq Cp^e, \quad \text{for each } e \geq 0.$$

It follows from [KZ, corollary 2.4] that if $\text{reg} \ A/(I + J^{[p^e]})$ has linear growth for each homogeneous ideal J, then $C^{A/J}$ is gauge-bounded.

Remark 7.3. Let $R = A/I$ for a homogeneous ideal I. We define a grading on the bimodule $R^{(e)}$ introduced in Remark 1.3: when an element r of R is viewed as an element of $R^{(e)}$, we denote it by $r^{(e)}$. For a homogeneous element $r \in R$, we set

$$\deg' r^{(e)} = \frac{1}{p^e} \deg r.$$

For each ideal J of R, one has an isomorphism

$$R^{(e)} \otimes_R R/J \xrightarrow{\cong} R/J^{[p^e]}$$

under which $r^{(e)} \otimes \overline{s} \mapsto rs^{p^e}$. To make this isomorphism degree-preserving for a homogeneous ideal J, we define a grading on $R/J^{[p^e]}$ as follows:

$$\deg' \overline{r} = \frac{1}{p^e} \deg \overline{r}, \quad \text{for a homogeneous element } r \text{ of } R.$$

The notion of finite Frobenius representation type was introduced by Smith and Van den Bergh [SV]; we recall the definition in the graded context:

Definition 7.4. Let R be an \mathbb{N}-graded Noetherian ring of prime characteristic p. Then R has finite graded Frobenius-representation type by finitely generated \mathbb{Q}-graded R-modules M_1, \ldots, M_s, if for every $e \in \mathbb{N}$, the \mathbb{Q}-graded R-module $R^{(e)}$ is isomorphic to a finite direct sum of the modules M_j with possible graded shifts, i.e., if there exist rational numbers $\alpha_{ij}^{(e)}$, such that there exists a \mathbb{Q}-graded isomorphism

$$R^{(e)} \cong \bigoplus_{i,j} M_j(\alpha_{ij}^{(e)}).$$

Remark 7.5. Suppose R has finite graded Frobenius-representation type. With the notation as above, there exists a constant C such that

$$\alpha_{ij}^{(e)} \leq C, \quad \text{for all } e, i, j;$$

see the proof of [TT, theorem 2.9].

We now prove the main result of this section; compare with [TT, theorem 4.8].

Theorem 7.6. Let A be a standard graded polynomial ring over an F-finite field of characteristic $p > 0$. Let I be a homogeneous ideal of A.

Suppose $R = A/I$ has finite graded F-representation type. Then $\text{reg} \ A/(I + J^{[p^e]})$ has linear growth for each homogeneous ideal J. In particular, C^k is gauge bounded, and for each ideal a of R, the set of F-jumping numbers of $\tau(R, a')$ is a subset of the real numbers with no limit points.

Proof. We use J for the ideal of A, and also for its image in R. Let $a'(H^k_m(R/J^{[p^e]}))$ denote the largest degree of a nonzero element of $H^k_m(R/J^{[p^e]})$ under the \deg'-grading, i.e.,

$$a'(H^k_m(R/J^{[p^e]})) = \frac{1}{p^e} \text{reg} H^k_m(R/J^{[p^e]}).$$
Since we have degree-preserving isomorphisms \(R^{(e)} \otimes_R R/J \cong R/J^{[p^e]} \), and
\[
R^{(e)} \cong \bigoplus_{i,j} M_i(\alpha_{ij}^{(e)}),
\]
it follows that
\[
H^k_m(R/J^{[p^e]}) \cong H^k_m(R^{(e)} \otimes_R R/J)
\]
\[
\cong \bigoplus_{i,j} H^k_m(M_i(\alpha_{ij}^{(e)} \otimes_R R/J))
\]
\[
\cong \bigoplus_{i,j} H^k_m(M_i/J M_i)(\alpha_{ij}^{(e)}).
\]
The numbers \(\alpha_{ij}^{(e)} \) are bounded by Remark 7.5; thus,
\[
\alpha'(H^k_m(R/J^{[p^e]})) \leq \max_i \{ \alpha'(H^k_m(M_i/J M_i)) + C \}.
\]
Since there are only finitely many modules \(M_i \) and finitely many homological indices \(k \), it follows that \(\alpha'(H^k_m(R/J^{[p^e]})) \leq C' \), where \(C' \) is a constant independent of \(e \) and \(k \). Hence
\[
\operatorname{reg} H^k_m(R/J^{[p^e]}) \leq C' p^e, \quad \text{for all } e, k,
\]
and so
\[
\operatorname{reg} A/(I + J^{[p^e]}) = \max_k \{ \operatorname{reg} H^k_m(R/J^{[p^e]} + k) \} \leq C' p^e + \dim A.
\]
This proves that \(\operatorname{reg} A/J^{[p^e]} \) has linear growth; \([\text{KZ}], \) corollary 2.4 implies that \(C^R \) is gauge bounded, and the discreteness assertion follows from \([\text{Bl2}], \) theorem 4.18.

REFERENCES

Rings of Frobenius operators

