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Dynamic hyperpolarizability and two-photon detachment in the presence
of a strong static electric field: Application to HÀ

M. V. Frolov and N. L. Manakov
Physics Department, Voronezh State University, 394693, Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
~Received 30 November 2000; revised manuscript received 13 April 2001; published 13 July 2001!

Our recent analysis@J. Phys. B33, R141~2000!# of the problem of H2 in both laser and strong static electric
fields, which treated effects that are linear in the laser intensityI ~e.g., the dynamic polarizability and the
single-photon detachment cross section!, is extended here to treat effects of higher order (;I 2) in the laser
intensity ~e.g., the dynamic hyperpolarizability, the two-photon detachment cross section, the linear inI cor-
rections to the single-photon detachment rate, etc!. We introduce the concept of the dynamic hyperpolarizabil-
ity of an atom in the presence of a strong electric field based on the complex quasienergy approach with
properly normalized, quasistationary quasienergy wave functions. Our analysis of the general structure of the
dynamic hyperpolarizability tensor of an atom in a nondegenerate (S-! state is performed for arbitrary field
geometries and laser polarizations. The connection of the hyperpolarizabilityg(F;v) to the complex quasien-
ergy and to atomic ionization rates is established. Analytic results~in terms of Airy functions! are obtained for
five irreducible components of a hyperpolarizability tensor~that are independent of the laser polarization and
the field geometry! for the case of a weakly bound electron in a three-dimensional, zero-range potential. These
results are used for the analysis of the frequency, field geometry, and laser polarization dependence of the
two-photon detachment rate as well as of the linear in laser intensity corrections to the single-photon detach-
ment rate. It is shown that the oscillatory behavior of the frequency dependence of both the real and the
imaginary parts ofg(F;v) exists for both the coplanar and orthogonal field geometries, and that this behavior
is qualitatively different for frequencies below and above the single-photon detachment threshold. The thresh-
old behavior of the two-photon detachment rate is analyzed in detail and the static electric-field-induced
modification of Wigner’s threshold law for a short-range potential is discussed.

DOI: 10.1103/PhysRevA.64.023417 PACS number~s!: 32.80.Rm, 32.10.Dk, 32.80.Fb, 32.80.Gc

I. INTRODUCTION

Various methods have been discovered for controlling the
outcome of particular laser-atom interactions. These methods
include phase control in two-color experiments, polarization
control by varying the polarization of the incident laser light,
control by means of static fields, and control by combina-
tions of these approaches. Particularly useful for controlling
laser-atom processes are analytical theoretical results that
predict the functional dependence of particular experimental
observables on the control parameters. The point is that usu-
ally physical problems involve many parameters. For in-
stance, for the problem considered here involving the joint
action of laser and static fields, even for a fixed laser inten-
sity there are five independent parameters: the frequency and
polarization state of the laser beam, the static field strength,
and the two angles describing the orientation of the static
field with respect to the laser polarization ellipse. For such
problems, time-consuming, completely numericalab initio
calculations are typically performed only for limited sets of
the control parameters, and hence, these relatively few re-
sults are only helpful as reference points for the generally
less laborious analyses based on simple, analytically solv-
able, models that cover the entire parameter space. In laser-
atom physics, as in other fields, however, there are relatively
few problems which permit analytic theoretical solutions.

One model system that does have analytical theoretical

solutions for problems of interest in laser-atom physics is
that of an electron bound in a short-range,d-function poten-
tial @1#. Although this model is applicable generally to rep-
resent only a short-range potential~e.g., as for a weakly
bound electron in H2), the complex quasienergy solution for
a d potential in a strong monochromatic field@2# has been
employed widely in laser-atom calculations and allows one
to obtain a number of qualitative features that have been
observed in real atoms, such as, e.g., the plateau structure in
high-order harmonic generation@3#. In a recent review@4#,
we have employed the quasistationary, quasienergy approach
to obtain the complex quasienergy for an electron bound in
the three-dimensional,d-function potential in the presence of
both a laser field and a strong static electric field. Generally,
from the complex quasienergy, one is able to obtain the de-
cay rate of an~initially bound! atomic system in both strong
laser and static electric fields. In our review, we gave a com-
plete account of the lowest order~linear! in laser intensity
effects, which are entirely described in terms of the static-
field-dependent, ~two-component! dynamic polarizability
tensor. In particular, the photodetachment cross section is
deduced from the imaginary part of the dynamic polarizabil-
ity. In this paper we extend those results to the next order in
the laser intensity, i.e., we treat the dynamic hyperpolariz-
ability tensor~involving five independent components! in the
presence of a strong static field and analyze the decay rates
of second order in the laser intensity, which describe two-
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photon detachment as well as the linear in laser intensity
corrections to the single-photon detachment rate.

The subject of laser-atom interactions in the presence of a
static electric field has a long history, which we have briefly
reviewed in Ref.@4#. We note here therefore only some
works that have focused on multiphoton processes in the
presence of a static electric field, and which are therefore of
greatest relevance to the work presented here. Arutyunyan
and Askar’yan@5# have given a qualitative overview of mul-
tiphoton detachment in the presence of a static electric field.
Nikishov @6# has analyzed the special case of a low-
frequency, linearly polarized laser field. Slonim and Dalid-
chik @7# have analyzed the special case of a circularly polar-
ized laser beam collinear with the static electric field.
Manakov and Fainshtein@2# ~see also@8#! have analyzed the
static field ionization~tunneling! from a harmonic of the
quasienergy state in a monochromatic laser field. Ostrovsky
and Telnov@9# have performed a general analysis of multi-
photon detachment for the case of a strong laser field and a
weak static electric field. Gao and Starace@10# presented
analytic formulas forn-photon detachment of an electron
bound in a short-range potential in the presence of a strong
static electric field in the limit of weak laser intensities; how-
ever, their approach ignores rescattering effects~i.e., the in-
teraction of the escaping electron with the atomic core in
both intermediate and final states!. Baoet al. @11# presented
results for the two-photon detachment cross section includ-
ing the effect of rescattering processes. We note also com-
pletely numerical, nonperturbative calculations of laser de-
tachment of Li2 @12# and H2 @13# in the presence of a static
field that take into account electron correlation effects. These
calculations show that many-electron effects do not change
the qualitative predictions of previous single-electron analy-
ses of the static-field-induced oscillatory structure and of the
threshold behavior of photodetachment rates. Mercouris and
Nicolaides@14# have performed also nonperturbative many-
electron calculations of multiphoton~including above-
threshold! detachment of H2 in the presence of a static elec-
tric field; however, their numerical results are presented for
only two laser frequencies and two values of the static field
strength for fixed laser polarization, intensity, and field ge-
ometry.

In this paper we present in Sec. II a general analysis of the
response of an atom to a laser field in the presence of a static
electric field in the limit that the laser field amplitude is
treated as a perturbation parameter. Our analysis treats all
terms of second order in the laser intensity, which may be
analyzed in terms of the hyperpolarizability tensor, similarly
to the case of zero static field. Of course, in the presence of
a static electric field, the general structure of the hyperpolar-
izability tensor is more involved. We use general symmetry
and perturbation theory arguments to extract the dependence
of the atomic response on the geometry of the fields and on
the polarization of the laser and establish that the hyperpo-
larizability tensor of an atom for the case considered in-
volves five independent~irreducible! components that are
functions only of the laser frequency and the static field
strength. Also in Sec. II we relate the ‘‘generalized’’ hyper-
polarizability ~composed of a set of these five irreducible

components! to the complex quasienergy of the bound
atomic state.

The results of Sec. II are very general and applicable to
any atomic system in a nondegenerate~e.g.,S) state. In Sec.
III we carry the theoretical analysis further by considering
the special case of an electron bound by a short-range,
d-function potential. We present here analytic expressions
for the two most important components of the hyperpolariz-
ability tensor in terms of Airy functions and present numeri-
cal results for the generalized hyperpolarizability, which de-
scribes the Stark-shift and broadening~i.e., the decay rate! of
a weakly bound level, taking into account the quadratic in
laser intensity terms. To our knowledge there are no other
results on static-field-dependent dynamic hyperpolarizabili-
ties of negative ions with which we can compare in order to
determine the accuracy of our zero-range potential model
description of these complicated atomic parameters. How-
ever, for the case of zero static field, such results are avail-
able for H2 both in a zero-range potential model@15# treat-
ment and in nonperturbative@16# and perturbative~in the
laser field! @17# many-electron numerical treatments employ-
ing correlated wave functions. In Sec. III B 1 we recover the
result of Manakovet al. @15# as a special case of our more
general results and we compare that with the numerical re-
sults of Nicolaides, Mercouris, and Piangos@16# and of Pipin
and Bishop@17#. The comparison shows reasonable agree-
ment ~within about 10%! with the most accurate many-
electron results in Ref.@17#.

In Sec. IV we analyze in more detail the two-photon de-
tachment cross section for the H2 ion in the presence of a
strong static field~i.e., the imaginary part of the generalized
hyperpolarizability!, presenting both analytical and numeri-
cal results. These results show that there are far more possi-
bilities to control two-photon detachment by variation of the
field parameters, the laser polarization, and the geometry of
the two fields than are possible for the one-photon detach-
ment process. For the energy region above the single-photon
detachment threshold, we present our results for the total rate
for laser detachment, which includes contributions from both
the ~above threshold! two-photon detachment process and
the linear in laser intensity corrections to one-photon detach-
ment. We know of no other works that have treated the latter
corrections. Our results show that they can be negative, im-
plying that they reduce the one-photon detachment rate. Fi-
nally, in Sec. V we present some conclusions.

II. GENERAL FEATURES OF THE DYNAMIC
HYPERPOLARIZABILITY TENSOR OF A BOUND S STATE

IN THE PRESENCE OF A STRONG STATIC
ELECTRIC FIELD

A. Definitions and notation

We consider the interaction of an atomic system with two
fields, a static electric field,F, and a monochromatic laser
field having an arbitrary elliptic polarization,

F~ t !5F Re$eexp@2 i ~vt2k•r !#%. ~1!

The length gauge is used for the dipole interaction Hamil-
tonian:
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V~r ,t !5ueu~F~ t !1F!r . ~2!

The most general geometry for the applied fields is con-
sidered, namely, that the direction of the vectorF is defined
by the polar anglesu, f in the coordinate frame whosez axis
is directed along the wave-vectork5 k̂v/c of the elliptically
polarized laser fieldF(t) and whosex axis is along the major
semiaxis of the polarization ellipse, defined by the unit vec-
tor ê. The following parametrization of the unit complex
polarization vectore (e•e* 51) is used for an elliptically
polarized fieldF(t) with ellipticity parameterh:

e5
ê1 ih k̂3 ê

A11h2
, 21<h<1, ~3!

where h50 corresponds to linear polarization, andh5
11(21) corresponds to right~left! circular polarization.
These relationships are illustrated in Fig. 1 , where the unit
vectore0 defines the direction of a static field,F5Fe0, and
where the angleQ is the only one which enters the results
for the case of a linearly polarized fieldF(t), where cosQ
5sinu cosf. Instead of the ellipticityh, it is often conve-
nient to employ the degrees of linear~l! and circular (j)
polarization, which have invariant forms in terms of the vec-
tors e ande* :

l 5
12h2

11h2 5e•e5e* •e* , j5
2h

11h25 i k̂•~e3e* !.

~4!

As shown in @4#, the dynamic polarizability as well as
higher susceptibility tensors of a decaying system~whose
decay, e.g., may be by means of field ionization in a strong
static field and/or by means of laser-induced ionization! are
determined by the Fourier component,d̃v , of the field-
induced ‘‘dual’’ dipole moment

d̃~ t !5~1/2!(n52`
` d̃nv exp~2 invt !.

.

In contrast with the usual definition of the dipole moment
d(t) of a stable system, this~dual! dipole momentd̃(t) is
generally complex, and its Fourier componentsd̃v and d̃2v

are related by the condition

d̃2v5d̃vue→e* . ~5!

In terms of the quasistationary, quasienergy state~QQES!
wave function,Fe(r ,t), and its dual function,F̃e(r ,t), the
definition of d̃6v is @4#:

d̃6v5
2

TE0

T

dte6 ivt^F̃e~r ,t !ud̂uFe~r ,t !&, T52p/v

~6!

where d̂ is the dipole moment operator@18#. These results
are valid for an arbitraryF ~and forF5” 0). If we confine
ourselves to the case of moderate or weakF, but assume that
F may be strong, the following perturbative expansion inF
is valid:

d̃v5Fd̃(1)1F3d̃(3)1•••, ~7!

where d̃(n) are F-independent vectors. The result in Eq.~7!
follows simply from the perturbative expansion ofFe and
F̃e in F and from parity selection rules.

B. Symmetry requirements

Although explicit expressions for the vectorsd̃(n) require
explicit expressions for the QQES functionsFe andF̃e, the
geometrical and polarization dependence of these matrix el-
ements can be deduced using only very general arguments
based on symmetry considerations. Specifically, the vectors
d̃(n) can be presented in terms of the vectors that appear in
our problem~i.e., e, e* ande0) and the corresponding polar-
izabilities, which forn.1 are nonlinear polarizabilities~or
susceptibilities!. Since each vectord̃(n) ~with n52k11) is
determined by thenth order of perturbation theory~PT! in F
@cf. Eq. ~7!#, its general form must comprise (k11) vectors
e, k vectorse* , and hence, an even number of vectorse0. For
example, sinced̃(1) involves only the vectorse and e0, it
must have the general form@4#:

d̃(1)5a0~F;v!e1a1~F;v!~e•e0!e0 , ~8!

where a0 and a1 are two geometry- and polarization-
independent atomic parameters, i.e., they are components of
the dynamic polarizability tensor. Forn.1, the analysis be-
comes more tedious, but is nevertheless straightforward. For
the purposes of this paper, we only require the next vector,
d̃(3).

The general form ofd̃(3) involves 3 vector components,

d̃(3)5x1e1x2e* 1x0e0 , ~9!

FIG. 1. Geometry for a static electric field,F5Fe0, and a laser
field, F(t), defined by Eqs.~1! and ~3!.
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where the susceptibilitiesx i depend on the geometry of the
fields and on the polarization state of the laser field. This
dependence may be established using the explicit form of
d̃(3) in terms of fourth order PT~in F) matrix elements. We
obtain:

x15g1~F;v!1g3~F;v!ue•e0u2,

x25 lg2~F;v!1g4~F;v!~e•e0!2, ~10!

x05g3~F;v!~e•e0!1 lg4~F;v!~e* •e0!

14g5~F;v!ue•e0u2~e•e0!.

In deriving Eq.~10! we have used the fact thate•e* 51 and
the definitione•e5 l . We note also the nonself-evident fact
that the parametersg3 andg4 in x0 are the same as those in
x1 andx2. These identities may be established using explicit
PT expressions for thex i ’s.

In general, as shown in Eq.~10!, the hyperpolarizability
tensor in the presence of a static field involves five indepen-
dent ~‘‘irreducible’’ ! componentsg i , 1< i<5, for an arbi-
trary field geometry and an arbitrary elliptic polarization of
F(t). For various special cases, however, fewer independent
parameters suffice. For the caseF50, only two of them,g1
andg2, are nonzero and they determine the hyperpolarizabil-
ity tensor for a nondegenerate atomic level in a monochro-
matic light field ~see, e.g.,@19#!. Moreover, forF50 and
particular cases of laser polarization only one parameter con-
tributes: for the case of a circularly polarized laser field, this
is g1; for the case of linear polarization, it isg11g2. For
F5” 0 and for linear polarization ofF(t), three parameters
contribute:g11g2 , g31g4, andg5. For weakF, the depen-
dence ofg i on F is as follows:

g3~F;v!;F 2, g4~F;v!;F 2, g5~F;v!;F 4.
~11!

C. Relation to the complex quasienergy

As for the case ofF50, the hyperpolarizability tensor for
the caseF5” 0 describes a number of nonlinear optical ef-
fects that occur when laser radiation passes through an
atomic medium in the presence of a static field~such as, e.g.,
the intensity-dependent correction to the refractive index!.
Furthermore, it determines the linear in intensity correction
to the cross section for~Rayleigh! light scattering. In particu-
lar, this correction may be important for analyses of polar-
ization anomalies induced by a static field, such as static-
electric-field-induced circular dichroism in nonresonant light
scattering by atoms@4#. Moreover, a detailed analysis shows
that this correction leads to new dichroic effects that occur
only for the case of elliptic polarization ofF(t) ~termed ‘‘el-
liptic dichroism’’! and that vanish for the case of completely
circular polarization.

Besides its importance for nonlinear optical applications,
the dual dipole moment is related closely to the spectral char-
acteristics of an atom in static and laser fields. Namely, the

derivative inF of the ~complex! quasienergye of an atom
when both fields are strong is connected withd̃v as follows
@4#:

]e

]F
52

1

2
e* •d̃v . ~12!

Obviously, due to the static fieldF an initial unperturbed
atomic stateuc0& with the energyE0 is transformed into a
quasistationary state with the wave-functionFE(r ) and a
complex energyE. Using the expansion~7! and Eq.~12!, the
linear and squared in laser intensity corrections to the energy
E may be expressed in terms of the parametersa i(F;v) and
g i(F;v). Using Eqs.~3! and ~4! and the chosen geometry
~see Fig. 1!, we obtain for the~complex! scalar product
e•e0:

e•e05
sinu

A2~11 l !
@~11 l !cosf1 i j sinf#5ue•e0ueif1,

~13!

where

ue•e0u5L/A2, L5sinuA11 l cos 2f, ~14!

tanf1[tan@arg~e•e0!#5h tanf.

Using these notations and Eqs.~8!–~10!, ~12!, the expansion
of the quasienergye in F up to terms;F4 may be written as

De[e2E52
1

4
a~F;v!F22

1

24
g~F;v!F4, ~15!

where

a~F;v!5a0~F;v!1
1

2
L2a1~F;v!, ~16!

and

g~F;v!53@g11 l 2g21L2g31 lL2 cos 2f1g41L4g5#
~17!

are the dynamic polarizability and the hyperpolarizability re-
spectively.

The imaginary part ofe, G522 Ime/\, gives the total
decay rate of an initial bound state in both static and laser
fields. For not too highF ~so that ImE remains small! and
for frequenciesv comparable withuE0u/\, the laser-field-
induced ionization is the only important process. Specifi-
cally, for \v.uE0u, Im a(F;v) determines the one-photon
ionization rate and Img(F;v) gives the linear in laser inten-
sity correction to the one-photon ionization rate as well as
the direct~above threshold! two-photon detachment rate. For
uE0u.\v.uE0u/2, Ima(F;v) is exponentially small and
Im g(F;v) determines the rate of two-photon ionization in
the presence of a static field. The explicit expressions for the
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g i ’s and for g(F;v) in terms of the matrix elements of
fourth order PT for the QQES have the same formal structure
as that forF50 ~cf. @21#!: the difference is that the atomic
Green functions should be replaced by those that include the
presence of a static field~denoted here byGE6k\v(r ,r 8),
with k50,1, and 2) and also the properly normalized~dual!
bra-vector, ^F̃E(r )u, should be used instead of^cE0

(r )u.
However, the evaluation of such matrix elements for real
atoms is, of course, a formidable task. In the rest of this
paper we present the analysis ofg(F;v) for a short-range
potential, in which case the final results may be obtained in
closed analytical form.

III. STATIC-FIELD-DEPENDENT DYNAMIC
HYPERPOLARIZABILITY FOR THE ZERO-RANGE

POTENTIAL MODEL

A. Definitions and „scaled… units

We have obtained analytically the irreducible components
of the hyperpolarizability tensor,g i(F;v) in Eq. ~10!, and
the combined hyperpolarizability,g(F;v) in Eq. ~17!, for an
electron described by the bound state wave function,

c0~r !5N
e2kr

r
, N5Ak/2p, ~18!

for a zero-range (d-model! potential,

U~r !5
2p\2

km
d~r !

]

]r
r ,

with the binding energyE052\2k2/2m. In order to present
our results in the most general form, we use the following
scaled units~sc.u!: energies and frequencies are measured in
units of uE0u anduE0u/\, the length unit is 1/k; and the laser
field amplitudeF and the static field amplitudeF are mea-
sured in units of the ‘‘internal field,’’F05A2muE0u3/ueu\.
The virtue of using such scaled units is that our results apply
to systems having different binding energies,uE0u, but for
different values of the field strengths. As an example, for H2

we have F0
H2

53.3623107 V/cm, and the corresponding

scaled unit of the intensity,I 5cF2/8p, is I 0
H2

5cF0
2/8p

51.49831012 W/cm2. Thus, in scaled units, we haveI
5F2. The cross sections in our units (k22) is connected
with that in atomic units,s (a.u.), by the relation:s (a.u.)

5s(Ea/2uE0u), whereEa5me4/\251 a.u. Finally, in order
to apply our results to the special case of H2, our results for
~hyper!polarizabilities and detachment cross sections should
be multiplied by the ‘‘renormalization’’ factorAc52.6551
that is based on effective range theory and that is more ap-
propriate for comparison with experiment than is the usual
normalization of the ground-state wave function in Eq.~18!
for the d-function potential@20#.

B. Expressions forg1„F; v… and g2„F; v… in terms of Airy
functions and zero-static-field limit

Our analysis is based on the use of the quasistationary
quasienergy state~QQES! approach@21#, which is similar to
the well-known quasistationary~or resonance! state approach
for radiationless atomic problems for time-independent
Hamiltonians. A detailed analysis of the QQES problem for
our case of a combination of thed-model potential and two
~generally strong! external fields has been presented in a re-
cent review@4#, where the analytical techniques for the per-
turbative account of a laser field have been developed for the
case ofa0(F;v) and a1(F;v) @cf. Eq. ~8!#. Using similar
techniques, we performed for our present purposes two inde-
pendent calculations forg(F;v): one based on the use of a
perturbative expansion~up to terms of orderF3) of the exact
result for d̃v @cf. Eq. ~6!#, and one starting from the pertur-
bative result ford̃(3) @cf. Eqs. ~9!, ~10!# in terms of the
Green’s function,GE(r ,r 8), of an electron in the zero-range
potential and in a static electric field. Both methods provided
the same results forg i(F;v) in terms of regular Ai(j) and
irregular Bi(j) Airy functions @22# and their derivatives.

Since the general expressions forg i involve 3 Green
functionsGE6kv(r ,r 8) ~with differentk), the final results are
quite lengthy. Thus, we present here only those forg1(F;v)
and g2(F;v), which are the only nonzero ones forF50.
Also, only these parameters contribute tog(F;v) for the
case of orthogonal geometry,L50 @cf. Eq. ~14!#. The ana-
lytical expressions forg i(F;v), 3< i<5, have been pre-
sented elsewhere@23#. For the simplest presentation of re-
sults it is convenient to introduce the following combinations
of Airy functions Ai(j) and Ci(j)5Bi( j)1 i Ai( j), and
their derivatives:

J~j!5Ai 8~j!Ci8~j!2jAi ~j!Ci~j!,

I ~j!52J8~j!5Ai ~j!Ci~j!.

Note thatJ(j) is the regularized part~at r5r 8→0) of the
Green’s function for a free electron in a static electric field
@4#. Next we define auxiliary functionsQ(jn) andK(jn):

Q~jn!5jn
2J~jn!1

1

4
jnI 8~jn!1

3

8
I ~jn!,

K~jn!5jnJ~jn!1
1

4
I 8~jn!,

where

jn5~nv2E!F22/3, n50, 61, 62. ~19!

In terms of the functions introduced above, the result for
g1(F;v) may be written as:
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g1~F,v!5
8pF 5/3

15v8L~F!
FR~F,v!1R~F,2v!

2
5

3
F 2/3

]

]E

@K~j21!22K~j0!1K~j1!#2

I ~j0! G ,
~20!

where

R~F,v!5Q~j2!24Q~j1!13Q~j0!.

and where

L~F!52pF 21/3I ~2EF 22/3! ~21!

is the ~complex! normalization factor for the quasistationary
stateFE(r ) in a static field@4#.

The explicit result forg2(F,v) may be presented in a
form similar to Eq.~20!:

g2~F,v!5
4pF 5/3

15v8L~F!
@R~F,v!1R~F,2v!2S~F,v!

2S~F,2v!#, ~22!

where

S~F,v!5
5pF 1/3

3

@K~j0!22K~j1!1K~j2!#2

11pF 1/3J~j2!
.

We note that the parameterE in the above equations is the
exact~complex! energy of the quasistationary stateFE(r ) in
a static field. The dependence ofE onF has been analyzed in
detail in Ref.@4#, where it was shown that for not too strong
F (F,0.01) and far from threshold frequencies the approxi-
mation E.E0521 may be used. The other components,
g i(F;v) with i 53,4,5, have structures that are similar to
~though more cumbersome than! those of Eqs.~20! and~22!.
Thus, except for the prefactor 1/v8 in g i(F;v), the fre-
quencyv enters the results only in the arguments of the Airy
functions, defined by Eq.~19!. Obviously, these arguments
with n50 correspond to effects of a static field only, while
the terms withn521 andn522 ~or n51 andn52) cor-
respond to the absorption~or stimulated emission! of one and
two photons, respectively.

1. The zero-static-field limit

As mentioned above@see Eq.~11!#, for F→0 the domi-
nant contributions tog(F;v) are given byg1(F;v) and
g2(F;v), which are the only nonzero components of the
hyperpolarizability tensor atF50. Using the known
asymptotic expansions@4# of the functionsJ(j) and I (j) at
j→6` ~i.e., F→0), we obtain the results forg1,2(F
50;v)[g1,2(v), which coincide with those first obtained in
Ref. @15# by direct perturbative calculations of the quasien-
ergy in the QQES approach:

g1~v!5
8

45v8
@ f 1~v!1 f 1~2v!#,

~23!

g2~v!5
8

45v8
@ f 2~v!1 f 2~2v!#,

where

f 1~v!545v219615i ~v221!1/2~v227!

24i ~v21!1/2~3v2114v232!13i ~2v21!5/2,
~24!

f 2~v!515v21282
1

v
@10~v21!5/2~2v21!1/2

1 i ~2v21!1/2~9v3124v2226v110!

22i ~v21!1/2~7v3214v2112v25!#.

Note that we defineA2a as iAa for a.0. This convention
corresponds to an exponentially decreasing wave in closed
detachment channels and to a spherically diverging wave in
open channels.

The analytical structure of the results in Eqs.~23!, ~24! is
consistent with well-known square-root peculiarities of cross
sections for a short-range potential@24#, which are reflec-
tions of the threshold behaviors of hyperpolarizabilities at
the opening of two- (v>1/2) and one-photon (v>1) de-
tachment channels~see Ref.@15# for details!. Despite the
simplicity of the model, the analytical results for a zero-
range potential in Eqs.~23! and~24! @as well as those for the
polarizability a(v) @25,15## are in reasonable agreement
with sophisticated numerical calculations of hyperpolariz-
abilities for H2 employing electron-correlated wave func-
tions @16,17#. Specifically, in Ref.@17#, the nonlinear optics
definitions for two independent components of the hyperpo-
larizability tensor, gzzzz(2v;v,v,2v) and gxxzz(2v;
v,v,2v), are used@for v50, gxxzz5(1/3)gzzzz#. In terms
of g1(v) and g2(v) we have gzzzz58(g11g2), gxxzz
54g1,. Taking the limits of Eqs.~23!, ~24! at v50, we
obtain the zero-range potential model result for H2: gzzzz
5 9

4 Ac (sc.u.)59.083107 (a.u.). In Table I, we compare the
results for the static polarizability and the hyperpolarizability
gzzzzof H2 in the zero-range potential model with those in
Refs.@16,17#. One sees that the results of Pipin and Bishop
@17# ~which are the most accurate to our knowledge! lie be-

TABLE I. The static polarizability,a, and the static hyperpolar-
izability, gzzzz, of H2 ~in a.u.!

Ref. @17# Ref. @16# Present worka

a 206.165 201.8 215.53
gzzzz

b 8.033107 7.63107 9.083107

aThe ‘‘renormalization’’ factorAc for H2 was taken into account in
these results.
bIn terms ofg1 andg2 , gzzzz58(g11g2).
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tween the results of Refs.@16# and @15#. Figure 2 presents a
comparison of predictions for the frequency-dependent hy-
perpolarizabilities. It is seen that the accuracy is uniform
over the frequency interval considered. The 10% accuracy of
the zero-range potential model for predictions of such com-
plicated atomic parameters as hyperpolarizabilities seems ac-
ceptable to us given the ability of the model to provide ana-
lytically the dependence ofg(F;v) on v, F, the laser
polarization, and the field geometry. A 10% accuracy also
seems acceptable given the existing level of accuracy of in-
tense laser experiments.

A further indication that our zero-range potential model
results are quite reasonable is provided by the more detailed
comparison with the nonperturbative, many-electron numeri-
cal results of Nicolaides, Mercouris, and Piangos@16# shown
in Fig. 3. Figure 3~a! compares predictions fora(v) for 0
<v<0.25 a.u. and Fig. 3~b! compares predictions forg(v)
for 0<v<0.08 a.u. One sees that except near the thresh-
olds, our predictions and those of Ref.@16# agree very well.

C. Numerical results for real and imaginary parts of g„F; v…

The dependence ofg(F;v) on the polarization and the
geometry is described by the factorsl, cos2f1, and L2

5sin2u (11l cos 2f) in Eq. ~17!. This analytic equation
shows that for an arbitrary geometry (L5” 0) both real and
imaginary parts ofg(F;v) are sensitive to the polarization
state of the laser field. Moreover, in contrast to results for the
dynamic polarizability@4#, the polarization dependence of
g(F;v) is significant even for the case of an orthogonal
geometry. In Figs. 4 and 5, we present numerical results for
the real and imaginary parts, respectively, of the hyperpolar-
izability g(F;v) for three values of the static fieldF for an
orthogonal field geometry for either a linearly or a circularly
polarized laser field. Note that for the case of circular polar-
ization with the laser beam collinear with the static field~i.e.,
k̂ie0 or L50), Reg(F;v)53 Reg1; and for the case of a
linearly polarized laser beam collinear with the static field
~i.e., alsoL50), Reg(F;v)53 Re (g11g2) @cf. Eq. ~17!#.

Note that Img(F;v) is related to the contribution of or-
der F4 to the total decay rateG, i.e., G (4)5(Im g/12)F4,
where

G5Gstat.1G (2)1G (4), ~25!

and whereG (2);F2 andGstat.522 ImE is the static-field-
induced decay rate. As Figs. 4 and 5 demonstrate, the oscil-
latory behavior of the hyperpolarizabilityg as a function of
v ~in the field configuration in which the laser polarization
vector and the static field direction are orthogonal! contrasts
with the behavior of the dynamic polarizability, which does
not oscillate@4#. For the case of a linearly polarized laser
field and orthogonal geometry, the oscillation pattern is more
pronounced forv,1 than for v.1 ~where v51 is the
single photon ionization threshold forF50). For the case of
circular polarization, however, oscillations appear only for
v.1. Another general result that is clear from Figs. 4 and 5
is that increasing the static field leads~on average! to a re-
duction of both the real and the imaginary parts ofg(F;v).

Our numerical results for the case of coplanar or collinear
geometry are presented in Figs. 6 and 7 for both the case that
F is in the plane of circular polarization ofF(t) ~i.e., L
51,l 50) and the case thatF is parallel to the direction of
linear polarization ofF(t) ~i.e., L5A2). Both real and
imaginary parts ofg(F;v) exhibit oscillations about the re-

FIG. 3. Comparison of zero-range potential model and nonper-
turbative many-electron numerical predictions for H2. ~a! Fre-
quency dependence of the real part of the dynamic polarizability
a(v) for 0<v<0.25 a.u.~b! Frequency dependence of the real
part of the hyperpolarizabilityg(v) for 0<v<0.08 a.u.Solid
lines: Present zero-range potential model results.Solid circles:
Nonperturbative, many-electron numerical results of Ref.@16#.

FIG. 2. Frequency dependence of the componentgzzzz(2v;
v,v,2v) of the dynamic hyperpolarizability tensor of H2. Solid
line: Zero-range potential model result@Eqs. ~23!,~24!#. Solid
points: The results of Pipin and Bishop@17#.
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sult for F50, which is given by Eqs.~23! and ~24!. These
oscillations have the same~interference! origin as for the
dynamic polarizability and they vanish forv@1, where
static field effects are negligible. For the coplanar or collin-
ear geometry~i.e., when the static field is in the plane of
circular polarization or parallel to the direction of linear po-
larization!, the oscillation pattern is more pronounced than
for an orthogonal field geometry. Moreover, in contrast with
the case of orthogonal fields, oscillations are more pro-
nounced forv*1 than for the case of two-photon ionization,
1/2,v,1. Thus, the oscillation pattern is smoothed in the
multiphoton case~for decreasingv,1). The static field ef-

fects are most important for near-threshold frequencies,v
.1,1/2,1/3,. . . , andthey smooth the square-root threshold
peculiarities of cross sections that are typical for short-range
potentials. As a result, for small frequencies~even for weak
static fields!, it is impossible to present the total decay rateG
in terms of partial rates with a fixed number of absorbed
photons.

IV. TWO-PHOTON DETACHMENT OF H À

IN THE PRESENCE OF A STATIC FIELD

A. Results in alternative approximations, laser polarizations,
and field geometries forvË1

In this section, we analyze in more detail the imaginary
part of g(F;v), which describes not only the two-photon
detachment rate but also the linear in laser intensity correc-
tions to the one-photon detachment rate. First, we consider

FIG. 4. Frequency dependence of the real part of the hyperpo-
larizability g(F;v) for the orthogonal field geometry for three val-
ues of the static field:~a! F50.015;~b! F50.03; and~c! F50.06.
Solid line: linear laser polarization; Reg(F;v)53 Re (g11g2).
Dashed line:circular laser polarization; Reg(F;v)53 Reg1. Thin
solid line: Result forF50 and linearly polarizedF(t). Thin dashed
line: Result forF50 and circularly polarizedF(t). Scaled units are
used; see text for explanation.

FIG. 5. The same as Fig. 4, but for~one twelfth! the imaginary
part of the hyperpolarizability, Img(F;v)512G (4)/F4.
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the case of two-photon detachment of H2 for frequencies
below the single-photon threshold, 1/2&v&1. ~Note that we
use the symbol& instead of< since in the presence of a
static field the threshold frequencies are not well defined.!
For the frequency interval considered, the termG (2) in Eq.
~25! is negligibly small~see Ref.@4#, where the one-photon
detachment rate for H2 in the presence of a strong static field
has been analyzed in detail!. Thus, the laser-field-induced
decay rate is proportional toF45I 2, and its dependence on
polarization and frequency is presented in Figs. 5 and 7 for a
number of values ofF. For moderateF, it is possible to
extract the dominant~in F) terms from our exact analytical
results forg i(F;v). To compare these results with those of

other authors it is convenient to use theF-independent ‘‘gen-
eralized cross section:’’

ŝ (2)5F8pva

F2 G 2

G (4)5
16

3
~pav!2 Img~F;v!. ~26!

Note that ŝ (2) in Eq. ~26! is expressed in scaled units; to
convert it to ordinary units, multiply by the factor
1/4(Ea /uE0u)3a4\/Ea , whereEa is the atomic unit of en-
ergy and a is the Bohr radius. For H2, for which uE0u
50.027 751 a.u., this factor is 2.2188310246 cm4s. Obvi-
ously, with the use of the exact result for Img(F;v), ŝ (2) in
Eq. ~26! gives not only the cross section for direct two-
photon detachment, but describes also the contributions;F4

to the rates for static field ionization and stimulated two-
photon emission as well as the linear in laser intensity cor-
rections to the rates for one-photon absorption and emission.
However, for the considered interval of frequencies and for

FIG. 6. Frequency dependence of the real part of the hyperpo-
larizability g(F;v) for coplanar or collinear geometry for three
values ofF: ~a! F50.015;~b! F50.03; and~c! F50.06.Solid line:
F collinear with the direction of linear polarization ofF(t) ( l
51, L252). Dashed line:F in the plane of circular polarization
of F(t) ( l 50, L251). Thin solid line: Result forF50 and lin-
early polarizedF(t). Thin dashed line:Result forF50 and circu-
larly polarizedF(t). Scaled units are used.

FIG. 7. The same as Fig. 6, but for~one twelfth! the imaginary
part of g, Im g(F;v)512G (4)/F4.
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F&0.05, the contributions of all these channels are exponen-
tially small and may be neglected.

1. Alternative approximations and comparison with exact
results. The case of collinear geometry

As for the analysis of one-photon detachment of H2 in
Ref. @4#, one may analyze different levels of approximation
for taking account of static field effects in calculations of the
two-photon detachment amplitude,Af i

(2) , for negative ions:

Af i
(2)5^c f ue•rGE1v~r ,r 8!e•r 8uFE&. ~27!

The simplest approximation~denotedI ) consists in neglect-
ing static-field effects in the~static-field-dressed! initial-state
FE(r ) and in using results for the intermediate-state Green
functionGE1v and for the final-statec f of the detached elec-
tron that are appropriate for a free electron in a static field.
~This approximationI may be called a static-field Born ap-
proximation.! It is not possible to perform an exact analytical
calculation of the amplitude in Eq.~27! in approximationI.
The situation is similar to that for single-photon detachment,
which has been analyzed in Ref.@4#. Specifically, for single-
photon detachment the transition amplitude in approximation
I also cannot be evaluated analytically. However, it can be
evaluated using a saddle-point approximation, in which case
it reduces exactly to the result of assuming a weak static field
and performing an asymptotic expansion for the Airy func-
tions in the exact analytic result for Ima(F;v). Reasoning
by analogy, we simply define approximationI for two-
photon detachment by the weak field, approximate expres-
sion of our analytic result for Img(F;v). Specifically, for
weak fields, asymptotic expansions can be used for the Airy
functions whose arguments are large and positive, namely
j0 , j61, and j2. Taking into account only Airy functions
with the negative argumentj2252(E12v)/F2/3'(1
22v)/F2/3, and neglecting the imaginary part of Airy func-
tions with other arguments and also theF dependence of the
normalization factor in Eq.~21!, we obtain after some alge-
bra the following result in approximationI ~for the case of a
linearly polarized laser field collinear withF):

ŝ I
(2)5Ac

4p3a2F 1/3

15v6
@~Ai 822jAi2!~127v22152v148!

28F 2/3~12219v!Ai Ai 8212F 4/3Ai2#, ~28!

where j[j22 , Ai[Ai( j22), Ai8[Ai 8(j22), and Ac
52.6551 is a ‘‘renormalization’’ factor for H2.

In the weak static field limit, the oscillatory structure of
cross sections is very simple for ‘‘far from threshold’’ fre-
quencies,

~2v21!@F2/3, ~29!

when the asymptotics of Airy functions for large negative
argumentsj22 may be used. In particular, for this case, the
result in Eq.~28! reduces to elementary functions :

lim
f2@1

ŝ I
(2).Ac

~2pa!2

15v6
A2v21F127v22152v148

25~49v2256v116!
cosf2

f2
G , ~30!

where

f25
4

3

~2v21!3/2

F 5
4

3
~2j22!3/2. ~31!

Thus, the parameterf2 determines both the period and the
amplitude of the oscillatory part of the cross section. Note
that in the weak field limit the two-photon cross section de-
pends onF only through the factor (cosf2)/f2, which is the
same dependence found for the one-photon detachment cross
section@7,20#.

A better approximation~denotedII ) involves, in addition
to the interactions included in approximationI, the exact
account of the static field distortion of the initial state~18!,
by means of using the quasistationary wave-functionFE .
For this case the amplitude in Eq.~27! may be calculated
analytically and the result forŝ (2) in the approximationII is:

ŝ II
(2)5Ac

64p3a2F 1/3

v4 FAi 82S 1

16
2

3F 2

2v3
1

F 4

v6 D
2jAi2S 1

4
1

F 2

v3 D 2

2j2~Ai22Ai 82!
F 2/3

6v S 12
4F 2

v3 D
2Ai Ai 8

F 2/3

6v S 11
20F 2

v3 D 2Ai2
3F 4/3

10v2 S 11
20F 2

3v3 D
2j~j2Ai22jAi 8212Ai Ai 8!

F 4/3

5v G , ~32!

where the notations are the same as for Eq.~28!. Moreover,
this result coincides exactly with that obtained by Gao and
Starace@10# @after one performs an analytical calculation of
the integral in their Eq.~53! for the caseN52#. Thus, as was
pointed out for the case of one-photon detachment@4#, for
the perturbative account of a laser field, the method sug-
gested in Ref.@10# is more accurate than the ‘‘static-field
Born approximation’’ and is equivalent to an exact account
of initial-state effects that are ignored in approximationI. We
note that, as in the case of approximationII for one-photon
detachment, it is impossible to extract the result~32! from
our exact results for Img(F;v) by taking into account the
corrections of higher orders inF compared to those ac-
counted for in approximationI. The reason is that these high
order corrections overlap with similar corrections caused by
rescattering effects. These effects originate from the interac-
tion of the detached electron with the binding potential~both
in intermediate states, i.e., after absorption of one photon,
and in the continuum!. These rescattering effects are ne-
glected in both approximationsI and II . For two-photon de-
tachment, the account of rescattering effects beyond approxi-
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mation I ~i.e., using the unperturbed initial state! was
performed in Ref.@11# together with account of initial-state
effects as in approximationII . Thus, in this approximation
~denoted III ) only the interference terms are neglected,
which can only be taken into account by a simultaneous
treatment of both rescattering and initial state effects.

The comparison of results calculated in approximationsI,
II , andIII with our exact calculations, employing Eqs.~17!
and ~26!, is presented in Fig. 8. One observes good agree-
ment of the results in approximationIII with our exact re-
sults except for a narrow interval of near-threshold frequen-
cies. @Note that the arguments of Ref.@26# concerning the
~possible! inaccuracy of the results in Ref.@11# is thus shown
here for the two-photon case to be incorrect. A detailed dis-
cussion of these assertions for the one-photon case has been
given elsewhere@27#.#

In order to verify the accuracy of the zero-range potential
model for the description of multiphoton detachment of H2

in combined laser and static fields, in Table II we compare
our results for the two-photon detachment rateG (4) @calcu-
lated using Eq.~26!# with the nonperturbative, correlated-
electron calculations@14# for the collinear geometry and the
following set of field parameters:v50.018 a.u.50.65 sc.u.;
F52.031023 a.u.50.31 sc.u.; and for three values ofF: 0,
2.531024 a.u.50.038 25 sc.u., and 5.031024 a.u.
50.0765 sc.u. Since for the laser intensity considered,I
5F250.096, the use of a perturbative approach is question-
able, we also calculatedG (4) for F50 nonperturbatively,
based on the exact equations for the complex quasienergy for
the zero-range potential model. This result isG (4)50.5
31013sec21. Thus we expect that higher order in laser in-
tensity corrections cannot change qualitatively our results
presented in Table II. In Fig. 9 we present theF dependence
of the two-photon detachment rate for the frequencyv
50.65. While the results in Ref.@14# are presented for only
few values ofF, we believe that the zero-range potential
model and the numerical many-electron results are in reason-
able agreement.

As a further indication that our zero-range potential model
predictions are reliable, we present in Fig. 10 predictions for
the ionization rate for H2 above the two-photon ionization
threshold. In order to compare with the results in Fig. 5 of
Ref. @13#, we have performed calculations for the same field
ratios m5F/F employed in that paper. Comparison of our
results in Fig. 10 with those in Fig. 5 of Ref.@13# shows
excellent qualitative agreement belowv50.03 a.u. Forv
.0.03 a.u. our predictions show somewhat more oscillatory

FIG. 8. Frequency dependence ofŝ (2) for linear laser polariza-
tion (l 51) and for collinear static field geometry for~a! F
50.015 and~b! F50.03. Solid line: exact result, Eqs.~17! and
~26!. Solid circles:approximationI, Eq. ~28!. Dashed line:approxi-
mationII , Eq. ~32! ~Ref. @10#!. Dot-dashed line:approximationIII
~Ref. @11#!. Dotted line:F50 result, Eqs.~17!, ~23!, and~26! ~Ref.

@17#!. For H2, the scaled units forŝ (2) and \v are 2.2188
310246 cm4s and 0.027 751 a.u., respectively.

TABLE II. Two-photon detachment ratesG (4) ~ in sec21) of H2 for collinear linearly polarized laser and
static electric fields:v50.65 sc.u.~50.018 a.u.!, F50.31 sc.u (5231023 a.u.).

F50 F50.038 25 sc.u52.531024 a.u. F50.0765 sc.u.5531024 a.u.

Ref. @14# 0.6531013 0.4531013 0.3631013

Present work 0.6931013 0.5631013 0.331013

FIG. 9. F dependence of the two-photon detachment rate of H2

for the case of a linearly polarized (l 51) laser field and a collinear
field geometry (L5A2) atv50.6487 andF50.305 976~in scaled
units!. Thick solid line: present result.Thin solid line: the zero-
range result forF50. Solid points:Results of Mercouris and Nico-
laides@14#.
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structure. Quantitatively our results and those of@13# agree
to within about 10%.

2. Polarization and geometrical effects

The importance of both polarization and geometrical ef-
fects for the two-photon detachment cross section is clear
from Figs. 5 and 7~which show the frequency interval 1/2
&v&1). Compared with the dependence of the one-photon
detachment cross section on both these effects~which enter
the result only through the scaled parameter,L2 @4#!, for n
52 this dependence is much greater. To illustrate this, we
present here our analytic result for the two-photon cross sec-
tion in the approximationI:

ŝ I
(2)~v,F,L,l ,f1!5Ac

4p3a2F 1/3

15v6
$~Ai 822jAi2!

3@32~2v21!22 l 2~v2124v216!#

1F 2/3Ai Ai 8 @10lv~2l 23L2 cos 2f1!

12~2v21!~15L424l 228!#

1F 4/3Ai2@60L2~12 l cos 2f1!

27.5L416l 2112#%. ~33!

One observes that, for an elliptical polarization, with 0
,uhu,1, ŝ (2) depends on the azimuth anglef not only by
means of the parameterL25sin2u (11l cos 2f), but also by
means of the ‘‘angle’’f1, where tanf15h tanf @see Eq.
~14!#. In Figs. 11 and 12 we extend the results for linear
polarization and collinear geometry obtained in Ref.@11# as
well as those shown in Fig. 8 to the cases of circular polar-
ization and orthogonal geometry.

Figure 11 shows the frequency dependence of the gener-
alized cross section for two-photon detachment of H2 for

orthogonal geometrical arrangements, i.e., in which the laser
polarization vector is in the plane orthogonal to the static
fieldF. One observes that for the case of linear polarization
andF5” 0, there is the characteristic oscillation ofŝ (2) with
increasing frequency. What is surprising is that this occurs
for an orthogonal geometry. Such oscillation has not been
predicted in one-photon detachment in the orthogonal field
configuration. We surmise that it occurs for the two-photon
case because the final state includess-wave components,
which can be reflected back to the origin by the static field,
leading to the observed interference pattern. This interpreta-
tion is supported by the absence of such oscillations in Fig.
11 for the case of circular polarization, in which case the
final state does not have ans-wave component. Figure 11

FIG. 10. Detachment rateG/2 ~a.u.! for H2 as a function of
frequencyv ~a.u.! above the two-photon detachment threshold for
various values of the static fieldF. The laser intensity isI 51.75
31010 W/cm2, which is equivalent toF50.108 23 scaled units.
The value ofF is indicated by the ratiom5F/F. Solid thin line:
m50. Dashed line:m50.106.Dotted line:m50.424.Dot-dashed
line: m51. Solid thick line:m52. These results should be com-
pared with those in Fig. 5 of Ref.@13#.

FIG. 11. Frequency dependence ofŝ (2) for orthogonal geom-
etries for three values ofF: ~a! F50.015; ~b! F50.03, ~c! F
50.06.Thick solid line:linear polarization (l 51) orthogonal toF.
Thick dashed line:circular polarization (l 50) in the plane orthogo-

nal toF ~i.e., k̂iF). Thin solid line: linear polarization (l 51) and
F50. Thin dashed line:circular polarization (l 50) andF50.
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shows also results forF50. One sees that for linear polar-
ization, the result forF5” 0 oscillates about the one forF
50. For the case of circular polarization the curves forF
50 andF5” 0 are essentially identical except for the region
around the zero-field threshold, i.e.,v'0.5. The difference
in this frequency region stems from the effective lowering of
the threshold by the static field.

Figure 12 shows, in contrast to Fig. 11, that for geom-
etries in which the laser polarization vector is collinear or
coplanar with the static fieldF, ŝ (2) oscillates as a function
of frequency whether the laser polarization is linear or circu-
lar. The reason clearly is that in either case the final-state
probability amplitude for the electron can be reflected back
to the origin by the static field potential, resulting in interfer-

ence effects that vary withv ~or, equivalently, the electron’s
kinetic energy!. For both cases of laser polarization, one sees
that the cross section oscillates about its value forF50 for
high enough frequencies above the zero-field threshold, i.e.,
v.0.5. However, asF increases, the oscillations in the re-
gion of the zero field threshold (v'0.5) are increasingly
lower on average for the case of linear polarization than the
cross section forF50. For the case of circular polarization,
this lowering occurs after theF.0 andF50 curves inter-
sect just above the zero-field threshold (v50.5). This effect
is due to the lowering of the effective threshold by the static
field and the consequent nonzero cross sections for both po-
larizations belowv50.5.

3. Threshold behavior and modified Wigner’s law

As mentioned above and as demonstrated by our results,
static-field-induced effects are most important in the thresh-
old domain@i.e., for the conditions opposite to those in the
inequality ~29!#, where ŝ (2) vanishes atF→0. We present
below the threshold value ofŝ (2) for the case of linear po-
larization and collinear geometry, which follows from Eqs.
~28! and ~32! for v51/2:

ŝ I
(2),th.5NF 1/3F12

16

3
F 2/3b2

16

5
F 4/3b2G , ~34!

ŝ II
(2),th.5NF 1/3F12

16

3
bF 2/3~11160F 2!232b2F 4/3

3S 3

5
132F 2D2192F 21210F 4G , ~35!

where

N516pa231/3G2~2/3!Ac , b52
2p

35/6G~2/3!2
.

We note the important fact that for two-photon detachment
the static-field modification of the threshold behavior is con-
siderably more significant for even weak static fields than in
the case of single-photon detachment. In particular, in the
weak-field approximation, we have:ŝ (2),th.;F1/3 for two-
photon detachment as compared toŝ (1),th.;F for one-
photon detachment@4#. Moreover, for n52 the threshold
value of ŝ (2) depends significantly on the polarization and
field geometry, as may be seen from our result for the sim-
plest approximation,I:

ŝ I
(2),th.~L,l ,f1!5NF 1/3F l 218bF 2/3S l 2

3
2

lL2 cos 2f1

2 D
116bF 4/3S 21 l 2

10

1L2~12 l cos 2f1!2
L4

8 D G . ~36!

FIG. 12. Frequency dependence ofŝ (2) for collinear or coplanar
geometries for three values ofF: ~a! F50.015; ~b! F50.03, ~c!
F50.06.Thick solid line:linear polarization (l 51) collinear with
F. Thick dashed line:circular polarization (l 50) coplanar withF.
Thin solid line: linear polarization (l 51) with F50. Thin dashed
line: circular polarization (l 50) with F50.
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Thus, whereas for the case of linear polarization~when the
s-wave continuum channel contributes to the cross section!

we find thatŝ I
(2),th.;F 1/3, for the case of circular polariza-

tion ~when only thed-wave channel contributes! the field
dependence ofŝ (2),th. is much more suppressed (;F5/3).
These results illustrate how a static electric field modifies
significantly the well-known Wigner threshold laws@24# for
ionization of a particle bound in a short-range potential. In-
stead of the usual low-energy dependencesL(E);EL11/2 of
the partial cross sections~or the equivalent for the scattering
phases! which correspond to the angular momentumL of a
weakly bound electron in the continuum~with energy E
5nv21 for n-photon detachment!, in the presence of a
~weak! static field the cross sections are finite atE50. This
well-known qualitative fact follows from one-electron con-
siderations, has been observed experimentally@28#, and has
been confirmed by many-electron numerical calculations
@12,13#. Our analytical results for an arbitrary geometry and
laser polarization allow one to formulate the modification of
Wigner laws in a weak static electric field quantitatively.
Namely, the threshold behaviors of the cross sections for
small energies (E!F 2/3) of the escaping electron are deter-
mined by the characteristic field parameter,F 2/3,

s~E50!;~F 2/3!L11/2. ~37!

Obviously, if the final continuum state of the escaping elec-
tron is a superposition of states with different angular mo-
mentaL, only the minimal one enters the modified Wigner
law in Eq. ~37!.

Figure 13 demonstrates the threshold behavior ofŝ (2)(F)
obtained from exact results for Img(F;v51/2) and its com-
parison with results for approximationsI and II . One ob-
serves thatŝ II

(2),th. is in reasonable agreement with the exact
result. However, the approximationI is reasonable only for
weak static fieldsF and is qualitatively wrong for strong
static fieldsF.

Figure 14 demonstrates the threshold behavior of the;F4

contribution G (4) to the total detachment rate in Eq.~25!,
extracted from the exact results for Img(F;v51/2) for dif-
ferent laser polarizations and field geometries. One observes
in all cases thatG (4) increases from its zero static field (F
50) value asF increases, reaches a maximum in the vicinity

of F'0.1, and then decreases, becoming approximately zero
~on the scale shown! for F.0.5. However, whereas for the
collinear (l 51) and coplanar (l 50) field geometries this
decrease is essentially monotonic in the range 0.2&F&0.5,
for the orthogonal field geometriesG (4) becomes negative in
this intermediate range ofF, indicating that this higher-order
contribution reduces the overall decay rateG in Eq. ~25!.
Finally, one observes from Fig. 14 that the variation of the
threshold value ofG (4) with F is less pronounced for a cir-
cularly polarized (l 50) laser field than for a linearly polar-
ized (l 51) laser field regardless of the field geometry.

B. Results for alternative laser polarizations
and field geometries forvÌ1

An interesting qualitative result on the frequency behavior
of g(F;v) is evident from Figs. 4–7. Namely, although both
Reg and Img oscillate forv*1/2, their oscillation patterns
~i.e., periods, amplitudes, and signs of Reg and Img) are
very different in the regions below and above the single-
photon, zero-field threshold,v,1 and v.1. Physically,
these differences originate from the different physical phe-
nomena that are described by Img(F;v) for the two fre-
quency intervals.@Obviously, Reg, which gives the linear in
laser intensity correction to the Stark shift, repeats the pecu-
liarities of thev dependence of Img because they are the
real and the imaginary part of the same analytical function,
e5e(v).# For v,1, two-photon detachment is the only

FIG. 13. Threshold behavior ofŝ (2)(F) @i.e., for v51/2 ~in
scaled units!# for linear polarization (l 51) and the collinear field
geometry as a function of static field amplitude,F. Solid line:exact
result @from Eqs. ~17! and ~26!#. Dashed line:approximationI
@from Eq.~34!#. Dot-dashed line:approximationII @from Eq.~35!#.

FIG. 14. Threshold behavior of Img(F;v51/2)/125G (4)/F4

for: ~a! orthogonal field geometry (l 50,1); ~b! collinear (l 51) or
coplanar (l 50) field geometry.Solid line: linearly polarized (l
51) laser field.Dashed line:circularly polarized (l 50) laser field.
Scaled units are used.
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channel that allows laser-induced decay of the quasistation-
ary ~because of the static field! stateFE(r ). For v.1, the
one-photon channel is open; therefore for this case the term
G (2)5(1/2)Ima(F;v)F2 in Eq. ~25! is dominant. Generally,
for v.1 the next order inF2 correction,G (4) ~i.e., Img),
describes both above-threshold, two-photon detachment
~with a rate, say,Gatd

(4) ) and the linear in laser intensity cor-
rection~say,G I

(4)) to the one-photon rate,G (2). However, for
moderateF, it is impossible to present our exact analytical
result forG (4) simply as the sum ofG I

(4) andGatd
(4) since such

a separation is impossible because of the interference be-
tween these two channels. Nevertheless, the results in Figs. 5
and 7 allow one to obtain some important information on the
relative magnitudes of the terms discussed. Obviously, the
~total! rate for two-photon detachment is a manifestly posi-
tive observable for the whole interval of frequenciesv
.1/2. Indeed, for frequencies below the one-photon thresh-
old, where the one-photon detachment rateG (2) vanishes,
G (4) describes two-photon detachment only~neglecting the
exponentially small effects of static field ionization and
stimulated emission! and it is positive, as it should be. On the
other hand, forv.1 the situation is different:G (4) is nega-
tive for orthogonal field geometry~Fig. 5! or its sign oscil-
lates with increasingv ~Fig. 7!. These results imply that, in
the above-threshold region, the nonlinear in laser intensity
corrections to the~linear in intensity! perturbative result for
the photodetachment rateG (2) are more important forG (4)

quantitatively than the direct two-photon detachment contri-
bution to G (4). Moreover, the~mainly! negative sign of the
nonlinear corrections indicates that, as the intensityI in-
creases, the slope of the total decay rate,G(I ), has a ten-
dency to decrease. Such behavior is similar to the onset of a
stabilizationlike behavior of the photodetachment rate for a
weakly bound level in a strong laser field forF50 @29#. On
the other hand, for some intervals ofv the sign ofG (4) may
be positive, and thus, one observes alsodG(I )/dI.0. There-
fore, a moderate static field may provide significant control
of the photodetachment decay rate in a strong laser field.

The frequency dependence ofG (4) in the above-threshold
domain is clear from Figs. 5 and 7. To illustrate theF andF
dependencies of the total laser-induced rate,G las.5G (2)

1G (4), we present results for the frequencyv151.5468 that
has been used in the recent experiment@30# for measuring
the angular distribution in two-photon detachment of H2 by
a linearly polarized laser field.@Note that the total cross sec-
tions for v5v1 measured in the experiment@30#, ŝ (1)

5(3.661.7)310217 cm2 and ŝ (2)5(1.360.5)310248 cm4

sec, are in good agreement with our calculated results for the
zero-range potential model~for F50), s (1)53.648
310217 cm2 and s (2)50.962310248 cm4sec.# In Fig. 15
we present theF dependence ofG las. for a fixed value ofF
and for different field geometries and laser polarizations.
Similarly, in Fig. 16 we present the laser amplitudeF depen-
dence ofG las. up to values forF at which G (2) and G (4)

become comparable.
For a linearly polarized laser field in the collinear geom-

etry @indicated by the thick solid line in Fig. 15~b!#, the
static-field-dependent oscillatory structure of the photode-

tachment rates is well known from earlier~lowest order in
the laser field! model calculations~as discussed in Ref.@4#!
and has been confirmed in Refs.@12,13# by accurate nonper-
turbative numerical analyses that take into account electron
correlation effects. One sees in Fig. 15 that regardless of the
geometry or the type of laser polarization, the rateG las. os-
cillates about itsF50 value until, at sufficiently large values
of F, static field detachment becomes dominant. One ob-
serves also that these oscillations are of much smaller ampli-
tude for orthogonal field configurations than for collinear (l
51) or coplanar (l 50) field configurations. In Fig. 16 we
see that in general as the laser amplitudeF increases,G las.
tends to reach a maximum and then decreases. However, for
the orthogonal field configurations these maxima lie within a
narrow range, whereas for the collinear (l 51) and coplanar
( l 50) field configurations the maxima take much lower val-
ues for the highest static field values shown; also, for the
lowest nonzero static field value, the maxima are higher than
for the F50 maximum.

Our numerical results for the polarizability and hyperpo-
larizability allow an estimation of the critical amplitude of
the laser field, at which the terms;F2 and ;F4 on the
right-hand side~rhs! of Eq. ~15! have comparable amplitude,
thereby implying that perturbation theory inF for the Stark
shift and width~i.e., the decay rate! breaks down. This criti-
cal field is determined by the relation betweena(F;v) and

FIG. 15. F dependence of the total detachment rate,G @cf. Eq.
~25!#, at v51.5468 andF50.1 for ~a! orthogonal and~b! collinear
( l 51) or coplanar (l 50) field geometries.Thick solid line: l 51.
Thick dashed line: l50. Thin line: result for F50. Note that for
orthogonal field geometries and for the caseF50, differences be-
tween the results for linearly (l 51) and circularly (l 50) polarized
light are not observable on the scale of this figure.
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g(F;v), and, obviously, it depends significantly on the field
geometry and the polarization state ofF(t). Moreover, it
may be different for the real and imaginary parts of the
quasienergy. As an example, in Fig. 17 we present the fre-
quency dependence of the laser field amplitudeFcr. for the
case of a linearly polarized laser field (l 51) in the collinear
field geometry for the situation in which the modulus of the
second term on the rhs of Eq.~15! equals 10% of the modu-
lus of the first term on the rhs of Eq.~15!, i.e.,

Fcr.5A0.6
ua~F;v!u
ug~F;v!u

. ~38!

One sees from Fig. 17 that perturbative estimations of the
decay rate are possible up toF&0.2. Also, this critical field
increases monotonically with increasingv.

V. CONCLUSIONS

We have performed an analysis of second order in laser
intensity effects in the interaction of a weakly bound electron

~e.g., as in H2) with both laser and static electric fields. The
laser field effects are taken into account perturbatively as-
suming that, for frequencies comparable with the electron
binding energy, the two lowest orders of perturbation theory
suffice to give reasonable results up to moderate values of
the laser field amplitude. On the other hand, it is well known
that static-field ionization effects cannot be analyzed pertur-
batively in the strength of the static field. Thus, in our for-
mulation these effects are taken into account exactly using
quasistationary~or resonance! states having the proper out-
going wave asymptotics for an electron in a static field. We
discussed generally the atomic response to a monochromatic
laser field in terms of the dynamic hyperpolarizability tensor
generalized for the case of a decaying@in strong external
field~s!# quantum system. This generalization was performed
using the complex quasienergy approach with properly nor-
malized quasistationary wave functions@4#. After establish-
ing the general structure of the hyperpolarizability tensor
~using general symmetry arguments! for an atomic system in
a strong static electric field in terms of five irreducible com-
ponents, we performed analytical calculations of these com-
ponents for the zero-range potential model in terms of Airy
functions, in a way similar to those used to obtain the dy-
namic polarizability tensor for this model potential in Ref.
@4#.

Our analytical results and numerical evaluations for
higher-order effects in the laser intensity demonstrate fea-
tures of the interaction of a bound electron with photons in
the presence of a static electric field that are quite different
from those found in our analysis of the linear in intensity
case@4#. First, they show that the typical oscillation pattern
in the frequency dependence of both real and imaginary parts
of the nonlinear susceptibilities exists for any geometry of
the static and laser fields, including the case of orthogonal
geometry~when the vectorF is orthogonal to the plane of
the polarization ellipse of a laser field!. Moreover, this oscil-
lation pattern is extremely sensitive not only to the geometry,

FIG. 16. F dependence of the
total detachment rate@cf. Eq.
~25!#, G, at v51.5468 for a num-
ber values of the static field
strength F for ~a! collinear (l
51) geometry; ~b! coplanar (l
50) geometry;~c! orthogonal (l
51) geometry; and~d! orthogo-
nal (l 50) geometry.Thick solid
line: F50.2. Thick dot-dashed
line: F50.15. Thick dashed line:
F50.06. Thin solid line: F50.
Scaled units are used.

FIG. 17. Frequency dependence of the critical laser field ampli-
tude,Fcr. , in Eq. ~38! for the case of a linearly polarized (l 51)
laser field and a collinear field geometry (L5A2). Solid line: F
50.03.Dotted line:F50. Scaled units are used.
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but also to the polarization state ofF(t). Second, qualita-
tively we found that both the periods and the amplitudes of
oscillations are rather different for the frequency intervals
v.1 andv,1. These differences stem from the different
physical processes that are described by the imaginary part
of the hyperpolarizability in these two frequency intervals:
these are, respectively, the direct two-photon detachment~for
v,1) and the stimulated re-emission of a photon in single-
photon detachment~for v.1). This second channel~but not
above-threshold, two-photon detachment! gives the domi-
nant correction to the total photodetachment rate for not too
strong laser fields~i.e., for fields that may be treated pertur-
batively!.

Finally, our general results for an arbitrary field geometry
and laser polarization have allowed a detailed analysis of the
threshold behavior of the hyperpolarizability. Our analyses

demonstrate that the cross sections for photoprocesses are
finite at thresholds and for weakF they are determined by
the characteristic parameterF2/3 and by the minimal value of
the angular momentumL of the detached electron. Thus,
these results present the static-electric-field-induced modifi-
cation of Wigner’s law for the threshold behavior of cross
sections of photoprocesses from a weakly bound system.
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