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The class of Adian semigroups and Adian groups was first introduced and studied by

S. I. Adian in 1966. In this thesis, we introduce the notion of Adian inverse semigroups

with the hope that the study of these objects may help in resolving some of the remaining

open questions about Adian semigroups and Adian groups. We prove that Adian inverse

semigroups are E-unitary. By using this property of Adian inverse semigroups we

prove that if M = Inv〈X|R〉 is a finitely presented Adian inverse semigroup which

satisfies the property that the Schützenberger complex of a word w for all w ∈ X+,

over the presentation 〈X|R〉, is finite, then the Schützenberger complex of every word

w′ ∈ (X ∪ X−1)∗, over the presentation 〈X|R〉 is finite. As a consequence of this result we

are able to solve the word problem for some classes of Adian inverse semigroups, Adian

semigroups and Adian groups.
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Chapter 1

Introduction

A semigroup (S, ·), consists of a non empty set S and a binary operation · such that

a · b ∈ S for all a, b ∈ S and (a · b) · c = a · (b · c) for all a, b, c ∈ S.

If there is no danger of confusion, then we suppress the binary operation and write ab

instead of a · b.

An element e of S is called an idempotent, if e2 = e. The set of all idempotent elements

of S is denoted by E(S).

An element 1 ∈ S is called an identity element of S if 1a = a1 = a for all a ∈ S.

A semigroup with an identity element is called a monoid.

An element 0 ∈ S is called a zero element of S if 0a = a0 = 0 for all a ∈ S.

It follows immediately from the above definitions that a monoid S contains a unique

identity element and at most one zero element.

Free semigroups and free monoids are defined as follows. A set X is called an

alphabet, whose elements are called letters, (unless stated otherwise we always consider

a finite alphabet). A word over X of length n is a sequence a1a2...an of letters ai ∈ X. The

word of length zero is called the empty word and is denoted by ε. The multiplication of

words is defined by concatenation (a1a2...an)(b1b2...bm) = a1...anb1...bm. This multiplica-
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tion is associative. The set of all words of positive length (called positive words) forms a

semigroup, the free semigroup X+. The empty word serves as an identity element under

concatenation of words. So the set of all words is a monoid, the free monoid X∗. A subset

of X∗ or X+ is called a language.

1.0.1 Green’s relations

If S is a semigroup without identity then S1 = S ∪ {1}(where 1 is some element not in S)

with 1s = s1 = s for all s ∈ S. If S is a monoid then S1 = S. Given t ∈ S, the principal

left ideal generated by t is the set S1t = {st|s ∈ S1}. The principal right ideals and

principal two sided ideals tS1 and S1tS1 are defined similarly.

The elements of a semigroup are partitioned by five equivalence relations, L , R, D ,

H and J called Green’s relations, defined as follows:

• aL b if and only if S1a = S1b.

• aRb if and only if aS1 = bS1.

• aH b if and only if aL b and aRb, i.e., H = L ∩R.

• aDb if and only if there exists c ∈ S such that aL c and cRb, i.e., D = L ◦R.

Equivalently, D = R ◦L [4] and D is the smallest equivalence relation that contains L

and R [4].

• aJ b if and only if S1aS1 = S1bS1.

The L , R, H , D and J -(equivalence) classes of a are denoted La, Ra, Ha, Da and Ja

respectively.

1.1 Inverse semigroups

A semigroup S is called an inverse semigroup, if for all a ∈ S, there exists a unique

element b ∈ S such that aba = a and bab = b. The unique element b is called the inverse
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of a and is denoted by a−1.

It is easy to see that aa−1 and a−1a are idempotent elements of S, for all a ∈ S. In

general, if a is an element of an inverse semigroup S, then aa−1 6= a−1a.

If S is an inverse semigroup then aL b ⇔ a−1a = b−1b and aRb ⇔ aa−1 = bb−1.

Further details about Green’s relations for inverse semigroups can be seen in [5].

Let X be a non empty set. A partial bijection on X is a bijective (one-to-one and

onto) function f : T1 → T2, where T1, T2 ⊆ X. The set of all partial bijections on X forms

an inverse monoid with respect to composition of partial maps, called the symmetric

inverse monoid and denoted by IX. Recall that Cayley’s theorem states that, every

group is isomorphic to a group of permutations. The following theorem carries the same

importance in the theory of inverse semigroups.

Theorem 1.1.1. (Wagner-Preston) Every inverse semigroup embeds in a symmetric inverse

monoid on a suitable set X.

The natural partial order ≤ on an inverse semigroup is defined by a ≤ b⇔ a = aa−1b.

This definition of the natural partial order is equivalent to the definition a ≤ b ⇔ a =

ba−1a. The proof of this fact is given in [Lemma 6, Chapter 1] of [5]. It follows immediately

from the definition of the natural partial order on an inverse semigroup S that the natural

partial order is the identity relation if S is a group.

The following proposition concerning idempotents and the natural partial order is

standard in the literature on inverse semigroups; we will use these facts often in this

dissertation.

Proposition 1. Let S be an inverse semigroup.

(i) If e is an idempotent and a ≤ e in S, then a is an idempotent.

(ii) If x ∈ S and e is an idempotent of S, then xex−1 is an idempotent.
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(iii) Suppose x0, . . . , xn ∈ S and suppose e1, . . . , en are idempotents. Then x0e1x1 · · · enxn ≤

x0x1 · · · xn. In particular, if x0x1 · · · xn is an idempotent, then x0e1x1 · · · enxn is an

idempotent.

1.2 Congruences and inverse monoid presentations

A congruence on a semigroup S is an equivalence relation ρ which is compatible with

the semigroup operation: i.e., if aρb then (ac)ρ(bc) and (ca)ρ(cb) for all a, b, c ∈ S. The

congruence class of a is denoted by aρ. If aρb and a′ρb′ then (aa′)ρ(bb′). It follows that

the multiplication of congruence classes (aρ)(bρ) := (ab)ρ is well-defined and so the set

of congruence classes forms a semigroup, the quotient semigroup S/ρ.

The function f : (X ∪ X−1)∗ → (X ∪ X−1)∗ defined by f (u) = u−1 for all u ∈

(X ∪ X−1)∗ is an involution. Note that f ( f (u)) = u and f (u · v) = v−1 · u−1 for all

u, v ∈ (X ∪ X−1)∗.

If X is an alphabet, let X−1 denote a disjoint set of inverses. The Vagner congruence

ρ is the congruence on the free monoid with involution (X ∪ X−1)∗ generated by

{(uu−1u, u), (uu−1vv−1, vv−1uu−1)|u, v ∈ (X ∪ X−1)∗}.

It follows that FIM(X) := (X ∪ X−1)∗/ρ is an inverse monoid, the free inverse

monoid on X. (The relation (uu−1vv−1, vv−1uu−1)) captures the notion of commuting

idempotents.)

If R ⊂ (X ∪ X−1)∗ × (X ∪ X−1)∗ and τ is the congruence generated by ρ ∪ R (where ρ

is the Vagner congruence), then M = Inv〈X|R〉 := (X ∪ X−1)∗/τ is the inverse monoid

presented by the set X of generators and the set R of relations. For w ∈ (X ∪ X−1)∗,

we abuse the notation for our convenience and denote the inverse monoid element wτ

by w. If X is finite, then M is said to be finitely generated. If X and R are finite, then M



5

is finitely presented. Elements (u, v) of R are relations and often written u = v. If the

relation is of the form w = 1, then w is a relator.

The word problem for Inv〈X|R〉 is the question of whether there is an algorithm

which, given any two words w1, w2 ∈ (X ∪ X−1)∗, will determine whether w1 = w2 in

the inverse semigroup Inv〈X|R〉. The word problem even for finitely presented inverse

semigroups is in general unsolvable, that is, there is no such algorithm in general. This

follows from the fact that finitely presented groups can be presented as finitely presented

inverse monoids, and Novikov [10] and Boone [2] proved that the word problem for

finitely presented groups is unsolvable.

1.3 Graphs, inverse word graphs and geodesics

A labeled directed graph over a set X is a directed graph in which the edges are labeled

by elements of X. We write (u, x, v) to denote the edge labeled by x with initial vertex u

and terminal vertex v.

A path (of length n) is a sequence of edges

((v0, x1, v1), (v1, x2, v2), ..., (vn−1, xn, vn))

such that the initial vertex of an edge (except the first) equals the terminal vertex of

the previous edge. If v0 = vn the path is a circuit or a cycle. We say that the path is

labeled by the word w = x1x2...xn and that w can be read in the graph starting at v0. A

labeled directed graph is strongly connected if there is a path from u to v for every pair

of vertices u, v.

An inverse word graph over X is a labeled directed graph over X ∪ X−1 such that

the labeling is consistent with an involution; that is, (u, x, v) is an edge if and only if

(v, x−1, u) is an edge. A birooted inverse word graph is an inverse word graph Γ with
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vertices α, β ∈ V(Γ) identified as the start and end vertices, respectively. The language

L[A] of a birooted inverse word graph A = (α, Γ, β) is the set of words that can be read

as the label of some path from α to β in Γ.

Given a labeled directed graph Γ with u, v ∈ V(Γ), a geodesic path from u to v is a

path from u to v of minimum length. A word which labels a geodesic path is called a

geodesic word. The path metric on an inverse word graph Γ maps vertices u, v to the

length d(u, v) of a geodesic path from u to v.

1.4 Automata

We relax the definition of finite state automaton from [3] to allow infinitely many states:

Definiton 1. An automaton is a five tuple A = (Q, ∑, δ, q0, F), where

• Q is a set whose elements are called states,

• ∑ is an alphabet, called the input alphabet,

• δ : Q×∑ → Q is a partial function (i. e., not necessarily defined on all of Q×∑),

called the transition function,

• q0 ∈ Q is the initial state, and

• F ⊂ Q is the set of final states, (or accept or terminal states).

If Q and ∑ are finite then the automaton is a finite state automaton.

We may view A as a labeled directed graph with

• V(A) = Q and

• E(A) = {(q, x, r)|δ(q, x) = r}.

We say A accepts or recognizes a word u ∈ ∑∗ if u labels a path in the labeled

directed graph from q0 to f for some f ∈ F. The language L(A) of A is the set of
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all words accepted by A. A language is regular if it is the language of a finite state

automaton.

Given a regular language L, there may be many different finite state automata which

recognize L. However, there is a unique (up to isomorphism) finite state automaton with

a minimum number of states which recognizes L [3]. In addition, given any automaton

recognizing a language, the minimum state automaton may be computed by applying

the minimization algorithm of [3].

1.5 Schützenberger graphs

Let M = Inv〈X|R〉 be the inverse monoid presented by X and R. The Cayley graph of

M with respect to the presentation 〈X|R〉 is the labeled directed graph Γ over X ∪ X−1

such that

• V(Γ) = M and

• E(Γ) = {(m1, x, m2)|m1, m2 ∈ M and m1x = m2}.

Note that if M is a group, Γ is the Cayley graph in the usual group theoretic sense.

Since maa−1 = m does not necessarily hold in an inverse monoid, the Cayley graph

of an inverse monoid is not necessarily an inverse word graph and is not necessarily

strongly connected. If m = maa−1 then mm−1 = maa−1m−1 = (ma)(ma)−1. So mR(ma).

Conversely,

mR(ma)⇒ mm−1 = (ma)(ma)−1 = maa−1m−1

⇒ m = mm−1m = maa−1m−1m = mm−1maa−1 = maa−1,

since idempotents (aa−1 and m−1m) commute in an inverse monoid. If m = maa−1,

then there exist edges (m, a, ma) and (ma, a−1, m) in Γ. Thus each R-class is a strongly

connected component of the Cayley graph. The restriction of the Cayley graph to the
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strongly connected component with vertices Rm is called the Schützenberger graph of m

with respect to the presentation. The Schützenberger graph of m is denoted by SΓ(m).

That is,

• V(SΓ(m)) = Rm and

• E(SΓ(m)) = {(m1, x, m2)|m1, m2 ∈ Rm,x ∈ (X ∪ X−1) and m1x = m2}.

If w ∈ (X ∪ X−1)∗ labels a path from m to m′ in Rm, then m′ = mw and mww−1 = m,

so SΓ(m) is an inverse word graph.

Note that for m ∈ M and w ∈ (X ∪ X−1)∗, m ≤ w if and only if mm−1w = m, so a

word w labels a path from mm−1 to m in SΓ(m) if and only if w ≥ m in the natural partial

order of M. In this way we can view the birooted inverse word graph (mm−1, SΓ(m), m)

as an automaton called the Schützenberger automaton SΓ(w), with initial vertex mm−1

and terminal vertex m. This Schützenberger automaton recognizes the words which map

to the order filter of m, m ↑= {w ∈ (X ∪ X−1)∗|m ≤
M

w}.

1.5.1 Iterative construction of Schützenberger graphs

In this section we summarize the iterative procedure described by Stephen [14] for

building a Schützenberger graph. Let Inv〈X|R〉 be a presentation of an inverse monoid.

Given a word u = a1a2...an ∈ (X ∪ X−1)∗, the linear graph of u is the birooted inverse

word graph (αu, Γu, βu) consisting of the set of vertices

V((αu, Γu, βu)) = {αu, βu, γ1, ..., γn−1}

and edges

(αu, a1, γ1), (γ1, a2, γ2), ..., (γn−2, an−1, γn−1), (γn−1, an, βu),

together with the corresponding inverse edges.
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Let (α, Γ, β) be a birooted inverse word graph over X ∪ X−1. The following operations

may be used to obtain a new birooted inverse word graph (α′, Γ′, β′):

• Determination or folding: Let (α, Γ, β) be a birooted inverse word graph with

vertices v, v1, v2, with v1 6= v2, and edges (v, x, v1) and (v, x, v2) for some x ∈ X ∪ X−1.

Then we obtain a new birooted inverse word graph (α′, Γ′, β′) by taking the quotient

of (α, Γ, β) by the equivalence relation which identifies the vertices v1 and v2 and the

two edges. In other words, edges with the same label coming out of a vertex are folded

together to become one edge.

• Elementary P-expansion: Let r = s be a relation in R and suppose that r can be

read from v1 to v2 in Γ, but s cannot be read from v1 to v2 in Γ. Then we define (α′, Γ′, β′)

to be the quotient of Γ ∪ (αs, Γs, βs) by the equivalence relation which identifies vertices

v1 and αs and vertices v2 and βs. In other words. we “sew” on a linear graph for s from

v1 to v2 to complete the other half of the relation r = s.

An inverse word graph is deterministic if no folding can be performed and closed if

it is deterministic and no elementary expansion can be performed over a presentation

〈X|R〉. Note that given a finite inverse word graph it is always possible to produce a

determinized form of the graph, because determination reduces the number of vertices.

So, the process of determination must stop after finitely many steps, We note also that

the process of folding is confluent [14] .

If (α1, Γ1, β1) is obtained from (α, Γ, β) by an elementary P-expansion, and (α2, Γ2, β2)

is the determinized form of (α1, Γ1, β1), then we write (α, Γ, β) ⇒ (α2, Γ2, β2) and say

that (α2, Γ2, β2) is obtained from (α, Γ, β) by a P-expansion. The reflexive and transitive

closure of⇒ is denoted by⇒∗.

For u ∈ (X ∪ X−1)∗, an approximate graph of (uu−1, SΓ(u), u) is a birooted inverse

word graph A = (α, Γ, β) such that u ∈ L[A] and y ≥ u for all y ∈ L[A]. Stephen showed

in [14] that the linear graph of u is an approximate graph of (uu−1, SΓ(u), u). He also
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proved the following:

Theorem 1.5.1. Let u ∈ (X∪X−1) and let (α, Γ, β) be an approximate graph of (uu−1, SΓ(u), u).

If (α, Γ, β)⇒∗ (α′, Γ′, β′) and (α′, Γ′, β′) is closed , then (α′, Γ′, β′) is the Schützenberger graph

of u, (uu−1, SΓ(u), u).

In [14], Stephen showed that the class of all birooted inverse words graphs over

X ∪ X−1 is a co-complete category and that the directed system of all finite P-expansions

of a linear graph of u has a direct limit. Since the directed system includes all possible

P-expansions, this limit must be closed. Therefore, by 1.5.1, the Schützenberger graph is

the direct limit.

Full P- expansion (a generalization of the concept of P-expansion): A full P-

expansion of a birooted inverse word graph (α, Γ, β) is obtained in the following way:

• Form the graph (α′, Γ′, β′), which is obtained from (α, Γ, β) by performing all

possible elementary P-expansions of (α, Γ, β), relative to (α, Γ, β). We emphasize that an

elementary P-expansion may introduce a path labeled by one side of relation in R, but

we do not perform an elementary P-expansion that could not be done to (α, Γ, β) when

we do a full P-expansion.

• Find the determinized form (α1, Γ1, β1), of (α′, Γ′, β′).

The birooted inverse word graph (α1, Γ1, β1) is called the full P-expansion of (α, Γ, β).

We denote this relationship by (α, Γ, β) ⇒ f (α1, Γ1, β1). If (αn, Γn, βn) is obtained from

(α, Γ, β) by a sequence of full P-expansions then we denote this by (α, Γ, β)⇒∗f (αn, Γn, βn).

The following theorem is often used as a key fact to solve the word problem for a class

of inverse semigroups. In the following theorem the language accepted by Schütznberger

automaton of u over a presentation Inv〈X|R〉 is denoted by L[u].

Theorem 1.5.2. (Stephen,[14]) Let M = Inv〈X|R〉 be an inverse semigroup. Then:

(i) L(u) = {v ∈ (X ∪ X−1)∗ : v ≥
M

u}.
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(ii) u = v ⇔ L(u) = L(v) ⇔ u ∈ L(v) and v ∈ L(u) ⇔ (uu−1, SΓ(u), u) and

(vv−1, SΓ(v), v) are isomorphic as birooted edge labeled graphs.

1.6 Munn trees and free inverse monoids

If M = FIM(X) = Inv〈X|∅〉 (the free inverse monoid), then (mm−1, SΓ(m),m) is a

bi-rooted tree, the Munn tree of m ∈ FIM(X). The Munn tree for u, given u ∈

(X ∪ X−1)∗, may be constructed by building the linear graph of u and folding, since

there are no relations with which to expand. For example, the Munn tree of u =

a2a−3abb−1ab−1bcaa−1cc−1 with the initial vertex labeled by α and the terminal vertex

labeled by β is shown in Figure 1.1.

αa

b

a

b

a
c

c

aβ

Figure 1.1: The Munn tree, MT(u), for u = a2a−3abb−1ab−1bcaa−1cc−1.

The word problem for FIM(X) is solvable: two words are equal if and only if they

have the same Munn tree and same initial and terminal vertices. This solution is due to

Munn [9].

1.7 The minimum group congruence

A relation σ is defined on any inverse semigroup M by
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sσt⇔ there exists an element u ∈ M, such that u ≤
M

s, t.

It is proved in Theorem 2.4.1 of [5] that the relation σ is a congruence on M. So, the

quotient M/σ is an inverse semigroup. In fact, if M = Inv〈X|R〉, then M/σ ∼= Gp〈X|R〉,

where Gp〈X|R〉 denotes the group presented by a set X of generators and a set R of

relations. Furthermore, if ρ is any congruence on M such that M/ρ is a group, then σ ⊆ ρ.

That is, σ is the smallest group congruence on M. There exists a natural homomorphism

(that we again denote by σ) σ : M→ M/σ. M/σ is the maximum group homomorphic

image of M since σ is the minimum group congruence on M.

1.8 E-unitary inverse monoids

An inverse monoid M = 〈X|R〉 is E-unitary if the natural homomorphism σ : M→ M/σ

is idempotent pure. i.e., σ−1(1) = E(M). The following definitions are equivalent.

• M is E-unitary.

• For all e, m ∈ M, e ≤ m and e ∈ E(M) implies m ∈ E(M). (Proposition 2.4.3 of [5].)

• Each Schützenberger graph naturally embeds into the Cayley graph of Gp〈X|R〉.(This

is due to Meakin.)

1.9 CW-complexes and Schützenberer complexes

1.9.1 CW-complexes

Now we give the definition of some topological concepts. Let Dn = {x ∈ Rn||x| ≤ 1},

(Dn)◦ = {x ∈ Rn||x| < 1} and ∂Dn = {x ∈ Rn||x| = 1} be the closed and open unit

Euclidian disks and their boundary, respectively. A space is called an open cell of

dimension n, or an n-cell if it is homeomorphic to (Dn)◦.
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A topological space S is Hausdorff if for every pair of points p, q ∈ S, p 6= q, there are

open sets P and Q such that p ∈ P and q ∈ Q, and P ∩Q = ∅. The following definition

is due to J. H. C. Whitehead:

Definiton 2. A CW-complex is a Hausdorff space S and a collection of open cells {eα}α∈I

such that the following hold:

(1) S = t
α∈I

eα.

(2) For each n-cell eα there is a map θα : Dn → S such that θα induces a homeomor-

phism θα|(Dn)◦ : (Dn)◦ → eα and θα(∂Dn) is contained in a finite union of open cells eβ of

dimension less than n.

(3) A set A ⊆ S is open in S if and only if A ∩ eα is open in eα for all α ∈ I, where eα is

the closure of eα in S.

We denote the 0-cells or vertices of a CW-complex by V(S), the set of 1-cells or edges

by E(S) and the set of 2-cells or faces by F(S). We do not need to discuss cells of higher

dimensions in this dissertation. Given a vertex v ∈ V(S), the star set Star(v) denotes the

set of all the edges or 1-cells that are incident with v. The out star set Staro(v) denotes

the set of edges with initial vertex v. Similarly, the in star set Stari(v) denotes the the set

of edges with terminal vertex v.

1.9.2 Schützenberger complexes

We now expand our notion of Schützenberger graph from section 1.5.1. Schützenberger

complexes were first defined by Steinberg in [12]. Later in [6], Steven Linblad made a small

modification in Steinberg’s definition of Schützenberger complexes. In this dissertation,

we are using Linblad’s definition of Schützenberger complexes. Let M = 〈X|R〉 be an

inverse monoid and m ∈ M. The Schüutzenberger complex SC(m) for m ∈ M is defined

as follows:
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(1) The 1-skeleton of SC(m) is the Schützenberger graph SΓ(m).

(2) For each relation (r, s) ∈ R and vertex v, if r and s can be read at v, then there is a

face with boundary given by the pair of paths labeled by r and s starting from v.

In similar manner, Stephen’s approximate graphs can be viewed as approximate

complexes by sewing on a face each time an elementary expansion is performed, and

identifying faces if a determination results in their entire boundaries being identified.

1.10 The word problem for groups and Van Kampen

diagrams

The word problem for G = Gp〈X|R〉 is the question of whether there is an algorithm

which given any two words u, v ∈ (X ∪ X−1)∗, will determine whether u = v in G. Since,

u =
G

v⇔ uv−1 =
G

1G, where 1G is the identity element of G, the word problem for G can

equivalently be defined as does there exist an algorithm to check on input a given word

w ∈ (X ∪ X−1)∗, whether w =
G

1G.

Definiton 3. A Van Kampen diagram over a presentation 〈X|R〉 for a word w ∈ (X ∪

X−1)∗ is a finite, planar cell complex ∆ ⊆ R2, that satisfies the following properties:

• The complex ∆ is connected and simply connected.

• Each edge (1 cell) is directed and labeled by a letter of the alphabet X.

• The boundary of each region (2-cell) of ∆ is labeled by a cyclically reduced conjugate

(in the free group generated by X), of the word sr−1 for some defining relation (r, s) ∈ R.

• The boundary of ∆ is labeled by a cyclically reduced conjugate of the word w.

In [15], Egbert Van Kampen described a method of considering which words represent

the identity element in the group given by a finite presentation. He established the

following result.
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Theorem 1.10.1. (Van Kampen’s lemma)Let G = Gp〈X|R〉 be a finitely presented group and w

be a cyclically reduced word in (X ∪ X−1)∗. Then

(i) If w =
G

1G, then there is a Van Kampen diagram for w over the presentation 〈X|R〉.

(ii) If ∆ is a Van Kampen diagram for a word w over 〈X|R〉, then w =
G

1G.

1.11 The word problem for semigroups and S-diagrams

The word problem for S = Sg〈X|R〉 is the question of whether there is an algorithm

which given any two words u, v ∈ X+, will determine whether u = v in S.

For any two words u, v ∈ X+, u =
S

v if and only if there exists a transition sequence

from u to v.

u ≡ w0 → w1 → ...→ wn ≡ v; for some n ≥ 0,

where wi−1 → wi represents that wi is obtained from wi−1 by replacing one side of

a relation r (that happens to be a subword of wi−1) with the other side s of the same

relation, for some (r, s) ∈ R. The above transition sequence is called a regular derivation

sequence of length n for the pair (u, v) over the presentation Sg〈X|R〉.

Definiton 4. A semigroup diagram or S-diagram over a semigroup presentation Sg〈X|R〉

for a pair of positive words (u, v) is a finite, planar cell complex D ⊆ R2, that satisfies the

following properties:

• The complex D is connected and simply connected.

• Each edge (1-cell) is directed and labeled by a letter of the alphabet X.

• Each region (2-cell) of D is labeled by the word rs−1 for some defining relation

(r, s) ∈ R.
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• There is a distinguished vertex α on the boundary of D such that the boundary of D

starting at α is labeled by the word uv−1. α is a source in D (i.e. there is no edge in D

with terminal vertex α).

• There are no interior sources or sinks in D.

In [11], Remmers proved an analogue of Theorem 1.10.1 for semigroups to address

the word problem for semigroups.

Theorem 1.11.1. Let S = Sg〈X|R〉 be a semigroup and u, v ∈ X+. Then there exists a regular

derivation sequence of length n for the pair (u, v) over the presentation Sg〈X|R〉 if and only if

there is an S-diagram over the presentation Sg〈X|R〉 for the pair (u, v) having exactly n regions.

1.12 Adian presentations

Often groups, semigroups and inverse semigroups are presented by a pair 〈X|R〉, where

X denotes a set of generators and R denotes a set of relations. We slightly abuse the

notation for our purpose and call 〈X|R〉 a presentation. The words r and s, for all

(r, s) ∈ R, are called R-words. If every R-word is a positive word (that is, every R-word

is an element of X+), then the presentation 〈X|R〉 is said to be a positive presentation.

Given such a presentation, we may form the corresponding semigroup S = Sg〈X|R〉,

group G = Gp〈X|R〉 and inverse semigroup M = Inv〈X|R〉.

1.12.1 Left and right graph of a positive presentation

The left graph of a positive presentation 〈X|R〉, denoted by LG〈X|R〉, is an undirected

graph, whose vertices are the elements of X. Corresponding to every relation (r, s) ∈ R,

there is an undirected edge joining the first letter of r with the first letter of s.
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Similarly, the right graph of a positive presentation is denoted by RG〈X|R〉 and is

obtained by joining the last letter of r with the last letter of s for every (r, s) ∈ R, by an

undirected edge.

Example 1. The left and right graphs of the presentation 〈a, b|ab = a〉 are shown in Figure

1.2.

a b

a b

Le ft  g rap h

Rig h t  g rap h

Figure 1.2: The left graph and the right graph of the presentation 〈a, b|ab = a〉.

Example 2. The left graph and the right graph of the presentation 〈a, b|ab2 = ba〉 are the

same graph (shown in Figure 1.3).

a b

Figure 1.3: The left and right graph of the presentation 〈a, b|ab2 = ba〉 are the same graph.

Example 3. The left graph and the right graph of the presentation 〈a, b, c|ab = ba, bc =

cb, ac = ca〉 are the same graph (shown in Figure 1.4).

A closed path in a left(right) graph is called a left (right) cycle. We observe in the

above examples that the left graph in Example 1 contains a cycle. The left and right

graphs of the presentation given in Example 2, contain no cycle. In Example 3, both the

left and right graphs contain a cycle.
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a b

c

Figure 1.4: The left and right graph of the presentation 〈a, b, c|ab = ba, bc = cb, ac = ca〉
are the same graph.

A positive presentation 〈X|R〉 is called a cycle free presentation if both the graphs

LG〈X|R〉 and RG〈X|R〉 are cycle free (i.e. contain no cycles). Cycle free presentations are

also called Adian presentations, because these presentations were first studied by Adian

in [1].

The following theorem was first proved by Adian in [1] for finite presentations. Later,

it was generalized by Remmers to any Adian presentation, in [11], by using a geometric

approach.

Theorem 1.12.1. An Adian semigroup Sg〈X|R〉 embeds in the corresponding Adian group

Gp〈X|R〉.

From the embedding in Theorem 1.12.1, we can derive the fact that every Adian

semigroup embeds in an Adian inverse semigroup, as proved in the following proposition.

Proposition 2. An Adian semigroup S = Sg〈X|R〉 embeds in the Adian inverse semigroup

M = Inv〈X|R〉.

Proof. Let θ : S→ M be the natural homomorphism and φ : S = 〈X|R〉 → G = Gp〈X|R〉

be the natural homomorphism. φ is an injective homomorphism by 1.12.1. Note that

φ = σ ◦ θ. Since φ = σ ◦ θ and φ is injective, then θ must be injective.

Conjecture 1. (Adian, 1976) The word problem for Adian semigroups is decidable.
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Remark 1. The word problem for one relation Adian semigroups is decidable. This is

because Magnus [8] proved that the word problem for one relator groups is decidable

and by Theorem 1.12.1, a one relation Adian semigroup embeds in the corresponding

one relator Adian group.

Proposition 3. The word problem for an Adian semigroup S = Sg〈X|R〉 and an Adian group

G = Gp〈X|R〉 is decidable, if:

1. the Adian inverse semigroup M = Inv〈X|R〉 is E−unitary and

2. the word problem for the Adian inverse semigroup M is decidable.

Proof. It immediately follows from (1) that, for any word u ∈ (X ∪ X−1)∗, u =
G

1 if and

only if u is an idempotent in M. So, if (2) holds, then we can check whether u is an

idempotent or not by checking the equality of words u =
M

u2.

If (2) holds, then by Proposition 2, S embeds in M and so the word problem for S is

also decidable.
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Chapter 2

Adian inverse semigroups are E-unitary

In order to set the foundations of our main theorem of this chapter (Theorem 2.0.1), we

first give a slightly revised definition of a Van Kampen diagram over a presentation 〈X|R〉

and then describe some properties of van Kampen diagrams over an Adian presentation

〈X|R〉.

Definiton 5. A van Kampen diagram ∆ is a planar, finite, connected, simply connected,

oriented 2-complex (often called a “map”). There is an involution e→ e−1 on the edges

of the diagram such that (e−1)−1 = e and e−1 6= e. The pair {e, e−1} may be considered as

an undirected edge with one of these edges viewed as positively oriented and the other

as negatively oriented. A van Kampen diagram over the presentation 〈X|R〉 satisfies:

(i) Each directed positively oriented edge of the 1-skeleton is labeled by a letter in X

and its inverse is labeled by the inverse of that letter.

(ii) The 2-cells (sometimes called “regions” or “faces”) are homeomorphic to open disks.

The boundary of each 2-cell is labeled by a cyclically reduced conjugate of uv−1 for

some relation (u, v) ∈ R.

(iii) There is a distinguished base vertex O that lies on the topological boundary of ∆.
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The boundary cycle of ∆ that begins and ends at the base vertex O, and travels in

the counterclockwise direction around the boundary, is labeled by some (not necessarily

freely reduced) word w ∈ (X ∪ X−1)∗. In this case, we say that ∆ is a van Kampen

diagram for w over 〈X|R〉. It is easy to see that Van Kampen’s Lemma (Theorem 1.10.1)

also holds for a Van Kampen diagram for w over 〈X|R〉.

A van Kampen diagram ∆ is said to be reduced if it satisfies the additional condition:

(iv) There do not exist two 2-cells with an edge in common to their boundaries that are

mirror images of each other.

In this chapter we will be working mainly with reduced van Kampen diagrams.

We remark that some authors require a van Kampen diagram to have a reduced word

as its boundary label, and in fact some require the boundary label to be a cyclically

reduced word. It is convenient for our purposes to make no such restriction however. We

refer to the book by Lyndon and Schupp [7] for more detail and for basic information

about van Kampen diagrams. Such diagrams are referred to as g-diagrams in the paper

of Remmers [11]. A g-diagram in Remmers’ sense is required to have a cyclically reduced

word as boundary label, but this restriction is in fact not essential.

Remark 2. It follows from van Kampen’s Lemma 1.10.1 that the inverse semigroup

S = Inv〈X|R〉 is E-unitary if and only if, for every van Kampen diagram ∆ over 〈X|R〉,

the word w labeling the boundary cycle of ∆ that starts and ends at the distinguished

vertex O is an idempotent of S.

As for semigroup diagrams, each 2-cell of a van Kampen diagram over an Adian

presentation P = 〈X|R〉 is two-sided. The boundary of a such a 2-cell can be viewed as a

birooted graph, where one side of a relation (u, v) ∈ R labels a path p from the initial

vertex to the terminal vertex of the graph, while the other side of the relation labels a
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different path q from the initial vertex to the terminal vertex of the graph. We refer to

these paths as the sides of the 2-cell. The path pq−1 is a boundary cycle of the 2-cell.

The following fact about van Kampen diagrams over Adian presentations was proved

by Remmers [11] (Theorem 4.3) for diagrams whose boundary label is a cyclically reduced

word: however, Remmers’ proof carries over verbatim for the more general notion of van

Kampen diagrams that we are considering in this chapter.

Lemma 1. Let ∆ be a reduced van Kampen diagram for a word w over an Adian presentation

〈X|R〉. Then ∆ has no interior sources and no interior sinks.

The following lemma follows from the above discussion and from Lemma 2.2 and

Theorem 4.3 of [11].

Lemma 2. If ∆ is a reduced van Kampen diagram over an Adian presentation, then ∆ satisfies

the following conditions:

(i) Every 2-cell of ∆ is two-sided.

(ii) ∆ contains no directed (i.e., positively labeled) cycles.

(iii) Every positively labeled interior edge of ∆ can be extended to a directed transversal of ∆.

Here, by a directed transversal of ∆ we mean a positively labeled path between two

distinct boundary vertices of ∆, all of whose vertices are distinct, all of whose edges are

interior to ∆, and all of whose vertices except the initial and terminal vertex are interior

vertices in ∆.

The following result is the main theorem of the chapter.

Theorem 2.0.1. An inverse semigroup S = Inv〈X|R〉 over an Adian presentation is E-unitary.

Before proving this theorem, we introduce some definitions and prove some lemmas.
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Definiton 6. A subdiagram ∆′ of a van Kampen diagram ∆ is called a simple component

of ∆ if it is a maximal subdiagram whose boundary is a simple closed curve.

We remark that our definition does not require that the boundary of a simple compo-

nent of reduced diagram ∆ needs to be labeled by a reduced word. However, since no

2-cell of a van Kampen diagram over an Adian presentation has a boundary that contains

an extremal vertex (i.e. a vertex of degree 1), it follows that a simple component of such a

diagram does not contain any attached trees as part of its boundary. A simple component

of ∆ is itself a van Kampen diagram. The diagram ∆ has a tree-like (or “cactoid”) structure

of simple components connected by (possibly trivial) arcs and possibly with finitely many

finite trees attached to the boundary of the diagram (see Figure 2.1). A van Kampen

diagram with no simple components is just a finite (edge-labeled) tree.

Figure 2.1: Example of a VanKampen diagram with six simple components

Definiton 7. For a van Kampen diagram ∆ over an Adian presentation 〈X|R〉, a transver-

sal subdiagram ∆′ is a subdiagram of a simple component of ∆ such that ∆′ has a

boundary cycle of the form pq, where p is a directed transversal and q is a subpath of a

boundary cycle of the simple component in which ∆′ is contained.
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Lemma 3. If ∆ is a van Kampen diagram with exactly one simple component and no extremal

vertex, then ∆ has a directed transversal if and only if it has more than one 2-cell. Furthermore,

any directed transversal of ∆ divides ∆ into two transversal subdiagrams, each of which may be

viewed as a van Kampen diagram with exactly one simple component and no extremal vertex.

Proof. If ∆ has a directed transversal, then it must have an interior edge and hence it

must have more than one 2-cell. Conversely if ∆ has more than one 2-cell and has just

one simple component, it must have an interior edge e. We extend this edge to a directed

transversal T of ∆ by using Lemma 2 above. Denote the initial vertex of T by α and the

terminal vertex of T by β. Thus α and β are on the boundary of ∆. This transversal T

divides ∆ into two proper subdiagrams ∆1 and ∆2 (see Figure 2.2). Both ∆1 and ∆2 are

clearly transversal subdiagrams of ∆. Also, the boundary of ∆ is a simple closed curve,

and T is a path between distinct boundary vertices of ∆ with all of its vertices distinct

and all of its vertices except α and β interior to ∆. It follows that the boundary of each

subdiagram ∆i is topologically a simple closed curve. Hence each subdiagram ∆i may be

viewed as a van Kampen diagram with exactly one simple component and no extremal

vertex.

Δ2  ΔΔ1  

T

β

α

Figure 2.2: A diagram ∆ with two transversal subdiagrams ∆1 and ∆2
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Definiton 8. For a van Kampen diagram ∆ over an Adian presentation 〈X|R〉, a special

2-cell is a 2-cell, one of whose two sides lies entirely on the boundary of ∆.

Lemma 4. Let ∆ be a van Kampen diagram over an Adian presentation P = 〈X|R〉 that has

more than one 2-cell and that has just one simple component and no extremal vertex. Then ∆

contains at least two special 2-cells.

Proof. As in the proof of Lemma 3 we may choose a directed transversal T from a vertex

α on ∂∆ to a vertex β on ∂∆ that divides the diagram ∆ into two subdiagrams ∆1 and ∆2.

If both of the subdiagrams ∆1 and ∆2 consist of only one 2-cell, then we are done.

Otherwise, we repeatedly subdivide each of these subdiagrams to find special 2-cells of

∆. Without loss of generality, we pick ∆1 and find an interior edge e1 in ∆1. We extend e1

to a directed transversal T1 of ∆1. Let α1 be the initial vertex of T1 and β1 the terminal

vertex of T1. This transversal T1 divides ∆1 into two proper subdiagrams.

We claim that at least one of them is a transversal subdiagram of ∆. To see this we

consider the following four cases.

Case 1: Suppose α1 and β1 lie on the boundary ∂∆1∩ ∂∆. Since T1 is a positively labeled

path, the collection of 2-cells and their boundaries bounded by the path T1 and the path

from β1 to α1 along ∂∆1 ∩ ∂∆ forms a transversal subdiagram of ∆, which contains fewer

2-cells than ∆1 (see Figure 2.3).

T

α

β

Δ

α1  

T1  

Δ1  Δ2  

β1  

Figure 2.3: Case 1 of the proof of Lemma 4
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Case 2: Suppose both α1 and β1 lie on the transversal T. Note that if the transversals

T and T1 are oppositely oriented, then our van Kampen diagram ∆ contains a directed

(positively labeled) cycle, which contradicts Lemma 2 above. Hence both transversals

will have the same orientation. Let T2 be the composition of the path along T from α to

α1 followed by the path T1, followed by the path along T from β1 to β (see Figure 2.4).

Clearly T2 is a positively labeled path that is a transversal of ∆.

T

α

β

Δ1 
T1

Δ2 

β1 

α1 

Δ1 
T1 T

Δ2 

Δ

α1 

β1 

Δ

β

α

Figure 2.4: Case 2 of proof of Lemma 4

The collection of 2-cells and their boundaries bounded by T2 and the path that goes

from β to α along ∂∆1 ∩ ∂∆ forms a transversal subdiagram of ∆ that contains fewer

2-cells than ∆1.

Case 3: Suppose α1 lies on the boundary ∂∆1 ∩ ∂∆ and β1 lies on the path T. Let T2 be

the composition of the path T1 and the path along T from β1 to β (see Figure 2.5). Again,

T2 is a positively labeled path that is a transversal of ∆. The collection of 2-cells bounded

by T2 and the path from β to α1 along ∂∆1 ∩ ∂∆ forms a transversal subdiagram of ∆ that

contains fewer regions than ∆1.

Case 4: Suppose that α1 lies on the path T and β1 lies on the boundary ∂∆1 ∩ ∂∆. In

this case let T2 be the composition of the path along T from α to α1 and the path T1 (see

Figure 2.6). Then the collection of 2-cells bounded by T2 and the path from β1 to α along

∂∆1 ∩ ∂∆ forms a transversal subdiagram of ∆ that contains fewer 2-cells than ∆1.

Since our original diagram has only finitely many 2-cells, this process eventually
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Figure 2.5: Case 3 of proof of Lemma 4
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Figure 2.6: Case 4 of Lemma 4

terminates and we get a minimal transversal subdiagram D of ∆ inside ∆1 that consists of

only one 2-cell. This 2-cell D is bounded by a cycle pq where p is a directed transversal

of ∆1 and q is a path along the boundary of ∆. Since D is a 2-cell, it has a boundary label

of the form uv−1 for some relation (u, v) ∈ R. Since p is positively labeled, neither the

initial vertex nor the terminal vertex of the 2-cell D can lie on p (or else the orientation of

p would change at that vertex). Hence both the initial and terminal vertices of D lie on

the boundary of ∆, and so D is a special 2-cell of ∆. A similar argument yields a special

2-cell of ∆ inside ∆2.

Remark 3. We remark for future use that by Lemma 3, the directed transversal p con-

structed in the proof of Lemma 4 above divides ∆ into two subdiagrams, one of which is

the special 2-cell D and the other of which has just one simple component.
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Lemma 5. If ∆ is a van Kampen diagram over an Adian presentation P = 〈X|R〉 and ∆ has

just one simple component and no extremal vertex, then any word labeling a boundary cycle of ∆,

starting and ending at any vertex 0 on ∂∆, is an idempotent in the inverse monoid S = Inv〈X|R〉.

Proof. We apply induction on the number of 2-cells of ∆. If ∆ contains only one 2-cell,

then a boundary label of this 2-cell is a cyclic conjugate of uv−1, for some (u, v) ∈ R. We

know that uv−1 is an idempotent in S, because in the inverse semigroup S, uv−1 = vv−1.

We show that any cyclic conjugate of uv−1 is also an idempotent in S. Suppose that u

factors as a product of two subwords u ≡ xy in X+. We consider the word yv−1x and

show that it is an idempotent in S. Note that yv−1x = yu−1x = y(xy)−1x = yy−1x−1x,

a product of two idempotents in S, hence it is an idempotent in S. We remark that it

follows that the inverse of this word, namely x−1vy−1, is also an idempotent of S (in

fact it equals yv−1x in S), so all boundary labels of the 2-cell ∆ are idempotents in S, no

matter which orientation of the boundary of ∆ is chosen.

Suppose the conclusion of the lemma is true for all van Kampen diagrams consisting of

one simple component and k or fewer 2-cells. Let ∆ be a van Kampen diagram consisting

of one simple component and (k + 1) 2-cells. Then by Lemma 4, there are at least two

special 2-cells in ∆. These special 2-cells do not share an edge that lies on ∂∆. So at least

one of them (say the 2-cell Π), has the property that the distinguished vertex 0 is an initial

or terminal vertex of at least one edge in ∂∆− ∂Π (i.e. it does not lie in the “interior” of

∂Π ∩ ∂∆).

The cell Π has a boundary label uv−1 for some (u, v) ∈ R, such that either u or v

labels a path on ∂∆. Without loss of generality, we assume that u labels a path on ∂∆.

Denote the initial vertex of this path by α and the terminal vertex by β. By Remark

3, we may suppose that v = srt where s labels a path on the boundary of ∆ from α

to some vertex α1, r labels a directed transversal from α1 to β1, and t labels a path on



29

the boundary of ∆ from β1 to β (see Figure 2.7). The distinguished vertex 0 of the van

Kampen diagram ∆ does not lie in the interior of the part of the boundary of ∆ that

is labeled by tu−1s. Hence the label on the boundary cycle of ∂∆ that starts and ends

at 0 is of the form `(∂∆) ≡ gs−1ut−1h for some words g, h ∈ (X ∪ X−1)∗. Then in the

inverse semigroup S, gs−1ut−1h = gs−1vt−1h = gs−1srtt−1h ≤ grh, by Proposition 1. But

by Lemma 3 and Remark 3, grh labels a boundary cycle of a van Kampen diagram with

only one simple component and fewer 2-cells than ∆. Hence this word is an idempotent

in S by the induction hypothesis. Hence `(∂∆) ≡ gs−1ut−1h is an idempotent of S, again

by Proposition 1. As we remarked before, if we choose the opposite orientation on the

boundary of ∆, the corresponding boundary label is also an idempotent of S.

β

O

Δ

Π

β1

α

α1

s

t

r

u

g

h

Figure 2.7: Special 2-cell Π in the proof of Lemma 5

Corollary 1. If ∆ is a van Kampen diagram over an Adian presentation P = 〈X|R〉 that has just

one simple component, then any word labeling a boundary cycle of D, starting and ending at any

vertex 0 on ∂D, is an idempotent in the inverse monoid S = Inv〈X|R〉.

Proof. The van Kampen diagram ∆ either has no extremal vertex, in which case the result

follows from Lemma 5, or else is obtained from a van Kampen diagram ∆′ with no
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extremal vertex and just one simple component by adjoining finitely many finite trees

to the boundary of ∆′. The result follows from Proposition 1 and the fact that the label

on a boundary cycle of ∆ is obtained from the label w on a boundary cycle of ∆′ either

by inserting Dyck words (words with reduced form 1, which are idempotents in S), or if

necessary conjugating the resulting word by some word u if the distinguished vertex 0 is

on an attached tree.

Proof of Theorem 2.0.1. Let 〈X|R〉 be an Adian presentation and let w be a word such

that w = 1 in G = Gp〈X|R〉. Then w labels a boundary cycle of a van Kampen diagram ∆

starting and ending at some designated vertex 0 on ∂∆. We show that w is an idempotent

of S = Inv〈X|R〉 by induction on the number of simple components of ∆. If ∆ has no

simple components, then it is a finite tree, whose boundary label is a Dyck word, which

is an idempotent of S. If ∆ has just one simple component, this follows from Corollary 1.

Suppose that ∆ has k > 1 simple components. Assume inductively that the word label-

ing a boundary cycle of any van Kampen diagram with fewer than k simple components,

starting and ending at any vertex on its boundary, is an idempotent in S.

It follows from the fact that ∆ is simply connected that ∆ has a cut vertex γ, i.e., a

vertex on the boundary of ∆ whose deletion separates ∆ into two or more connected

components K1, K2, . . . Kn. For each i, let Di be the 2-complex Di = Ki ∪ {γ}. Then each

Di is a van Kampen diagram over 〈X|R〉. The cut vertex can be chosen so that each

subdiagram Di has fewer simple components than ∆ (see Figure 2.8).

Then ∆ = D1 ∨ D2 ∨ . . . ∨ Dn is obtained by joining the diagrams Di at the vertex γ.

Let si = `(qi) be the label on the boundary cycle qi around Di that starts and ends at

γ and respects the orientation of the boundary cycle p of ∆ labeled by w. Then si is an

idempotent of S by the induction hypothesis.
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Figure 2.8: Diagram ∆ separated into subdiagrams by a cut vertex

If 0 = γ, then the boundary cycle p is labeled by some permutation of the word

s1s2 . . . sn, a product of (commuting) idempotents in S. Therefore in S, w = s1s2 . . . sn,

and hence w is an idempotent in S.

If 0 is not equal to γ, then it must be a vertex on the boundary of exactly one of the

van Kampen diagrams Di. Let si ≡ xiyi where xi labels the portion of the boundary

cycle qi of Di starting at γ and ending at 0, and yi labels the portion of qi starting at

0 and ending at γ in the orientation of qi. Then the boundary cycle p of ∆ labeled by

w is equal in S to yi(Πj 6=isj)xi, where the product Πj 6=isj is an idempotent of S. Hence

w = yi(Πj 6=isj)xj ≤ yixi in S, by Proposition 1. But by the induction assumption, yixi is

an idempotent of S since it is the label of a boundary cycle of Di starting at 0. It follows

that the word w is an idempotent in S, again by Proposition 1.

Hence S is E-unitary since the minimum group congruence σ on S is idempotent-pure.

�

We close the section by showing that inverse monoids naturally associated with Adian

inverse semigroups of the type considered above are also E-unitary. We first record a

general fact about positive presentations of inverse semigroups.
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Proposition 4. Let S = Inv〈X|R〉 be a positive presentation of an inverse semigroup, where

R = {(ui, vi)|i ∈ I} and ui, vi ∈ X+. Then if S is E-unitary, so is the inverse monoid

M = Inv〈X|uiv−1
i = 1, i ∈ I〉.

Proof. Clearly both inverse semigroups S and M have the same maximal group homo-

morphic image G = Gp〈X|R〉.

If uiv−1
i = 1 in M, then vi = ui(v−1

i vi) ≤ ui in M. Also viu−1
i = 1, which implies by

the same argument that that ui ≤ vi. Hence ui = vi in M. It follows from a standard

argument that the natural map from S onto G factors through M. Hence if σ and σ1 denote

the natural maps from S and M onto G respectively, the fact that σ is idempotent-pure

implies that σ1 is idempotent-pure, and so M is E-unitary.

Corollary 2. If 〈X|R〉 is an Adian presentation where R = {(ui, vi)|i ∈ I}, then M =

Inv〈X|uiv−1
i = 1, i ∈ I〉 is E-unitary.

Proof. This is immediate from Theorem 2.0.1 and Proposition 4.
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Chapter 3

Adian presentations with finite

Schützenberger complexes

Let Inv〈X|R〉 be an inverse semigroup. Then for any word w ∈ (X ∪ X−1)∗, the sequence

of approximate graphs {(αn, Γn(w), βn)|n ∈ N} obtained by full P-expansion over the

presentation 〈X|R〉, converges to the Schützenberger graph of w over the presentation

〈X|R〉. There exist graph homomorphisms, ψn : Γn(w) → Γn+1(w), such that ψn(αn) =

αn+1 and ψn(βn) = βn+1, for all n ∈ N. If we attach to Γn(w) 2-cells corresponding to

the relations in the obvious way, we obtain an approximate complex of SC(w). We use

the same notation, so that {(αn, Γn(w), βn)|n ∈N} becomes a sequence of approximate

complexes that converges to SC(w). We call a 2-cell to be an n-th generation 2-cell if it

occurs in (αn, Γn(w), βn) \ (ψn−1(αn−1), ψn−1(Γn−1(w)), ψn−1(βn−1)), for all n ∈ N. The

following lemma is due to Steinberg, who gives two slightly deferent proofs, in [12] and

[13]. The proof we present here is very similar to the proof in [13].

Lemma 6. Let M = Inv〈X|R〉 be an inverse semigroup and w ∈ (X ∪ X−1)∗. Then the

Schützenberger complex of w, SC(w), is simply connected.
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Proof. We use induction on the sequence of finite approximate complexes obtained by

full P-expansion of w. Since (α0, Γ0(w), β0) is just a tree, it is simply connected.

We assume that the the finite approximate complex (αk−1, Γk−1(w), βk−1) is simply

connected and show that (αk, Γk(w), βk) is simply connected.

Each time we perform an elementary P-expansion on (αk−1, Γk−1(w), βk−1) we sew

on a relation (u, v) ∈ R along with a 2-cell bounded by the path labeled by uv−1. We

are exactly attaching a simply connected space along a continuous path, the result of

which is again simply connected. Thus by induction, all complexes in the sequence of

approximate complexes {(αn, Γn(w), βn) : n ∈N} are simply connected. It follows that

the limit of SC(w) of this sequence is simply connected.

Lemma 7. Let Inv〈X|R〉 be an Adian inverse semigroup and w ∈ (X ∪ X−1)∗. Then the

Schützenberger complex of w contains no directed cycles of 1-cells.

Proof. Meakin showed that, if M = Inv〈X|R〉, is an E-unitary inverse semigroup, then

for all words u ∈ (X ∪ X−1)∗, the Schützenberger graph of the word u embeds into the

Cayley graph of the maximal group homomorphic image of M, Gp〈X|R〉. Likewise, the

Schützenberger complex of u embeds in the Cayley complex of the group Gp〈X|R〉. It has

been proved in Chapter 2 of this dissertation that Adian inverse semigroups are E-unitary.

So SC(w) embeds into the Cayley complex of the group Gp〈X|R〉.

If SC(w) contains a directed cycle then the Cayley complex of Gp〈X|R〉 contains a

directed cycle as well. We assume that that this directed cycle is labeled by a word x for

some x ∈ X+. Then x =
G

1 so there exists a Van Kampen diagram with boundary labeled

by x. But this contradicts Lemma 2 (ii).
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Lemma 8. Let M = Inv〈X, R〉 be an Adian inverse semigroup, w ∈ X+, v a vertex (0-

cell) of an approximate complex (αn, Γn(w), βn) and let a, b ∈ X label two distinct edges of

Staro
Γn+1(w)(ψn(v)). Then there exists a path in LG〈X|R〉 connecting a and b.

A dual statement to the above Lemma also holds for Stari
Γn+1(w)(ψn(v)).

Proof. We use induction on n to prove the above statement. If n = 0, then there are the

following two cases to consider.

Case 1. Let a ∈ Staro
Γ0(w)(v) and b ∈ Staro

Γ1(w)(ψ0(v)) \ Staro
ψ0(Γ0(w))(ψ0(v)). Since

w ∈ X+, (α0, Γ0(w), β0) is just a linear automaton with all of its edges directed towards

the vertex labeled by β0. If there exists an R-word ar (where a ∈ X and r ∈ X∗) that labels

a path of Γ0(w) from the vertex v to a vertex v′, we can sew on a new path labeled by

the other side of the relation from the vertex v to the vertex v′. Note that this is the only

way we can add new edges in Staro
Γ0(w)(v), because if we attach a new path to the linear

automaton (α0, Γ0(w), β0) from a vertex u to a vertex u′ and some vertex of this new path

gets identified with the vertex v of the linear automaton, then there will be a new edge in

Staro
Γ0(w)(v). But this is impossible unless u = v because 〈X|R〉 is an Adian presentation,

so the first letters of both the R-words in a relation are different from each other.

As a consequence of attaching a new path starting from the vertex v , Staro
Γ1(w)(v)

contains more than one element. So, we sew on a path labeled by the other side of

the relation bs (where b ∈ X and s ∈ X∗) from the vertex v to the vertex v′, for some

(ar, bs) ∈ R. So, there exists an edge between a and b in LG〈X|R〉.

Case 2. Suppose a, b ∈ Staro
Γ1(w)(ψ0(v)) \Staro

ψ0(Γ0(w))(ψ0(v)). Then, since (α0, Γ0(w), β0)

is a linear automaton, there exist R-words cs1 and cs2 (where c ∈ X and s1, s2 ∈ X∗)

labeling two overlapping segments of Γ0(w) starting from the vertex labeled by v. This

allows us to sew on new paths labeled by the other sides of the relations ar1 and br2
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(where b ∈ X and r1, r2 ∈ X∗), respectively, both starting from the vertex labeled by v.

Since, (ar1, cs1), (br2, cs2) ∈ R, thus there exists a path between a and b in LG〈X|R〉.

Now we assume that the above statement is true for n = k and we prove the above

statement for n = k + 1.

If both the edges labeled by a and b belong to the set Staro
Γk(w)(v), then by the induction

hypothesis, there exists a path in LG〈X|R〉 connecting a and b. So, there is nothing to

prove in this case.

Note that 〈X|R〉 is an Adian presentation and therefore SC(w) contains no positively

or negatively labeled directed cycles by Lemma 2. So, if a ∈ Staro
Γk(w)(v) and b ∈

Staro
Γk+1(w)(ψk(v)) \ Staro

ψk(Γk(w))(ψk(v)), then either there exists a relation (br, as) ∈ R

(where a, b ∈ X and r, s ∈ X∗), where as labels a path beginning at vertex v in the birooted

inverse word graph (αk, Γk(w), βk), or it occurs as consequence of sewing on a path

labeled by an R-word starting from a vertex v′ (where the vertex labeled by v′ lies before

the vertex labeled by v on a positively labeled path from αk to βk), of Γk(w) and then

folding edges with the same label and same initial vertices.

The latter case is impossible, because if we read an R-word ct (where c ∈ X and t ∈ X∗)

starting from the vertex labeled by v′ in the finite approximate complex (αk, Γk(w), βk)

and we sew on a path labeled by the other side of the same relation, du (where d ∈ X

and u ∈ X∗) to obtain (α′k, Γ′k(w), β′k), then all the vertices of LG〈X|R〉 that are labeled by

those letters which also label the edges of the set Staro
Γk(w)(v

′), are connected by a path in

LG〈X|R〉, by our induction hypothesis. Since the edge labeled d gets identified with one

of the pre-existing edges in the set Staro
Γk(w)(v

′), therefore there exists a path between c

and d in LG〈X|R〉. But, we also have (ct, du) ∈ R, i.e., there exists an edge between c and

d. So, there exists a closed path in LG〈X|R〉. This is a contradiction.

Let Staro
Γk(w)(v) = {a1, a2, ..., am|ai ∈ X for 1 ≤ i ≤ m}, where each ai labels an edge.

Then there are the following two cases to consider:
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Case 1. If a ∈ Staro
Γk(w)(v) and b ∈ Staro

Γk+1(w)(ψk(v)) \ Staro
ψk(Γk(w))(ψk(v)). Then

a = ai for some i and there exists an R-word as (where a ∈ X and s ∈ X∗), that labels a

path starting from the vertex labeled by v, which allowed us to sew on a path labeled by

the other side of the same relation, for some relation of the form (br, as) ∈ R (where b ∈ X

and r ∈ X∗). So, there exists an edge between a and b in LG〈X|R〉 and a is connected to

aj for all 1 ≤ i 6= j ≤ m by induction hypothesis. Hence, b is connected with each aj for

1 ≤ j ≤ m by a path in LG〈X|R〉.

Case 2. If a, b ∈ Staro
Γk+1(w)(ψk(v)) \ Staro

ψk(Γk(w))(ψk(v)). Then there exist R-words of

the form ais1 and ajs2 (where ai, aj ∈ X and s1, s2 ∈ X∗) for some i, j ∈ {1, 2, ..., m}, that

can be read in the finite approximate complex (αk, Γk(w), βk), starting from the vertex

labeled by v, that allowed us to sew on positively labeled paths labeled by the other sides

of relations of the form (ar1, ais1), (br2, ajs2) ∈ R (where a, b ∈ X and r1, r2 ∈ X∗). Hence

there exist an edge between a and ai and an edge between b and aj in LG〈X|R〉. So, if

i = j , then there exists a path between a and b in LG〈X|R〉 and if i 6= j, then ai and aj are

distinct edges and ai is connected with aj in the LG〈X|R〉 by the induction hypothesis.

Hence, a and b are connected by a path in LG〈X|R〉.

Corollary 3. Let S = Sg〈X|R〉 be an Adian semigroup. Then S has no idempotent element.

Proof. We assume that S contains an idempotent element w for some w ∈ X+. It follows

from the Proposition 2 that S embeds in the corresponding inverse semigroup M =

Inv〈X|R〉. So w =
M

w2. It follows from the Theorem 1.5.2 that w2 ∈ L(w). Then there

exists a least positive integer n, such that w2 labels a path from the initial vertex αn to the

terminal vertex βn of the approximate complex (αn, Γn(w), βn). We assume that a ∈ X is

the prefix letter of w. Then by Lemma 8 there exists a path from a to a in LG〈X|R〉. So

LG〈X|R〉 contains a closed a path. This is a contradiction.
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The following lemma shows that if Inv〈X|R〉 is an Adian inverse semigroup, then

the construction of the Schützenberger complex of a positive word only involves the

elementary P-expansion process and no folding at all.

Lemma 9. Let M = Inv〈X, R〉 be an Adian inverse semigroup and w ∈ X+. Then no two edges

fold together in the construction of the Schützenberger complex of w.

Proof. We use induction on n to show that no two edges fold together in the construction

of each finite approximate complex of the sequence {(αn, Γn(w), βn)|n ∈N}.

The above statement is true for n = 0, because w ∈ X+, so (α0, Γ0(w), β0) is just a

linear automaton with no two consecutive edges oppositely oriented. Hence, no two

edges fold together in the construction of (α0, Γ0(w), β0).

We assume that the above statement is true for n = k, i.e., no two edges fold together

in the construction of (αk, Γk(w), βk). We show that the above statement is also true for

n = k + 1. .

We apply an elementary expansion on (αk, Γk(w), βk) to obtain (α′k, Γ′k(w), β′k) and then

perform folding in (α′k, Γ′k(w), β′k) to obtain (αk+1, Γk+1(w), βk+1) in the full P-expansion.

So, for any vertex v of (αk, Γk(w), βk), if we read an R-word labeling a path starting

from v to a vertex v′, then we sew on a new path labeled by the other side of the same

relation from v to v′ and then we perform folding if possible. In order to prove the above

statement we just need to show that no two edges fold together in Staro
Γ′k(w)

(v). The case

that no two edges fold together in Stari
Γ′k(w)

(v)) is dual to the previous case.

Let {ai ∈ X|0 ≤ i ≤ l} be the set of labels of edges in Staro
Γk(w)(v) and let b0, b1, ..., bm

be the labels of those edges which are in Staro
Γ′k(w)

(v) \ Staro
Γk(w)(v). We claim that

1. ai 6= bj for 0 ≤ i ≤ l and 0 ≤ j ≤ m, and

2. bi 6= bj for 0 ≤ i 6= j ≤ m.
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To establish our first claim, we assume that ai = bj for some 0 ≤ i ≤ l and 0 ≤ j ≤ m.

It has already been shown in the proof Lemma 8 that if bj ∈ Staro
Γ′k(w)

(v) \ Staro
Γk(w)(v)

then there exists a relation of the form (bjr, cs) ∈ R (where bj, c ∈ X and r, s ∈ X∗) and

cs labels a path from the vertex v to vertex v′. It follows that c ∈ {at ∈ X|0 ≤ t ≤ l}.

If c = ai, then (bjr, cs) = (air, ais) ∈ R. This contradicts the fact that 〈X|R〉 is an Adian

presentation.

If c = ah for some h such that 0 ≤ h 6= i ≤ l, then by Lemma 8, ai and ah are connected

by a path p in LG〈X|R〉. We also have (bjr, cs) = (ahr, ais) ∈ R. So, there exists an edge

e between ai and ah in LG〈X|R〉. If p and e represent the same path in LG〈X|R〉, then

the path labeled by bjr from the vertex v to the vertex v′ already exists in (αk, Γk(w), βk),

but this contradicts our earlier assumption that the path labeled by bjr from v to v′ did

not exist in (αk, Γk(w), βk). So, p and e represents two different co-terminal paths. Hence

there exists a cycle in LG〈X|R〉. This is a contradiction.

To establish our second claim, we assume that bi = bj for some 0 ≤ i, j ≤ m with i 6= j.

Note that the paths starting from the vertex v with initial edges labeled by bi and bj are

consequences of relations of the form (biri, aisi), (bjrj, ajsj) ∈ R respectively. If ai = aj,

then either both of these relations are same or they are different relations. If both of

these relations are same then this case reduces to the previous case, which has already

been discussed above in the proof of claim 1. If these relations are different from each

other, then there exists a cycle in LG〈X|R〉, which is a contradiction. So, ai 6= aj. But

then by lemma 8, there exists a path connecting ai with aj in LG〈X|R〉. Also, there exist

edges from ai to bi and aj to bj in LG〈X|R〉, corresponding to the relators (biri, aisi) and

(bjrj, ajsj). This implies that there is a cycle in LG〈X|R〉, which is a contradiction.

Proposition 5. Let M = Inv〈X|R〉 be an Adian inverse semigroup and w1 ∈ X+. Then:
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(i) ψn : (αn, Γn(w1), βn)→ (αn+1, Γn+1(w1), βn+1) is an embedding for all n ∈N.

(ii) SC(w1) has exactly one source vertex α and exactly one sink vertex β, where (α, Γ(w1), β)

is the underlying birooted graph of SC(w1).

(iii) Every directed edge of SC(w1) can be extended to a positively labeled directed transversal

from α to β.

Proof. (i). (i) follows immediately from Lemma 9. Since no foldings occur in the

construction of Γn+1(w) from Γn(w), the images of two distinct vertices of the

approximate complex (αn, Γn(w), βn) remain distinct under the map ψn, for all

n ∈N.

(ii). (ii) follows from the fact that ψn(αn) = αn+1 = α and ψn(βn) = βn+1 = β for all

n ∈N. We sew on a new positively labeled path (labeled by one side of a relation)

to an approximate complex (α, Γn(w), β) only when we read a positively labeled

segment of a path from α to β, labeled by the other side of the same relation. Each

2-cell is two sided and no folding occurs in the construction of (α, Γn+1(w), β) from

(αn, Γn(w), βn). So α and β remain the source and sink vertices of the approximate

complex (α, Γn(w), β) for all n ∈N. Furthermore, α and β were distinct vertices of

(α, Γ0(w1), β) and no two vertices get identified with each other in the construction

of SC(w1), so α and β remain distinct vertices of SC(w1).

(iii). Let e0 be a directed edge of SC(w1). The complex SC(w1) contains only one source

vertex α and one sink vertex β. So, the initial vertex of e0 is either α or it is a terminal

vertex of another edge e−1. If the initial vertex of e0 is the terminal vertex of an

edge e−1 then the initial vertex vertex of e−1 is either α or the terminal vertex of

an edge e−2. Since there are no directed cycles in SC(w1) (by Lemma 7), we can
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find a sequence of edges e−n, e−(n−1), ..., e−1, e0 that constitutes a positively labeled

directed path from α to the terminal vertex of edge e0.

Similarly, if the terminal vertex of e0 is not β then we can find an edge e1 whose

initial vertex is the terminal vertex of e0. Continuing in this way, we can find a

sequence of edges e0, e1, ..., em that constitutes a positively labeled directed path from

the edge e0 to β. Hence, the sequence of edges e−n, e−(n−1), ..., e0, ..., em constitutes a

positively labeled directed transversal from α to β.

Proposition 6. Let M = Inv〈X|R〉 be an Adian inverse semigroup and w1, w2 ∈ X+ such that

w1 ≤
M

w2. Then:

(i) There exists a (planar) S-diagram corresponding to the pair of words (w1, w2) that embeds

in SC(w1).

(ii) w1 =
M

w2.

Proof. (ii). If w1 ≤
M

w2, then w2 ∈ L(α, Γ(w1), β) (Stephen, [14]). So, w2 labels a directed

transversal from the vertex α to the vertex β. Since the transversals labeled by w1

and w2 are co-terminal and SC(w1) is simply connected by Lemma 6, then the

closed path labeled by the word w1w−1
2 is filled with finitely many 2-cells. Every

2-cell is two sided because 〈X|R〉 is an Adian presentation. So, we can obtain a

regular derivation sequence from the word w1 to the word w2 from the complex

SC(w1), over the presentation 〈X|R〉 in the following way.

Geometrically, we push the transversal labeled by w1 across all first generation 2-cells

that were contained in the closed path labeled w1w−1
2 to obtain a new transversal

labeled by u1 ∈ X+. Combinatorially, we have replaced some of the non overlapping

R-words that were subwords of the word w1 by the other side of the same relations.
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Then we push the transversal labeled by u1 across all generation 2-cells that were

contained in the closed path labeled by w1w−1
2 to obtain a new transversal labeled

by u2 ∈ X+. Again, we have just replaced some of the non overlapping R-words

that were subwords of the word u1. This process eventually terminates because the

closed path labeled by w1w−1
2 contains only finitely many 2-cells. So, we obtain a

regular derivation w1 → u1 → u2 → ... → w2 over the presentation 〈X|R〉. Hence

there exists an S-diagram S corresponding to this derivation sequence. Since no

two edges fold together in SC(w1), therefore S embeds in SC(w1).

(ii). This follows immediately from (ii) and the results of Chapter 1.

Lemma 10. Let M = Inv〈X|R〉 be an Adian inverse semigroup, let w ∈ (X ∪ X−1)∗ and let

w1, w2 ∈ X+ label two co-terminal paths in SC(w). Then there exists an S-diagram corresponding

to the pair of words (w1, w2) that embeds in SC(w).

Proof. Since M is E-unitary, SC(w) embeds into the Cayley complex of the group G =

Gp〈X|R〉. So, the word w1w−1
2 labels a closed path in the Cayley complex. Hence

w1w−1
2 =

G
1. So, w1 =

G
w2. It follows from Theorem 1.12.1 that w1 = w2 in Sg〈X|R〉.

So, there exists a regular derivation sequence D from w1 to w2 over the presentation

S = Sg〈X|R〉. The semigroup S embeds into the inverse semigroup M, by Proposition

2. So the regular derivation sequence sequence D also holds in M. The complex

SC(w) is closed under elementary P-expansion and folding and therefore all the 2-cells

corresponding to this regular derivation sequence D already exist in SC(w) between the

paths labeled by w1 and w2. Hence the S-diagram corresponding to the regular derivation

sequence D embeds in SC(w).
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In general for any finite inverse semigroup presentation (X, R), and for any word w ∈

(X ∪ X−1)∗, there are natural birooted graph morphisms for the sequence of approximate

graphs given by Stephen’s procedure for approximating the birooted Schützenberger

graph (α, Γ(w), β).

(α1, Γ1(w), β1)→ · · · → (αn, Γn(w), βn)→ (αn+1, Γn+1(w), βn+1)→ · · · → (α, Γ(w), β)

It was established in Proposition 6 that if M = Inv〈X|R〉 is an Adian inverse semigroup

and w is a positive word, that is w ∈ X+, then all of the maps in the above sequence

are actually embeddings. We may abuse the notation slightly in this case and for each

approximate graph Γn(w) we denote the initial and terminal vertices simply as α and β.

(α, Γ1(w), β) ↪→ · · · ↪→ (α, Γn(w), β) ↪→ (α, Γn+1(w), β) ↪→ · · · ↪→ (α, Γ(w), β)

Recall that for a positive word w ∈ X+, a transversal of an approximate Schützenberger

complex (α, Γk(w), β) is defined to be any positively labeled path in Γk(w) from α to β.

Before proving the main theorem of this chapter we introduce the following definition of

n-th generation transversal of a Schützenberger complex.

Definiton 9. An n-th generation transversal of the Schützenberger complex (α, Γ(w), β)

is a positively labeled path from α to β that can be read in the approximate complex

(α, Γn(w), β) but cannot be read in (α, Γn−1(w), β), for some n ∈N.

When studying certain problems involving an inverse monoid given by a finite presen-

tation (X, R), for example when considering the word problem for M = Inv〈X|R〉, it is

natural to first ask whether it might happen to be the case that all of the Schützenberger

graphs of M are finite. The following theorem, our main theorem for this chapter, shows
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that this question can be reduced to the question of whether or not all Schützenberger

graphs of positive words are finite.

Theorem 3.0.1. Let M = Inv〈X|R〉 be a finitely presented Adian inverse semigroup. Then

the Schützenberger complex of w is finite for all words w ∈ (X ∪ X−1)∗ if and only if the

Schützenberger complex of w′ is finite for all positive words w′ ∈ X+.

Idea of the proof: We assume that the Schützenberger graph of every positive word

is finite and we let w be an arbitrary word, w ∈ (X ∪ X−1)∗. We will use induction on

the number of edges in the Munn tree MT(w) to prove that, the Schützenberger complex

of w is finite. The essential part of the proof involves realizing SC(w) as the limit of a

sequence of finite complexes, via the procedure of Stephen’s P-expansion. We begin with

a finite inverse graph (complex) S that is closed under P-expansions relative to 〈X|R〉.

To the complex S we attach a single edge e that is labeled by some letter, say a ∈ X. The

resulting complex S1 = S ∨ {e} will in general not be closed under P-expansions. In a

process similar to Stephen’s full P-expansion construction, we define a sequence of finite

complexes S1, S2, . . . that converges in the limit to SC(w). Our theorem will be proved if

we can show that this limit is in fact a finite complex. Equivalently, we must prove that

the sequence S1, S2, . . . stabilizes after finitely many steps at some Sk.

Proof. We assume that SC(w′) is finite for all positive words w′ ∈ X+,. Let w be an

arbitrary word, w ∈ (X ∪X−1)∗. We will show that SC(w) is finite, by applying induction

on the number of edges in MT(w).

For the base of our induction, we suppose that MT(w) consists of only one edge,

labeled say by a ∈ X. Then by our assumption about positive words, SC(w) = SC(a) is

finite.

For our induction hypothesis, we assume that SC(w0) is finite for all words w0 ∈

(X ∪ X−1)∗, whose Munn tree consist of k edges. Let w ∈ (X ∪ X−1)∗ be a word such
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that MT(w) consists of k + 1 edges. We will show that SC(w) is finite.

Let α be an extremal vertex of MT(w) (i.e., a leaf of the tree MT(w)), and let e be

the edge of MT(w) that connects α to the remainder of the MT(w). Assume that e is a

positively labeled edge with initial vertex α and terminal vertex β. The case when e is

negatively labeled is dual. The sub-tree obtained by removing the edge e consists of k

edges; we denote this sub-tree by T for our future reference. Note that the tree T is in

fact the Munn tree of some word z ∈ (X ∪ X−1)∗. That is, T = MT(z) and there are k

edges in MT(z). By the induction hypothesis, the Schützenberger complex S generated

by T, i.e., S = SC(z), is a finite complex. There exists a graph morphism φ : T → S, and

so we may regard the vertex β of T as a vertex in the complex S = SC(z). We reattach the

edge e to the vertex β of S and denote the resulting finite complex by S1, (see Figure 3.1.)

The finite complex S = SC(z) was obtained from the subtree T by sewing on relations

from R, and since we reattached the edge e in S1 = S ∨ {e}, then naturally S1 may be

regarded as an approximation to SC(w). While the Schützenberger complex S = SC(z) is

closed under P-expansion, the complex S1 is not necessarily closed under P-expansion.

In particular, it is possible that there may be one or more relations (r, s) ∈ R such that

r labels a path in S1 that begins at vertex α and the other side of the relation, s, is not

read in S1 at α. It is clear that the closure of S1 under P-expansion over 〈X|R〉 is the

Schützenberger complex SC(w).

If the edge e (labeled say, by a) gets immediately identified by folding to an a-labeled

edge of the finite complex S, then we are done, because in that case we would have

SC(w) = S, which was assumed to be a finite complex. So, we assume that the edge e

does not get immediately identified by folding with any of the edges in the finite complex

S. We extend the edge e to all possible maximal positively labeled paths in S1. There are

only finitely many maximal positively labeled paths in S1 with initial edge e because S1 is

a finite complex that has no positively labeled cycles (by Lemma 7). We assume that these
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α

β

e

S

Figure 3.1: S1 = S ∨ {e}

paths are labeled by w1, w2, ..., wn, where wi ∈ X+ for 1 ≤ i ≤ n. Each such wi labels a

path from α to some vertex βi of S. (See Figure 3.2.)

β1

β2

βn

α

β

e

Figure 3.2: S1 with maximal positively labeled paths from α to βi.

In order to complete S1 under elementary P-expansion and folding, we first attach

SC(wi) to the path labeled by wi in S1, for all i, and denote the resulting finite complex

by S′1. (See Figure 3.3.) Each complex SC(wi) for 1 ≤ i ≤ n, is finite since each wi ∈ X+.

Thus we obtain S′1 by attaching to S1 finitely many complexes, each of which is finite, and

so S′1 is finite.
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β1

β2

βn

α

e

SC(w1)

SC(w2)

SC(wn)

Figure 3.3: S′1 is obtained from S1 by sewing on SC(wi) to each maximal positive path,
with label wi, that begins at α in S1.

The complex S′1 is not necessarily determinized. That is, as a consequence of attaching

the complexes SC(wi), there may now be vertices along the paths in S′1 labeled by wi at

which there exist two or more edges labeled by the same letter and so we must perform

foldings to obtain a determinized graph (complex). We denote the determinized form

of S′1 by S2. Since S′1 is finite, then so is its determinized quotient S2. Note however,

as consequence of folding S′1 to S2, that the complex S2 may not be closed under P-

expansions.

And so, we iterate the procedure. In general, the complex Sk may not be closed under

P-expansion. That is, there may be a relation (r, s) ∈ R and a path p labeled by r between

some two vertices v and v′ in Sk such that the other side of the relation, s, does not label

a path in Sk between v and v′. (We refer to such a path p in Sk as an unsaturated path.)

Note that in Stephen’s procedure we would at this stage simply attach a path labeled by

s between v and v′ as one step in the P-expansion. In our setting it turns out, however,

that we can “speed up” Stephen’s procedure. We will show that every such unsaturated

path p can be extended to a positively labeled path that begins at the vertex α. Such a
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path can itself be extended to a maximal positively labeled path that begins at α. So,

instead of merely attaching a single cell along the unsaturated path p that is labeled by r,

we instead read the label, say wj, of the maximal positively labeled path beginning at α

that contains p as a subpath and we attach the (finite) complex SC(wj) along this path.

Thus in this one step we are attaching not only the one cell along the unsaturated path p,

but also are attaching all cells that would arise from P-expansions on the maximal path

labeled by wj.

Our iterative procedure for constructing a sequence {Sn} of complexes can be sum-

marized as follows. Suppose that Sk has been constructed. We first look for all positive

words wi that label a maximal positive path in Sk that starts at the vertex α and that does

not label a path starting at α in S′k−1. We obtain S′k by attaching SC(wi) to each such

maximal positive path in Sk. Then we obtain Sk+1 by determinizing S′k. Thus we obtain a

sequence of finite complexes {Sn} that has SC(w) as its limit.

S1 → S′1 → S2 → · · · → Sk −−−−−−−−−−−−−−−→ S′k −−−−−−−−−−−→ Sk+1 → · · ·
For each maximal positive
path with label wi that starts
at α and does not exist in
S′k−1, attach SC(wi).

Fold. (Determinize.)

A question is whether we ever reach a graph Sk in the procedure such that all maximal

positive paths that can be read at α in Sk can already be read in S′k−1 at α. If this happens,

then the sequence of graphs will stabilize at Sk. Equivalently, we can ask whether we ever

reach a graph Sk such that every maximal positive path in Sk is closed under P-expansion.

(We say that a maximal positive path p is closed under P-expansion if for every relation

(r, s) ∈ R, and for every subpath of p labeled by r between vertices v and v′, then the

other side of the relation, s, already labels a path between v and v′ in Sk).

To answer this question, we analyze how the process of folding S′k to Sk+1 affects
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positively labeled paths that already exist in S′k and how new positively labeled paths may

be created in Sk+1 as a consequence of the folding process. We first note, for example,

that when we fold S′1 to S2 that each of the attached complexes SC(wi) that we attached

to S1 will be embedded in S2 after the folding process. This follows from a fact (see

Stephen, [14]) about E-unitary semigroups: If M is E-unitary and w is any word, and a

word wi can be read along some path of the Schützenberger graph Γ(w), then the entire

Schützenberger graph Γ(wi) will occur as an embedded subgraph of Γ(w) along that

path. Since the theorem we are proving assumes that the semigroup M has an Adian

presentation, we know from the results of Chapter 2 that that M is E-unitary. Thus, each

SC(wi) embeds in S2. Likewise, the original graph S is actually the Schützenberger graph

Γ(z), where the word z labels a path in S1, and so we know that the original graph S

also remains embedded as a subgraph of S2. In other words, no two vertices of any one

graph SC(wi) will become identified with each other and no two vertices of the original

graph S will become identified with each other in the folding process that takes S′1 to S2.

Two vertices of S′1 will become identified in the folding process only if one of the vertices

belongs to the original S and the other vertex belongs to one of the attached SC(wi), or if

the two vertices belong to SC(wi) and SC(wj), with i 6= j. Everything that we just said

about the process of folding S′1 to S2 holds as well for the process of folding S′k to Sk+1.

The original complex S and each complex SC(wi), attached at any step of the iteration,

will be embedded as subcomplexes of Sk+1. The interest is in what new paths may be

formed as a result of folding S′k to Sk+1.

Claim: Suppose that SC(wi) is one of the complexes that was attached to Sk to form S′k.

Suppose, in the process of folding S′k → Sk+1, that a vertex γ of SC(wi) gets identified, as a

consequence of folding, with a vertex γ′ of the original complex S. Then we claim that every

positively labeled path in SC(wi) from γ to βi will get identified by the folding process with a path

in S from the vertex γ′ to βi. Thus, every maximal positive path p that begins at the vertex α in
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Sk+1 and cannot be read beginning at the vertex α in S′k will factor uniquely as p = p1p2, where

p1 is a path in some SC(wi)s and p2 is a path in the original complex S.

Proof of Claim: Since γ gets identified with γ′ through folding, we know (Stephen, [14])

that in S′k there is a path from γ to γ′ labeled by a Dyck word d that we may assume is of

the form d = ss−1, where s ∈ (X ∪ X−1)∗. Further, we may assume that s is a reduced

word. There must be a vertex δ that lies on the path labeled by wi (the intersection of

SC(wi) and S in S′k) so that s labels a path in SC(wi) from γ to δ and s also labels a path

in S from γ′ to δ. (See Figures 3.5 & 3.6.) To prove the above claim we assume that r2

labels an arbitrary positive path in SC(wi) from γ to βi. We need to prove that this path

gets identified by folding with a path in S that is labeled by r2 from γ′ to βi. The path in

SC(wi) that is labeled by r2 can be extended to an nth generation transversal t of SC(wi),

for some n. To complete our proof, we apply induction on the generation number, n, of

the transversal of t of SC(wi).

Suppose that the path labeled by r2 lies on a 1st generation transversal t of SC(wi).

We assume that t ≡ r1r2 where r1 labels the sub-path of t from α to γ and r2 labels the

sub-path of t from γ to βi. Since γ lies on a 1st generation transversal of SC(wi), we

conclude that in the Dyck word path ss−1 that goes from γ to δ to γ′, it must be that

either s is a positive word or s−1 is a positive word. We examine the following three cases.

Case 1. (See Figure 3.4.) Suppose that the vertex δ is actually βi, the terminal vertex of

the path labeled by wi, and suppose the Dyck word labeling the path from γ to γ′ is the

word r2r−1
2 . In this case, the word r2 labels the subpath of the transversal t of SC(wi) from

γ to βi and the word r2 also labels a path from γ′ to βi. These two paths, both labeled by

r2, which meet at the vertex βi, will fold together so that the path labeled by r2 in SC(wi)

from γ to βi gets identified with the path in S from γ′ to βi. So in this case the statement

of the claim obviously holds.
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Figure 3.4: Case 1 for the first generation transversals of the proof of the Claim

Case 2. (See Figure 3.5.) We assume that the Dyck word path from γ to δ to γ′ is

labeled by r3r−1
3 , where r3 is a positive word, r3 ∈ X+. So, the path in SC(wi) from γ to δ

is labeled by r3 and the path in S from γ′ to δ is labeled by r3. The oppositely oriented

paths labeled by r3, which meet at δ, become identified with each other through folding.

We assume that the sub-path from δ to βi, of the maximal path labeled by wi, is labeled

by r4 ∈ X+. Obviously, the path labeled by r4 from δ to βi is in SC(wi) and the path

labeled by r3 from γ to δ is also in SC(wi). Hence the path labeled by r3r4 from γ to βi is

in SC(wi). The positive words r2 and r3r4 label two co-terminal paths in SC(wi). So, by

Lemma 10 an S-diagram corresponding to the pair of words (r2, r3r4) embeds in SC(wi).

This S-diagram also embeds in S, because S contains a path labeled by one side of this

S-diagram, (namely, the path from γ′ to βi in S that is labeled by r3r4), and S is closed

under elementary P-expansion. So, the two S-diagrams corresponding to the pair of

words (r2, r3r4) get identified with each other and our claim holds in this case. That is,

the path in SC(wi) labeled by r2 from γ to βi gets identified with a path in S from γ′ to

βi.
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Figure 3.5: Case 2 for the first generation transversals of the proof of the Claim

Case 3. (See Figure 3.6.) We assume that the Dyck word path from γ to δ to γ′ is

labeled by r−1
3 r3, where r3 is a positive word. So, the path in SC(wi) from δ to γ is labeled

by r3 and the path in S from δ to γ′ is labeled by r3. The oppositely oriented paths labeled

by r3, which meet at δ, become identified with each other through folding. Now we have

the path in SC(wi) labeled by r3r2 from δ to βi in SC(wi). Again, we let the positive

word r4 be the label of the sub-path of the maximal path labeled by wi from δ to βi. The

words r3r2 and r4 label two co-terminal paths in SC(wi). So, by Lemma 10 an S-diagram

corresponding to the pair of words (r3r2, r4) embeds in SC(wi). This S-diagram also

embeds in S, because S contains a path labeled by one side of this S-diagram (namely,

the path labeled by r4) and S is closed under elementary P-expansion. Hence these

two S-diagrams get identified with each other through folding. In particular, the path in

SC(wi) labeled by r2 from γ to βi gets identified with a path in S from γ′ to βi, and so

our claim follows in this case as well. This concludes the base case of the inductive proof

of the claim.

We assume that our claim is true for all paths from γ to βi that lie along a (n− 1)-st
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Figure 3.6: Case 3 for the first generation transversals of the proof of the Claim

generation transversal of SC(wi). We prove that our claim is true for all n-th generation

transversals of SC(wi) as well.

Suppose that an arbitrary path from γ to βi is labeled by the positive word s2 and

suppose that this path extends to an n-th generation transversal t of SC(wi) . Let t ≡ s1s2

where s1 labels the sub-path of t from α to γ and s2 labels the sub-path of t from γ

to βi. Again, since the vertex γ in SC(wi) gets identified with with the vertex γ′ in S

through folding, we know that there is a Dyck word ss−1 that labels a path from γ to γ′.

Since γ lies on an n-th generation transversal of SC(wi), the Dyck word path ss−1 must

pass through some vertex δ of SC(wi) that lies on an (n− 1)-st generation transversal of

SC(wi). We examine the following three cases.

Case 1. Suppose the vertex δ is the vertex βi and we read the Dyck word s2s−1
2 in S′k

from γ to γ′. Then we fold the oppositely oriented paths labeled by s2. So in this case it

is obvious that that path in SC(wi) labeled by s2 gets identified with the path in S from

γ′ to βi.

Case 2. (See Figure 3.7.) Suppose q denotes an (n− 1)-st generation transversal of
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SC(wi) and the vertex δ lies on the transversal q. Assume also that δ has already been

identified with a vertex of S as a consequence of folding along the Dyck word ss−1. In

this case (Case 2), we assume that the portion of the Dyck word path from γ to δ is

labeled by a positive word s3 ∈ X+. Since δ has already been folded and identified

with a vertex of S, we have the Dyck word s3s−1
3 labeling a path from γ to δ to γ′ in the

partially folded S′k. The path in SC(wi) labeled by s3 from γ to δ can be extended along

the (n− 1)-st generation transversal q to the vertex βi. We assume that this path is labeled

by s3s4 ∈ X+, where s4 ∈ X+ labels the sub-path of q from δ to βi. By the induction

hypothesis the sub-path of q from δ to βi gets identified with a path in S. Thus we have

a path in SC(wi) labeled by s3s4 from γ to βi and we also have a path in S labeled by

s3s4 from γ′ to βi. The positive words s2 and s3s4 label two co-terminal paths in SC(wi).

So by Lemma 10 an S-diagram corresponding to the pair of words (s2, s3s4) embeds in

SC(wi). This S-diagram also embeds in S, because S contains the path labeled by one

side of the S-diagram (namely, s3s4) and S is closed under elementary P-expansion. So

the two S-diagrams corresponding to the pair of words (s2, s3s4) get identified with each

other. Hence, the path in SC(wi) labeled by s2 gets identified with a path in S, and the

claim holds in this case.

Case 3. (See Figure 3.8.) Suppose q denotes an (n− 1)-st generation transversal of

SC(wi) and δ is a vertex on the transversal q that has already been identified with a

vertex of S. We also assume that there exists a path, labeled by s3 ∈ X+, from δ to γ

such that we can read the Dyck word s−1
3 s3 from γ to δ to γ′ in S′k. We extend the path

labeled by s3 from δ to γ along the n-th generation transversal t to a positively labeled

path (labeled by s3s2 ∈ X+) from δ to βi. By the induction hypothesis the sub-path of

q from the vertex δ to the vertex βi (say, labeled by s4 ∈ X+) is in S. Hence s3s2 and s4

label two co-terminal paths in SC(wi) and the path labeled by s4 is also in S. By Lemma

10 an S-diagram corresponding to the pair of words (s3s2, s4) embeds in SC(wi). This
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Figure 3.7: Case 2 for the n-th generation transversal of the proof of the claim

S-diagram also embeds in S, because S contains one side of this S-diagram and S is closed

under elementary P-expansion. Thus the two S-diagrams corresponding to the pair of

words (s3s2, s4) get identified with each other and the claim holds in this case as well.

This completes the inductive step in the proof of the claim.
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γ

s1

s2

s3

s4

s3

γ'
δ

β

α

SC(wi)

Figure 3.8: Case 3 for the n-th generation transversal of the proof of the claim
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We perform all possible foldings mentioned in the proof of above claim in S′1 and

denote the resulting complex by S2. In this folding process edges of the complex S are

folded with the edges of SC(wi) for some i. This folding process may create new maximal

positively labeled paths starting from α that did not exist in S′1.

For example, S′1 may contain a path labeled by r−1
3 r5 for some r5 ∈ X+ starting from

the vertex βi as shown in the Figure 3.9. After folding the path labeled by r3r−1
3 , we can

read a new positively labeled path starting from α and labeled by r1r5 which could not be

read in S′1.

fold
γ γ'

βi

r3

SC(wi)

e

α

β

r
2

r
1

r3

r5

γ

βi

r3

SC(wi)

e

α

β

r
2

r
1

r5

Figure 3.9: An example showing the construction of new maximal positively labeled
paths starting from α as a consequence of folding of edges in S′1

It is also possible that S′1 may contain a path labeled by r4r5 for some r5 ∈ X+ starting

from the vertex δ as shown in the following diagram. After folding the path labeled

by r−1
4 r4, we can read a new positively labeled path starting from α and labeled by r1r5

which could not be read in S′1.

Now we consider all those maximal positively labeled paths in S2 that start from α

and did not exist in S′1. Since there are only finitely many such paths, we assume that

these paths are labeled by u1, u2, ..., um and for each i ∈ {1, 2, ..., m} the path labeled by ui

terminates at the vertex γi. Note that each maximal path labeled by ui must terminate at
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fold

r5
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Figure 3.10: An example showing the construction of new maximal positively labeled
paths starting from α as a consequence of folding of edges in S′1

a vertex γi that is in the original complex S. Then SC(ui) for each i is finite by hypothesis.

So, we attach SC(ui) at the path labeled by ui for all i and denote the resulting complex

by S′2.

If the paths labeled by ui and uj for some i 6= j are co-terminal, then by the same

argument as above SC(ui) and SC(uj) are isomorphic to each other as edge labeled

graphs. So, they get identified with each other.

If for some i, SC(ui) contains a transversal labeled by t ∈ X+ such that θ( 6= γi) is the

first vertex of u that gets identified with a vertex in S2, then the entire positively labeled

sub-path of t from θ to γi gets identified with a positively labeled path in S2. This can be

verified by using the same argument as above.

We perform all possible foldings in S′2 and denote the resulting complex by S3. In

this folding process edges of the complex S are folded with the edges of SC(ui) for some

i.This folding process may create new maximal positively labeled paths starting from α

that did not exist in S′2. So, we repeat this entire process again.

We keep repeating this process of sewing finite Schützenber complexes of positive

words and folding unless we reach to the point where we can not create new maximal
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positively labeled paths starting from α and terminating at a vertex in the complex S.

This process of expansion and folding eventually terminates, because 〈X|R〉 is a finite

presentation, therefore an edge labeled by a letter can only be incident with finitely

many 2-cells and there are only finitely many edges in S as S is a finite complex. By

construction, the resulting complex is deterministic and closed with respect to elementary

P-expansions, so it is the Schützenberger complex of w. So, the Schützenberger complex

of w is finite.
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Chapter 4

The word problem for some classes of

Adian inverse semigroups

4.1 The word problem for a sub-family of Adian inverse

semigroups that satisfy condition (?)

Definiton 10. We say that a positive presentation 〈X|R〉 satisfies condition (?), if it

satisfies the following two conditions:

1. No proper prefix of an R-word is a suffix of itself or any other R-word.

2. No proper suffix of an R-word is a prefix of itself or any other R-word.

If 〈X|R〉 is a finite Adian presentation that satisfies condition (?), then the set of

relations R consists of two types of relations. First, those relations which are of the form

(u, xvy), where u and v are R-words and x, y ∈ X+. Second, those relations (u, v) ∈ R

where neither u nor v contains an R-word as a proper sub-word. We construct a directed

graph corresponding to an Adian presentation that satisfies condition (?) as follows. We
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call this graph the bi-sided graph of the presentation 〈X|R〉. The bi-sided graph of a

positive presentation is defined as follows.

Definiton 11. The bi-sided graph of the presentation 〈X|R〉 is a finite, directed, edge-

labeled graph, denoted by BS(X, R) satisfying

• The vertex set of BS(X, R) is the set of all R-words.

• To define the edge set of BS(X, R), let u, v be two R-words (where it may happen

that u and v are the same R-word). There is a directed edge from the vertex u to the

vertex v if any of the following three conditions holds:

1. (u, xvy) ∈ R, for some x, y ∈ X+. In this case, the directed edge from u to v is

labeled by the ordered pair (x, y).

2. u ≡ xvy, for some x, y ∈ X+ and u and v are distinct R-words. In this case, the

edge from u to v is labeled by the ordered pair (x, y).

3. If (u, v) ∈ R is such that neither u nor v contains any R-word as a proper sub-

word, then there is an edge in the bi-sided graph between u and v, pointing in

both directions. This edge is labeled by (ε, ε), where ε denotes the empty word.

In general, the bi-sided graph BS(X, R) of an Adian presentation may contain closed

paths.

Example 4. The bi-sided graph of the Adian presentation 〈a, b|aba = b〉 contains a

directed closed path (cycle), namely the loop consisting of the single edge labeled by

(a, a) from the vertex b to itself. (See Figure 4.1.) The presentation 〈a, b|aba = b〉 does not

satisfy condition (?) either, because the R-word aba has the letter a as a prefix and as a

suffix.
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b aba

(a,a)

(a ,a )

Ed g e  o f t y p e  1

Ed g e  o f t y p e  2

Figure 4.1: The bi-sided graph of 〈a, b|aba = b〉 contains a cycle, (the loop at vertex b).

Example 5. The bi-sided graph of the Adian presentation 〈a, b, c, d, e, f , g, h, i, j, k|a =

f bg, a = jck, b = hci, c = de〉 contains an undirected closed path. (See figure 4.2.) The

presentation 〈a, b, c, d, e, f , g, h, i, j, k|a = f bg, a = jck, b = hci, c = de〉 satisfies condition

(?).

a

b

c

(f, g) (h, i)

(j, k)

(h, i)

(f, g)

(j, k)

(ε, ε)
de

hci jck

fbg
Edges of type 1

Edge of type 3

Edges of type 2

Edge of type 2

Figure 4.2: The bi-sided graph of 〈a, b, c, d, e, f , g, h, i, j, k|a = f bg, a = jck, b = hci, c = de〉

Example 6. The bi-sided graph of the Adian presentation 〈a, b, c, d, e, f , g, h, i, j, k, l, m|a =

f cg, b = hci, c = de, l = jm2k〉 is a forest. (See figure 4.3). The presentation 〈a, b, c, d, e, f , g, h, i, j, k, l, m|a =

f cg, b = hci, c = de, l = jm2k〉 satisfies condition (?).

Remark 4. For the remainder of this section we consider presentations 〈X|R〉 such that
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a b

l jm2kde

c

fcg hci

(h, i)

(h, i)(f, g)

(f, g)

(ε, ε) (ε, ε)

Edges of type 1

Edges of type 2
Edges of type 3

Figure 4.3: The bi-sided graph of 〈a, b, c, d, e, f , g, h, i, j, k, l, m|a = f cg, b = hci, c = de, l =
jm2k〉

1. 〈X|R〉 is an Adian presentation.

2. 〈X|R〉 satisfies condition (?).

3. The bi-sided graph BS(X, R) is cycle-free. That is, there are no closed paths, directed

or un-directed, in BS(X, R). In other words, BS(X, R) is a forest.

Note that if the bi-sided graph of a presentation 〈X|R〉 is a forest, then every R-word

labels a vertex of a connected component in BS(X, R) that is a tree. For an R-word u,

we let Tu denote the unrooted tree that contains the vertex u and we refer to Tu as the

bi-sided tree of u. If u and v label two different vertices of the same bi-sided tree, then

Tu and Tv denote the same unrooted, bi-sided tree.

Definiton 12. Let u be an R-word. We say that a vertex labeled by v of Tu is accessible

from u if there exists a path labeled by v in SC(u).

Note that if there exists a directed edge from v1 to v2 in the bi-sided tree of u and v1 is

accessible from u then v2 is also accessible from u. Because if v1 is accessible from u, then

there exists a path labeled by v1 in SC(u). Since there exists a directed edge from v1 to v2
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in the bi-sided tree of u therefore either (v1, xv2y) ∈ R or v1 ≡ xv2y for some x, y ∈ X+.

In either case there exists a path labeled by v2 in SC(u).

However, if v2 is accessible from u, and there is an edge in BS(X, R) from v1 to v2,

then v1 is not necessarily accessible from u. Also, if a vertex v of Tu is not accessible from

u then all of the vertices of Tu that lie after the vertex v going along any geodesic path

from u to an extremal vertex of Tu are also not accessible.

Lemma 11. Let M = Inv〈X|R〉 be a finitely presented Adian inverse semigroup that satisfies

condition (?) and (such that) BS(X, R) contains no closed paths. Then SC(u) is finite, for every

R-word u.

Proof. We start from the linear automaton (α, Γ0(u), β) and obtain the approximate com-

plex (α, Γ1(u), β) by applying full P-expansion on (α, Γ0(u), β).

In the construction of (α, Γ1(u), β), we attach a path labeled by one side of a relation

whose other side can be read in (α, Γ0(u), β). In the linear automaton (α, Γ0(u), β) we

can precisely read u and all those R-words that are proper subwords of u. Each relation

of R with one side u is either of the form (u, xvy) for some x, y ∈ X+ and an R-word v

or of the form (u, v) where v contains no R-word as its proper subword. The first case

corresponds to an edge of “type 1” in Tu and the second case corresponds to an edge

of “type 3” in Tu. Any R-word u1 that is a proper subword of u corresponds to an edge

of ”type 2” in Tu, where u ≡ xu1y for some x, y ∈ X+. Thus, in performing Stephen’s

P-expansion to obtain Γ1(u) from Γ0(u), there is a precise correspondence between first

generation transversals of SC(u) and the edges of Tu whose initial vertex is either labeled

by u or labeled by an R-word that is a proper subword of u.

If there exists an edge of type 1 or type 2 labeled by (x, y) for some x, y ∈ X+ from a

vertex labeled by an R-word v to the vertex u in Tu, then either (v, xuy) ∈ R or v ≡ xuy.

We show that no generation 1 transversal contains a subpath labeled by v. In other words,
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we show that v is inaccessible from u.

Note that we cannot read the word xuy in the linear automaton (α, Γ0(u), β) because

(α, Γ0(u), β) contains only one path from α to β that is labeled by the word u. So,

if (v, xuy) ∈ R then we cannot attach a path labeled by v to the linear automaton

(α, Γ0(u), β) and if v ≡ xuy then we cannot read a path labeled by v in (α, Γ0(u), β)

because it is longer than the path labeled by u.

We obtain the approximate complex (α, Γ2(u), β) by applying the full P-expansion on

(α, Γ1(u), β). We observe that the second generation transversals of SC(u) are obtained

as a consequence of attaching paths labeled by those R-words which label the terminal

vertices of those edges of Tu whose initial vertex is either a first generation transversal

or a proper subword of an R-word that labels a first generation transversal of SC(u).

If there exists an edge in BS(X, R) labeled by (x1, y1) for some x1, y1 ∈ X∗ with initial

vertex labeled by v1 and terminal vertex labeled by v2 such that x1v2y1 is a subword of

an R-word that labels a first generation transversal, then we obtain a second generation

transversal by sewing on a path labeled by v1 from the initial vertex to the terminal vertex

of the of the path x1v2y1.

If there exists an edge of type 1 or type 2 labeled by (x1, y1) with initial vertex v1 and

terminal vertex v2 (i.e. either (v1, x1v2y1) ∈ R or v1 ≡ x1v2y1 ) such that v2 is a subword

of an R-word that labels a first generation transversal but x1v2y1 is not a subword of that

transversal, then we cannot attach a path labeled by v1 to (α, Γ1(u), β). So, none of the

vertices of Tu that occur after the vertex v1 going along a path from the vertex u to an

extremal vertex of Tu will be accessible from u in SC(u).

We observe that when we apply full P-expansion on (α, Γn(u), β) for some n ∈ N,

we cover some more vertices of Tu that were not covered before in the sense that we add

some new transversals that contains an R-word that labels a vertex of Tu and that R-word

does not label a path in (α, Γn(u), β). Since Tu is a finite tree and none of the R-word
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label two distinct vertices of Tu therefore the process of applying full P-expansion must

terminate after a finite number of steps. Hence SC(u) is finite.

Lemma 12. Let M = Inv〈X|R〉 be an Adian inverse semigroup. Let u be an R-word and z labels

a proper suffix of a transversal p of SC(u). Then either

(i) z contains an R word that also labels a subpath of p, or

(ii) A prefix of z is a suffix of some R-word that also labels a subpath of p.

Proof. If z does not contain an R-word that also labels a subpath of the transversal p then

the initial vertex of the path labeled by z is not the initial vertex of any R-word that labels

a subpath of p. Hence the initial vertex of z lies between a pair of vertices of p that are

the initial and the terminal vertex of a subpath of p that is labeled by an R-word. Hence a

prefix of z is a suffix of an R-word.

We also remark that a dual statement also holds for a prefix of a transversal of the

Schützenberger complex of an R-word over an Adian presentation.

Remark 5. In Lemma 12, if the presentation 〈X|R〉 satisfies condition (?) and z happens

to be a prefix of an R-word, then only (i) holds, because (ii) violates the condition (?).

Similarly, in the dual statement to Lemma 12, if the presentation 〈X|R〉 satisfies

condition (?) and z happens to be a suffix of an R-word, then only (i) holds, because (ii)

violates the condition (?).

Theorem 4.1.1. Let M = Inv〈X|R〉 be a finitely presented Adian inverse semigroup that

satisfies condition (?) and BS(X, R) contains no closed path. Then SC(w) is finite, for all

w ∈ (X ∪ X−1)∗. Hence the word problem is decidable for M.
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Proof. We just need to show that SC(w) is finite for all w ∈ X+ and then the above

theorem follows from Theorem 3.0.1. So, we assume that w ∈ X+ and we construct the

linear automaton of w, (α, Γ0(w), β).

It follows from condition (?), that no two distinct R-words will overlap with each

other. However, an R-word can be a proper subword of another R-word. So, we can

uniquely factorize w as x0u1x2u2...unxn, where xi ∈ X∗ and ui’s are maximal R-words in

the sense that none of the ui’s are properly contained in another R-word that is also a

subword of w.

It follows from Lemma 11, that SC(ui) is finite for all 1 ≤ i ≤ n. So, we attach SC(ui)

for all 1 ≤ i ≤ n to the corresponding paths labeled by ui’s in (α, Γ0(w), β) to construct

SC(w) and denote the resulting complex by S1. It follows from Lemma 9, that no two

edges get identified with each other as a consequence of attaching SC(ui) for all 1 ≤ i ≤ n

to the linear automaton (α, Γ0(w), β). If S1 is closed under elementary P-expansion, then

we are done. Otherwise, we will be able to read a finite number of R-words labeling the

paths of S1 where we can attach new 2-cells by sewing on paths labeled by the other sides

of the corresponding relations.

We assume that v1, v2, ..., vm are the R-words that label the paths of S1 where we can

attach new 2-cells. Note that each of vi labels a vertex of Tuj for some i and j, that was

inaccessible from uj earlier. Because if vi labels a path in S1 then by Lemma 12 and

Remark 5 the path labeled by vi contains an R-word rj as a proper subword such that

the R-word rj labels a path in SC(uj). In other words, rj labels an accessible vertex of Tuj

from the vertex uj. Since rj is a proper subword of vi, therefore there exists an edge of

type 2 in Tuj with initial vertex labeled by vi and the terminal vertex labeled by rj. So,

Tvi and Tuj represent the same tree for some i and j. By Lemma 11, SC(vi) is finite for

all 1 ≤ i ≤ m and cover some more vertices of Tuj in the sense that SC(vi) contain paths

labeled by those R-word which also label some of the vertices of Tuj , for some 1 ≤ j ≤ n,
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that were not covered by SC(uj).

We attach SC(vi) to the paths labeled by vi for all 1 ≤ i ≤ m in S1 and denote

the resulting complex by S2. No two edges get identified with each other in S2 as a

consequence of attaching SC(vi)’s to S1 by Lemma 9. If S2 is closed under elementary P-

expansion then we are done. Otherwise we repeat this process of attaching Schützenberger

complexes of R-words and capturing more vertices of the trees Tui for some 1 ≤ i ≤ n.

This process eventually terminates, because, each Tui is a finite tree with all the vertices

labeled by distinct R-words and every R-word labels a vertex of exactly one tree. Hence,

SC(w) is a finite complex.

4.2 The word problem for Inverse semigroups given by

the presentation 〈a, b|abm = bna〉

In this section we show that the word problem is decidable for the inverse semigroup

given by the presentation M = Inv〈a, b|abm = bna〉, where m, n ∈N. The word problem

for the case case m = n follows from Corollary 6.6 of [14]. So, throughout this section

we assume that m > n. The case m < n follows from a dual argument. We can get an

alternate proof for the case n = m by following along same lines as in the case of m < n.

Lemma 13. The Schützenberger complex of a word akbt for k, t ∈ N, over the presentation

〈a, b|abm = bna〉, is finite.

Proof. We adopt a slightly different approach to construct SC(akbt). We draw edges

labeled by a horizontally and edges labeled by b vertically. Then the linear automaton of

akbt, (α0, Γ0(akbt), β0), is shown in Figure 4.4. If t < m, then we cannot attach any 2-cell

to (α0, Γ0(akbt), β0). So, the above lemma is true for this case.
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If t ≥ m, then t = q1m + r1, where q1 is the quotient and r1 is a remainder and

0 ≤ r1 < m. We can attach q1 2-cells in the first column along the vertical segment labeled

by bt of (α0, Γ0(akbt), β0). After attaching all the 2-cells in the first column along the

vertical segment labeled by bt we have created a new vertical segment labeled by bnq1 ,

because there are total q1 2-cells and each 2-cells contains exactly n edges on the newly

attached side of the 2-cell.
β0

α0 a

a

a

a

a

b
m

b
m

b
t

b
n

b
n

b
r
1

Figure 4.4: Construction of SC(akbt).

If nq1 < m or k = 1 then the process of attaching new 2-cells terminates at this stage. If

neither nq1 < m nor k = 1, then nq1 = q2m + r2, where q2 is a quotient, r2 is a remainder

and 0 ≤ r2 < m. So, We can attach a column of q2 2-cells along the vertical segment

labeled by bnq1 . This process of attaching columns of new 2-cells terminates after at most

k steps. So, SC(akbt) is a finite complex.

Remark 6. In the above construction of SC(akbt) in Lemma 13, every new maximal

vertical segment contains fewer edges than the other vertical side of the same column of

2-cells.

Lemma 14. The Schützenberger complex of a word btak for k, t ∈ N, over the presentation

〈a, b|abm = bna〉, is finite.
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Proof. We draw edges labeled by a horizontally and edges labeled by b vertically. Then

the linear automaton of btak, (α0, Γ0(btak), β0), is shown in Figure 4.5. If t < n, then we

cannot attach any 2-cell to (α0, Γ0(btak), β0). So, the above lemma is true for this case.

If t ≥ n, then t = q1n + r1, where q1 is the quotient and r1 is a remainder and

0 ≤ r1 < n. We can attach q1 2-cells in the first column along the vertical segment labeled

by bt of (α0, Γ0(akbt), β0). After attaching all the 2-cells in the first column along the

vertical segment labeled by bt we have created a new vertical segment labeled by bmq1 ,

because there are total q1 2-cells and each 2-cells contains exactly m edges on the newly

attached side of the 2-cell.
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Figure 4.5: Construction of SC(btak).

If k = 1 then the process of attaching new 2-cells terminates at this stage. Otherwise

mq1 = q2n + r2, where q2 is a quotient, r2 is a remainder and 0 ≤ r2 < n. So, We can

attach a column of q2 2-cells along the vertical segment labeled by bmq1 . Clearly, this

process of attaching columns of new 2-cells terminates after k steps. So, SC(btak) is a

finite complex.
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Remark 7. In the above construction of SC(btak) in Lemma 14 every new maximal vertical

segment contains more edges than the other vertical side of the same column of 2-cells.

Theorem 4.2.1. For all w ∈ {a, b, a−1, b−1}∗ the Schützenberger complex of a word w, SC(w),

over the presentation Inv〈a, b|abm = bna〉 is finite. Hence the word problem is decidable for M.

Proof. Since 〈X|R〉 is an Adian presentation, we just need to show that SC(w) for all

w ∈ {a, b}+ is finite, then Theorem 4.2.1 follows from Theorem 3.0.1.

If w is of the form ak or bk for some k ∈N, then SC(w) is finite.

We assume that w ≡ ak0bt0 ak1bt1 ...akl btl , where k0, tl ∈ N ∪ {0} and ki, tj ∈ N for

1 ≤ i ≤ l and 0 ≤ j ≤ l − 1.

We construct SC(w) by drawing the edges labeled by a horizontally and the edges

labeled by b vertically. So, (α0, Γ0(w), β0) looks like the diagram shown in Figure 4.6. We

attach SC(aki bti) on the path labeled by aki bti of (α0, Γ0(w), β0) wherever it is possible to

attach and we denote the resulting complex by S1. No two edges get identified with each

other as a consequence of attaching these finite complexes to (α0, Γ0(w), β0) by Lemma

9. As a consequence of attaching these finite complexes to the (α0, Γ0(w), β0), we have

created at most l − 1 new maximal directed paths labeled by akbt for some k, t ∈N.

We attach finite complexes of the form SC(akbt) to every new maximal path labeled

by a word of the form akbt for some k, t ∈N in S1. We denote the resulting complex by

S2. Again by Lemma 9, no two edges get identified with each other in S2. We can read

at most l − 2 new maximal directed paths in S2 which are labeled by the words of the

form akbt for some k, t ∈ N. So, we repeat the process attaching finite Schützenberger

complexes of the words of the form akbt where ever it is possible to attach and denote

the resulting complex by S3. Note that this process of attaching finite Schützenberger

complexes of the words of the form akbt eventually terminates after at most l steps. We

denote the resulting complex by S′.
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a
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a
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a
k2

b
t0

b
t1

b
t2

α0

β0

Figure 4.6: (α0, Γ0(w), β0)

Now in S′, on the other side of the path labeled by w, we attach finite Schützenberger

complexes of the words bti aki+1 at the paths labeled by bti aki+1 for 0 ≤ i ≤ l − 1, where

ever it is possible to attach and denote the resulting complex by S′1. By Lemma 9 no

two edges in S′1 get identified with each other as a consequence of attaching these finite

complexes. As a consequence of attaching these finite complexes we have created at

most l − 1 new maximal paths which are labeled by the words of the form btak for some

k, t ∈N. So, we repeat the process of attaching finite Schützenberger complexes of the

words of the form btak at the corresponding new paths in S′1. We denote the resulting

complex by S′2. This process of attaching finite complexes of the words of the form btak

terminates after at most l steps and we obtain a finite complex which is closed under

elementary P-expansion and folding. Hence, SC(w) is a finite complex.
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