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PHYSICAL REVIEW A, VOLUME 64, 023417

Dynamic hyperpolarizability and two-photon detachment in the presence
of a strong static electric field: Application to H™

M. V. Frolov and N. L. Manakov
Physics Department, Voronezh State University, 394693, Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 30 November 2000; revised manuscript received 13 April 2001; published 13 July 2001

Our recent analysisl. Phys. B33, R141(2000 ] of the problem of H in both laser and strong static electric
fields, which treated effects that are linear in the laser intersig.g., the dynamic polarizability and the
single-photon detachment cross seckjas extended here to treat effects of higher orded?) in the laser
intensity (e.g., the dynamic hyperpolarizability, the two-photon detachment cross section, the linezorin
rections to the single-photon detachment rate), & introduce the concept of the dynamic hyperpolarizabil-
ity of an atom in the presence of a strong electric field based on the complex quasienergy approach with
properly normalized, quasistationary quasienergy wave functions. Our analysis of the general structure of the
dynamic hyperpolarizability tensor of an atom in a nondegenei®testate is performed for arbitrary field
geometries and laser polarizations. The connection of the hyperpolarizalfifityw) to the complex quasien-
ergy and to atomic ionization rates is established. Analytic regult®rms of Airy function$ are obtained for
five irreducible components of a hyperpolarizability tengbat are independent of the laser polarization and
the field geometryfor the case of a weakly bound electron in a three-dimensional, zero-range potential. These
results are used for the analysis of the frequency, field geometry, and laser polarization dependence of the
two-photon detachment rate as well as of the linear in laser intensity corrections to the single-photon detach-
ment rate. It is shown that the oscillatory behavior of the frequency dependence of both the real and the
imaginary parts ofy(F; w) exists for both the coplanar and orthogonal field geometries, and that this behavior
is qualitatively different for frequencies below and above the single-photon detachment threshold. The thresh-
old behavior of the two-photon detachment rate is analyzed in detail and the static electric-field-induced
modification of Wigner’s threshold law for a short-range potential is discussed.

DOI: 10.1103/PhysRevA.64.023417 PACS nuntber32.80.Rm, 32.10.Dk, 32.80.Fb, 32.80.Gc

[. INTRODUCTION solutions for problems of interest in laser-atom physics is
that of an electron bound in a short-rangefunction poten-
Various methods have been discovered for controlling theial [1]. Although this model is applicable generally to rep-
outcome of particular laser-atom interactions. These method®sent only a short-range potentig.g., as for a weakly
include phase control in two-color experiments, polarizationbound electron in H), the complex quasienergy solution for
control by varying the polarization of the incident laser light, a § potential in a strong monochromatic figlé] has been
control by means of static fields, and control by combina-employed widely in laser-atom calculations and allows one
tions of these approaches. Particularly useful for controllingo obtain a number of qualitative features that have been
laser-atom processes are analytical theoretical results thabserved in real atoms, such as, e.g., the plateau structure in
predict the functional dependence of particular experimentahigh-order harmonic generatid8]. In a recent review4],
observables on the control parameters. The point is that uswve have employed the quasistationary, quasienergy approach
ally physical problems involve many parameters. For in-to obtain the complex quasienergy for an electron bound in
stance, for the problem considered here involving the jointhe three-dimensionad-function potential in the presence of
action of laser and static fields, even for a fixed laser intenboth a laser field and a strong static electric field. Generally,
sity there are five independent parameters: the frequency aritbm the complex quasienergy, one is able to obtain the de-
polarization state of the laser beam, the static field strengtltay rate of ar(initially bound atomic system in both strong
and the two angles describing the orientation of the statitaser and static electric fields. In our review, we gave a com-
field with respect to the laser polarization ellipse. For suctplete account of the lowest ordéinear in laser intensity
problems, time-consuming, completely numeriedl initio  effects, which are entirely described in terms of the static-
calculations are typically performed only for limited sets of field-dependent, (two-component dynamic polarizability
the control parameters, and hence, these relatively few raensor. In particular, the photodetachment cross section is
sults are only helpful as reference points for the generallydeduced from the imaginary part of the dynamic polarizabil-
less laborious analyses based on simple, analytically sohity. In this paper we extend those results to the next order in
able, models that cover the entire parameter space. In lasdghe laser intensity, i.e., we treat the dynamic hyperpolariz-
atom physics, as in other fields, however, there are relativelgbility tensor(involving five independent componejia the
few problems which permit analytic theoretical solutions. presence of a strong static field and analyze the decay rates
One model system that does have analytical theoreticadf second order in the laser intensity, which describe two-
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photon detachment as well as the linear in laser intensitgomponents to the complex quasienergy of the bound
corrections to the single-photon detachment rate. atomic state.

The subject of laser-atom interactions in the presence of a The results of Sec. Il are very general and applicable to
static electric field has a long history, which we have brieflyany atomic system in a nondegener@e.,S) state. In Sec.
reviewed in Ref.[4]. We note here therefore only some !ll we carry the theoretical analysis further by considering
works that have focused on multiphoton processes in thée special case of an electron bound by a short-range,
presence of a static electric field, and which are therefore of-function potential. We present here analytic expressions
greatest relevance to the work presented here. Arutyunyai@" the two most important components of the hyperpolariz-
and Askar'yar{5] have given a qualitative overview of mul- ability tensor in terms of Airy functions and present numeri-
tiphoton detachment in the presence of a static electric fieldt@l results for the generalized hyperpolarizability, which de-
Nikishov [6] has analyzed the special case of a low-Scribes the Stark-shift and .broaden(mg., the decay rajeof
frequency, linearly polarized laser field. Slonim and Dalid-@ Weakly bound level, taking into account the quadratic in
chik [7] have analyzed the special case of a circularly polarlaser intensity terms. To our knowledge there are no other
ized laser beam collinear with the static electric field.reSults on static-field-dependent dynamic hyperpolarizabili-
Manakov and Fainshteii2] (see alsd8]) have analyzed the ties of neganve ions with which we can compare in order to
static field ionization(tunneling from a harmonic of the deteérmine the accuracy of our zero-range potential model
quasienergy state in a monochromatic laser field. Ostrovsk§jescription of these complicated atomic parameters. How-
and Telnov[9] have performed a general analysis of multi- €Ver; for the case of zero static field, s_uch results are avail-
photon detachment for the case of a strong laser field and @!€ for H™ both in a zero-range potential modéb] treat-
weak static electric field. Gao and Stardd®] presented Ment and in nonperturbativil6] and perturbative(in the
analytic formulas forn-photon detachment of an electron 'aser field [17] many-electron numerical treatments employ-
bound in a short-range potential in the presence of a strontyd correlated wave functions. In Sec._III B 1 we recover the
static electric field in the limit of weak laser intensities; how- fesult of Manakowt al. [15] as a special case of our more
ever, their approach ignores rescattering effé¢ces, the in- ~ 9eneral results and we compare that with the numerical re-
teraction of the escaping electron with the atomic core irsults of Nicolaides, Mercouris, and Piandds$] and of Pipin
both intermediate and final staeBaoet al. [11] presented ~a@nd Bishop[17]. The comparison shows reasonable agree-
results for the two-photon detachment cross section includent (within about 10% with the most accurate many-
ing the effect of rescattering processes. We note also conflectron results in Ref17]. _
pletely numerical, nonperturbative calculations of laser de- In Sec. IV we analyze in more detail the two-photon de-
tachment of Li [12] and H™ [13] in the presence of a static tachment cross section for the Hon in the presence of a
field that take into account electron correlation effects. Thesétrong static fieldi.e., the imaginary part of the generalized
calculations show that many-electron effects do not changByPerpolarizability, presenting both analytical and numeri-
the qualitative predictions of previous single-electron analy-c@l results. These results show that there are far more possi-
ses of the static-field-induced oscillatory structure and of th&ilities to control two-photon detachment by variation of the
threshold behavior of photodetachment rates. Mercouris antld parameters, the laser polarization, and the geometry of
Nicolaides[14] have performed also nonperturbative many-the two fields than are possible for the one-photon detach-

electron calculations of multiphotor(including above- ~Ment process. For the energy region above the single-photon
threshold detachment of H in the presence of a static elec- detachment threshold, we present our results for the total rate

tric field; however, their numerical results are presented fofOr laser detachment, which includes contributions from both

only two laser frequencies and two values of the static fieldhe (above thresholdtwo-photon detachment process and

strength for fixed laser polarization, intensity, and field ge_the linear in laser intensity corrections to one-photon detach-

ometry. ment. We know of no other works that have treated the latter
In this paper we present in Sec. Il a general analysis of th€0rrections. Our results show that they can be negative, im-

response of an atom to a laser field in the presence of a staftying that they reduce the one-photon detachment rate. Fi-

electric field in the limit that the laser field amplitude is Nally, in Sec. V we present some conclusions.

treated as a perturbation parameter. Our analysis treats all

terms of second order in the laser intensity, which may be Il. GENERAL FEATURES OF THE DYNAMIC

analyzed in terms of the hyperpolarizability tensor, similarly"'Y':’ERPO'-'°‘R'ZAB'L'TY TENSOR OF ABOUND S STATE

to the case of zero static field. Of course, in the presence of N THE PRESENCE OF A STRONG STATIC

a static electric field, the general structure of the hyperpolar- ELECTRIC FIELD

izability tensor is more involved. We use general symmetry A. Definitions and notation

and perturbation theory arguments to extract the dependence . . . . .

of the atomic response on the geometry of the fields and op We consider the interaction of an atomic system with two

the polarization of the laser and establish that the hyperpdl€lds, a static electric field7, and a monochromatic laser
larizability tensor of an atom for the case considered infi€ld having an arbitrary elliptic polarization,

volves five independentirreducible components that are F(H)=ER —i(wt—k- 1
functions only of the laser frequency and the static field ® eleexd ~i(e Ol @)
strength. Also in Sec. Il we relate the “generalized” hyper- The length gauge is used for the dipole interaction Hamil-

polarizability (composed of a set of these five irreducible tonian:

023417-2
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FIG. 1. Geometry for a static electric fieltF= Fe,, and a laser
field, F(t), defined by Eqs(1) and(3).

V(r,t)=el(F(t)+ F)r. )

PHYSICAL REVIEW A64 023417

d(t)=(1/22;__.dn, exp—inwt).

In contrast with the usual definition of the dipole moment
d(t) of a stable system, thigdua) dipole momentd(t) is

generally complex, and its Fourier componedfsandd._,,
are related by the condition

®)

In terms of the quasistationary, quasienergy stQ®ES
wave function,® (r,t), and its dual function® (r,t), the
definition ofd.., is [4]:

a—w=aw|e—>e* '

2T .
diwsz dte* ' “d (r,t)|d|D(r,1), T=2mlw
0
(6)

whered is the dipole moment operatdi8]. These results
are valid for an arbitranfF (and for F#0). If we confine
ourselves to the case of moderate or wEakut assume that

The most general geometry for the applied fields is conF may be strong, the following perturbative expansiorFin

sidered, namely, that the direction of the vec#iis defined
by the polar anglesg, ¢ in the coordinate frame whozexis
is directed along the wave-vecthre kw/c of the elliptically
polarized laser fieldF(t) and whosex axis is along the major

is valid:

d,=FdD+F3d®+. .., @)

whered™ are F-independent vectors. The result in E)

semAiaxis of the polarization ellipse, defined by the unit vec+y)ows simply from the perturbative expansion &. and
tor €. The following parametrization of the unit complex & iy F and from parity selection rules
. .

polarization vectore (e-€*=1) is used for an elliptically
polarized fieldF(t) with ellipticity parameters:

e+inkxe
o EHimxe

1+ 7;2

N
S

N
=

©)

where »=0 corresponds to linear polarization, ang=

+1(—1) corresponds to rightleft) circular polarization.
These relationships are illustrated in Fig, where the unit
vectore, defines the direction of a static fieldF= Fe,, and

B. Symmetry requirements

Although explicit expressions for the vecta¥’ require
explicit expressions for the QQES functios and®, the
geometrical and polarization dependence of these matrix el-
ements can be deduced using only very general arguments
based on symmetry considerations. Specifically, the vectors
d™ can be presented in terms of the vectors that appear in
our problem(i.e., e, € ande,) and the corresponding polar-
izabilities, which forn>1 are nonlinear polarizabilitiegr

where the angl® is the only one which enters the results susceptibilities Since each vectod™ (with n=2k+1) is

for the case of a linearly polarized fiek(t), where co®
=sinfcos¢. Instead of the ellipticityy, it is often conve-
nient to employ the degrees of linedy and circular §)

determined by thath order of perturbation theoT) in F
[cf. Eq.(7)], its general form must comprisé{ 1) vectors
e, k vectorse*, and hence, an even number of vectgys-or

polarization, which have invariant forms in terms of the vec-example, sinced® involves only the vector® and e, it

torse ande*:

1—7? 2y . .
|—1+7]2— §—1+772—|k-(e><e ).

e-e=¢g*.¢e*,

(4)

As shown in[4], the dynamic polarizability as well as
higher susceptibility tensors of a decaying systemiose

must have the general forfd]:

dV=ag(Fw)et ay(F o) (e e, ®
where «y and a; are two geometry- and polarization-
independent atomic parameters, i.e., they are components of
the dynamic polarizability tensor. For>1, the analysis be-
comes more tedious, but is nevertheless straightforward. For
the purposes of this paper, we only require the next vector,

decay, e.g., may be by means of field ionization in a stron@“).

static field and/or by means of laser-induced ionizgtiare

determined by the Fourier componemt,, of the field-
induced “dual” dipole moment

The general form ofi® involves 3 vector components,

d®)= y e+ x26* + X0, 9

023417-3
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where the susceptibilitieg; depend on the geometry of the derivative inF of the (complex quasienergye of an atom

fie|dS and on the p0|ari2ati0n State Of the |aser f|e|d Th|SNhen both f|e|ds are Strong is Connected Vﬁmas f0||0WS
dependence may be established using the explicit form qfz):
d® in terms of fourth order PTin F) matrix elements. We
obtain: € __lay 12
) JF 2 @
x1=71(Fi o)+ y3(Fo)|e &2,
Obviously, due to the static fieldF an initial unperturbed

atomic state i) with the energyE, is transformed into a

— J J 2
X2=1va(Fr o)+ va(Fo)(e- &), (10 quasistationary state with the wave-functidn:(r) and a
complex energ¥. Using the expansiofv) and Eq.(12), the
Xo=Y3(Fiw)(e-e) +1 v Fw) (e - &) linear and squared in laser intensity corrections to the energy
’ E may be expressed in terms of the parametg(s; ») and
+ays(Fo)leel“(e-). ¥i(F:w). Using Egs.(3) and (4) and the chosen geometry
(see Fig. 1, we obtain for the(complex scalar product

In deriving Eq.(10) we have used the fact thaete* =1 and
the definitione-e=1. We note also the nonself-evident fact
that the parameterg; andy, in x, are the same as those in
andy,. These identities may be established using explicit sing C i
)F(’}I' exp/réssions for thg;'s. g P &&= m[(lﬂ)cos(ﬁﬂgsmgb]z & ele'’s,
In general, as shown in E@10), the hyperpolarizability (13)
tensor in the presence of a static field involves five indepen-
dent (“irreducible”) componentsy;, 1<i<5, for an arbi- where
trary field geometry and an arbitrary elliptic polarization of
F(t). For various special cases, however, fewer independent _ T e -y
parameters suffice. For the cage=0, only two of them,y, le-e|=A/2, A=singV1+1cos2s, (14)
andvy,, are nonzero and they determine the hyperpolarizabil-
ity tensor for a nondegenerate atomic level in a monochro- tang,=tarfarg e -e))]= nptande.
matic light field (see, e.g.[19]). Moreover, for =0 and
particular cases of laser polarization only one parameter cort/sing these notations and Eq8)—(10), (12), the expansion
tributes: for the case of a circularly polarized laser field, thisof the quasienergy in F up to terms~F* may be written as
is yq; for the case of linear polarization, it ig;+ y,. For
F+0 and for linear polarization ofF(t), three parameters 1 1
contribute:y; + v,, v3+ v4, andys. For weakF, the depen- Ae=e—E=—Ja(X w)F?— PYRASE w)F*, (15
dence ofy, on Fis as follows:

e ey

where
Ya(Frw)~F?  yu(Fio)~F?  ys(Fiw)~F* 1
(1) a(F,0)= ag( Fr0) + 50 2ay(F o), (16

C. Relation to the complex quasienergy and

As for the case ofF=0, the hyperpolarizability tensor for
the caseF+0 describes a number of nonlinear optical ef- (7. ) =3[y, +12y,+ A2y3+1A2c0S 2p1 ys+ A ys]
fects that occur when laser radiation passes through an (17)
atomic medium in the presence of a static fiddch as, e.g.,
the intensity-dependent correction to the refractive index are the dynamic polarizability and the hyperpolarizability re-
Furthermore, it determines the linear in intensity correctionspectively.
to the cross section fgRayleigh light scattering. In particu- The imaginary part ok, I'=—2 Ime/#%, gives the total
lar, this correction may be important for analyses of polar-decay rate of an initial bound state in both static and laser
ization anomalies induced by a static field, such as staticfields. For not too highF (so that ImE remains smajland
electric-field-induced circular dichroism in nonresonant lightfor frequenciesw comparable with|Ey|/7%, the laser-field-
scattering by atomp4]. Moreover, a detailed analysis shows induced ionization is the only important process. Specifi-
that this correction leads to new dichroic effects that occurcally, for Zw>|Ey|, Im a(F;w) determines the one-photon

only for the case of elliptic polarization &%(t) (termed “el-  ionization rate and Imy(F, w) gives the linear in laser inten-
liptic dichroism”) and that vanish for the case of completely sity correction to the one-photon ionization rate as well as
circular polarization. the direct(above thresholdtwo-photon detachment rate. For

Besides its importance for nonlinear optical applications)Ey|>#%w>|Eo|/2, Ima(F,w) is exponentially small and
the dual dipole moment is related closely to the spectral chatm v(F; w) determines the rate of two-photon ionization in
acteristics of an atom in static and laser fields. Namely, thehe presence of a static field. The explicit expressions for the
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y's and for y(F,w) in terms of the matrix elements of B. Expressions fory,(F;w) and v,(F; ) in terms of Airy

fourth order PT for the QQES have the same formal structure functions and zero-static-field limit

as that forF=0 (cf. [21]): the difference is that the atomic Our analysis is based on the use of the quasistationary
Green functions should be replaced by those that include thguasienergy stat®QQES approact21], which is similar to
presence of a static fiel(denoted here bye.;,(r.,r’),  the well-known quasistationafpr resonancestate approach
with k=0,1, and 2) and also the properly normalizeda) for radiationless atomic problems for time-independent
bra-vector, (®g(r)|, should be used instead ¢ipe (1)]. Hamiltonians. A detailed analysis of the QQES problem for

. . pur case of a combination of th&model potential and two
However, the evaluation of such matrix elements for real

atoms is, of course, a formidable task. In the rest of this(generally strongexternal fields has been presented in a re-

aper we present the analysis gf7 ) for a short-range cent review{4], where the analytical techniques for the per-
paper We prese ys @ 9€ " turbative account of a laser field have been developed for the
potential, in which case the final results may be obtained in f . d . f . imil
closed analytical form. case o ao(F;w) and aq(F,w) [cf. Eqg. (8)]. Using simi ar
techniques, we performed for our present purposes two inde-
pendent calculations foy(F; w): one based on the use of a

perturbative expansiofup to terms of ordeF?®) of the exact

IIl. STATIC-FIELD-DEPENDENT DYNAMIC ~ .
result ford, [cf. Eq. (6)], and one starting from the pertur-

HYPERPOLARIZABILITY FOR THE ZERO-RANGE

POTENTIAL MODEL bative result ford® [cf. Egs. (9), (10)] in terms of the
o _ Green’s functionGg(r,r"), of an electron in the zero-range
A. Definitions and (scaled units potential and in a static electric field. Both methods provided

We have obtained analytically the irreducible componentghe same results foy;(F; w) in terms of regular Ai§) and
of the hyperpolarizability tensory;(F;,w) in Eq. (10), and irregular Bi(¢) Airy functions[22] and their derivatives.
the combined hyperpolarizability,(F; ) in Eq.(17), for an Since the general expressions fgr involve 3 Green
electron described by the bound state wave function, functionsGe ., (r,r") (with differentk), the final results are
quite lengthy. Thus, we present here only thosey((iF; w)
and y,(F, ), which are the only nonzero ones f@=0.
Also, only these parameters contribute ¥0F; w) for the
case of orthogonal geometny,=0 [cf. Eq. (14)]. The ana-
lytical expressions fory,(F;w), 3<i=<5, have been pre-
for a zero-range §-mode) potential, sented elsewherf23]. For the simplest presentation of re-
sults it is convenient to introduce the following combinations
of Airy functions Ai(¢) and CiE)=Bi(¢)+i Ai(¢), and

— Kl

Yo(r)=N N=/k/2, (18

r l

2mh?2 9 their derivatives:
U(r)=—km 5(r)Er, . 3 . .
J(&)=AI"(&)Ci'(§)—EAI(E)CI(E),
with the binding energ¥,= —#2«%/2m. In order to present [(&)=—J"(&)=Ai(&)CIi(¢).

our results in the most general form, we use the following

scaled unitgsc.U: energies and frequencies are measured in . . ,

units of |E,| and|Eq|/%, the length unit is I; and the laser Note thatd(¢) is the regularized partatr=r'—0) of the
field amplitudeF and the static field amplitud& are mea- Green's functlon' for a frge electrqn in a static electric field
sured in units of the “internal field,’Fo=2m[E,|*/|e|#. [4]. Next we define auxiliary function@(&,) andK(&p):

The virtue of using such scaled units is that our results apply

to systems having different binding energi¢g,|, but for 1 3

different values of the field strengths. As an example, for H Q&) =E2(&)+ Z§n| '(§n)+§| (&n),

we haveF =3.362x10° V/cm, and the corresponding

scaled unit of the intensityl =cF?/8m, is I} =cF2/8x
=1.498< 10" Wi/cn?. Thus, in scaled units, we have
=F2. The cross sectiowr in our units (<~ 2) is connected
with that in atomic units,c®%), by the relation: o®")
= 0(E,/2|Ey|), whereE,=me*/7%2=1 a.u. Finally, in order
to apply our results to the special case of,Hbur results for
(hypenpolarizabilities and detachment cross sections should

be multiplied by the “renormalization” factoA.=2.6551 ¢=(nw—E)F 23 n=0, +1, =2. (19)
that is based on effective range theory and that is more ap-

propriate for comparison with experiment than is the usual

normalization of the ground-state wave function in EB) In terms of the functions introduced above, the result for
for the S-function potential 20]. v1(F;w) may be written as:

1
K(fn)anJ(fn)-i' ZI /(gn)y

where

023417-5
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87 F5/3 . TABLE I. The statig polarizabilityx, and the static hyperpolar-
y1(F,w)= ————|R(F,0)+R(F,— ) izability, v,,,, of H™ (in a.u)
1508L(F)
5 Ref.[17] Ref.[16] Present work
5 s @ [K(£-1)—2K(£0)+K(£)]
- §]: 9E 1(&) ) a 206.165 201.8 215.53
Yaz22 8.03x 10’ 7.6x 107 9.08x 10’
(20)
#The “renormalization” factorA. for H~ was taken into account in
where these results.

®In terms of y; and y,, ¥,,.7=8(y1+72).

R(F ) =Q(&) —4Q(&1) +3Q(&o).

8
and where yi(w)= 45w8[f1(w)+ fi(-w)],
L(F)=2mF WI(—EF 2 (21) . @3
is the (complexX normalization factor for the quasistationary Yow)= 45w8[f2(“’)+f2(_“’)]’

state®g(r) in a static field[4].
The explicit result fory,(F,») may be presented in a \;ere
form similar to Eq.(20):

53 f1(w)=45w2+ 96+ 5i(w’—1)YAw?—7)

72(.7:,w)=m[R(?,w)-ﬁ-R(}",—w)—S(}",w) —4i(w—1)1/2(3w2+14w—32)+3i(2w—1)5/2,
~S(F—w)], (22) . 24
fo(w)=15w2+28— —[10(w—1)%42w—1)2
where w
" , +i(2w—1)Y( 9w+ 24w’ — 26w+ 10)
S(F )= L K Z2KE) T RG] —2i(0—1)Y{ 7w~ 1402+ 120—5)].

3 1+7F (&)

Note that we defing/—a asia for a>0. This convention
corresponds to an exponentially decreasing wave in closed
detachment channels and to a spherically diverging wave in

We note that the paramet&rin the above equations is the
exact(complex energy of the quasistationary stabe(r) in

a static field. The dependence®bn F has been analyzed in
detail in Ref.[4], where it was shown that for not too strong open channels.

. . The analytical structure of the results in E(3), (24) is
}—(].:<0‘01) and far from threshold frequencies the approXi-.q hsistent with well-known square-root peculiarities of cross
mation E=Ey=—1 may be used. The other components

) S0 e 'sections for a short-range potent{@4], which are reflec-
){ih(}-, “2 with '_3’61’5’ hav? ;}:uctur?sEthatzgre Zln;gar ©tions of the threshold behaviors of hyperpolarizabilities at
(Thoug moret cfumthersom;a ? de.o q;:(' )atr;1 (f)' the opening of two- ¢=1/2) and one-photone{=1) de-

us, except for the prefactordi in y(Fiw), the fre- pment channelésee Ref[15] for details. Despite the
guencyw enters the results only in the arguments of the Airy

. i . simplicity of the model, the analytical results for a zero-
fu_nct|ons, defined by Eq(19). Obviously, _the_se argumen'_[s range potential in Eq$23) and(24) [as well as those for the
with n=0 correspond to effects of a static field only, while

- olarizabilit 25,15 are in reasonable agreement
the terms withn=—1 andn=—2 (or n=1 andn=2) cor- P y alo) | 3] g

. . o with sophisticated numerical calculations of hyperpolariz-
respond to the absorptlc(nr stimulated emissigrof one and abilities for H- employing electron-correlated wave func-
two photons, respectively.

tions[16,17). Specifically, in Ref[17], the nonlinear optics
definitions for two independent components of the hyperpo-

1. The zero-static-field limit larizability tensor, y,,,{— w;w,0,—®) and Yy, {—;

As mentioned abovésee Eq.(11)], for 7—0 the domi-
nant contributions toy(F;w) are given byy;(F,w) and

w,w,—w), are usedfor w=0, Y= (1/3)v;,,4. In terms
of y1(w) and y,(w) we have y,,,7=8(v1t7Y2): VYxxzz

vo(F,w), which are the only nonzero components of the=41y,,. Taking the limits of Eqs(23), (24) at =0, we

hyperpolarizability tensor atF=0. Using the known
asymptotic expansior|g] of the functionsJ(¢) andI(¢) at

obtain the zero-range potential model result for :Hy,,,,
=2A.(sC.u.)=9.08< 10’ (a.u.). In Table I, we compare the

-+ (ie., F—0), we obtain the results fory; (F  results for the static polarizability and the hyperpolarizability
=0;w)= v {w), which coincide with those first obtained in v,,,,0f H™ in the zero-range potential model with those in
Ref.[15] by direct perturbative calculations of the quasien-Refs.[16,17]. One sees that the results of Pipin and Bishop
ergy in the QQES approach: [17] (which are the most accurate to our knowledbie be-
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FIG. 2. Frequency dependence of the compongnt{— w; 0 004 008 2.2211‘;).16 02 024
w,w,— ) of the dynamic hyperpolarizability tensor of HSolid :
line: Zero-range potential model resulEgs. (23),(24)]. Solid
points: The results of Pipin and Bishdfd.7].
tween the results of Reffl6] and[15]. Figure 2 presents a —_
comparison of predictions for the frequency-dependent hy- Z
perpolarizabilities. It is seen that the accuracy is uniform £ (b)
over the frequency interval considered. The 10% accuracy of §
the zero-range potential model for predictions of such com- =
plicated atomic parameters as hyperpolarizabilities seems ac- &
ceptable to us given the ability of the model to provide ana-
lytically the dependence ofy(F,w) on o, F, the laser

polarization, and the field geometry. A 10% accuracy also
seems acceptable given the existing level of accuracy of in-
tense laser experiments.

A further indication that our zero-range potential model FIG. 3. Comparison of zero-range potential model and nonper-
results are quite reasonable is provided by the more detailegjrative many-electron numerical predictions for Ha) Fre-
comparison with the nonperturbative, many-electron numerigyency dependence of the real part of the dynamic polarizability
cal results of Nicolaides, Mercouris, and Piangb8] shown () for 0<w=0.25 a.u.(b) Frequency dependence of the real
in Fig. 3. Figure 8a) compares predictions fo#(w) for 0 part of the hyperpolarizabilityy(w) for 0<w=0.08 a.u.Solid
=w=<0.25 a.u. and Fig.(®) compares predictions fop(w) lines: Present zero-range potential model resuBislid circles:
for 0O=w=0.08 a.u. One sees that except near the thresiNonperturbative, many-electron numerical results of RES].
olds, our predictions and those of RET6] agree very well.

"o 0.02 0.04 0.06 0.08
w (a.u.)

=T +T@+17®), (25)
C. Numerical results for real and imaginary parts of ¥(F; w)

The dependence of(F; ) on the polarization and the and wherel’®~F? andT'g;,; = —2 ImE is the static-field-
geometry is described by the factors cos2p,, and A  induced decay rate. As Figs. 4 and 5 demonstrate, the oscil-
=sirfg (1+lcos2p) in Eq. (17). This analytic equation latory behavior of the hyperpolarizability as a function of
shows that for an arbitrary geometrj ¢ 0) both real and  (in the field configuration in which the laser polarization
imaginary parts ofy(F;w) are sensitive to the polarization vector and the static field direction are orthoggmantrasts
state of the laser field. Moreover, in contrast to results for thevith the behavior of the dynamic polarizability, which does
dynamic polarizability[4], the polarization dependence of not oscillate[4]. For the case of a linearly polarized laser
v(F;w) is significant even for the case of an orthogonalfield and orthogonal geometry, the oscillation pattern is more
geometry. In Figs. 4 and 5, we present numerical results fopronounced foro<1 than for w>1 (where w=1 is the
the real and imaginary parts, respectively, of the hyperpolarsingle photon ionization threshold f&=0). For the case of
izability y(F;w) for three values of the static fieldf for an  circular polarization, however, oscillations appear only for
orthogonal field geometry for either a linearly or a circularly > 1. Another general result that is clear from Figs. 4 and 5
polarized laser field. Note that for the case of circular polaris that increasing the static field leattsn averaggto a re-
ization with the laser beam collinear with the static figld.,  duction of both the real and the imaginary partsydfF; ).

R||e0 or A=0), Rey(F,w)=3 Rey,; and for the case of a Our numerical results for the case of coplanar or collinear
linearly polarized laser beam collinear with the static fieldgeometry are presented in Figs. 6 and 7 for both the case that
(i.e., alsoA =0), Rey(F.w)=3 Re (y,+ v,) [cf. Eq.(17)].  F is in the plane of circular polarization d¥(t) (i.e., A

Note that Imy(F: w) is related to the contribution of or- =1/=0) and the case thaF is parallel to the direction of
der F* to the total decay rat&, i.e., T®=(Im y/12)F4,  linear polarization ofF(t) (i.e., A=2). Both real and
where imaginary parts ofy(F; ) exhibit oscillations about the re-
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FIG. 5. The same as Fig. 4, but f@ne twelfth the imaginary

larizability y(F;w) for the orthogonal field geometry for three val- part of the hyperpolarizability, Iny(F: w)=12I"*)/F4,
ues of the static fieldta) F=0.015;(b) #=0.03; and(c) F=0.06.
Solid line: linear laser polarization; Rg(F, w)=3 Re (y1+ v,).

Dashed linecircular laser polarization; R&(F; w) =3 Rey;. Thin
solid line: Result for7=0 and linearly polarize(t). Thin dashed
line: Result for7/=0 and circularly polarizeéF(t). Scaled units are

used; see text for explanation.

sult for =0, which is given by Eqs(23) and (24). These

fects are most important for near-threshold frequencies,
=1,1/2,1/3, . ., andthey smooth the square-root threshold
peculiarities of cross sections that are typical for short-range

potentials. As a result, for small frequencieven for weak
static fields, it is impossible to present the total decay rhte
in terms of partial rates with a fixed number of absorbed

oscillations have the sam@nterference origin as for the
dynamic polarizability and they vanish fap>1, where

static field effects are negligible. For the coplanar or collin-

ear geometry(i.e., when the static field is in the plane of

circular polarization or parallel to the direction of linear po-
larization), the oscillation pattern is more pronounced than

for an orthogonal field geometry. Moreover, in contrast with

the case of orthogonal fields, oscillations are more pro-

photons.

IV. TWO-PHOTON DETACHMENT OF H ~
IN THE PRESENCE OF A STATIC FIELD

A. Results in alternative approximations, laser polarizations,

and field geometries foro<1

In this section, we analyze in more detail the imaginary

nounced forw=1 than for the case of two-photon ionization, part of y(F;w), which describes not only the two-photon
1/2<w<1. Thus, the oscillation pattern is smoothed in thedetachment rate but also the linear in laser intensity correc-

multiphoton casefor decreasingn<<1). The static field ef-

023417-8

tions to the one-photon detachment rate. First, we consider



DYNAMIC HYPERPOLARIZABILITY AND TWO-PHOTON . .. PHYSICAL REVIEW A64 023417

8 0.4
6 0.3
0.2
3 - 0.1
LL:\ 2 E / AAAADAAS
~ AAAAAAAAA
N S N 1 1 17TV = o \
3 N £ -01
2 02
(a) (a)
-4 0.3
-6 -0.4
0.5 1 1.5 2 2.5 0.5 1 1.5 2 25
w w
8 0.4
6 0.3
S
4 0.2 AN
3 AR F UV
\L'\ 2 - > —~ 0 A NAADAAAA i~
\g 0'— \ A A AI\VA'A-- :7/ \ v
e vy O -01 \
2 b 0.2
(b) (b)
-4 0.3
-8 0.4
0.5 1 1.5 2 2.5 05 1 15 2 2.5
w W
8
6
4
3 -
SISV &
\(\.: 0 - \-\‘ A A e T AN . PPN
A) 7 = ~
O =
a o, -0.
(c) (c)
4 0.2
8 0.3
0.5 1 1.5 2 2.5 05 1 15 2 25
[ w

FIG. 6. Frequency dependence of the real part of the hyperpo- FIG. 7. The same as Fig. 6, but f@ne twelfth the imaginary
larizability y(F:w) for coplanar or collinear geometry for three part of y, Im y(F;w)=12I"Y/F4,
values ofF: (a) =0.015;(b) #=0.03; andc) 7= 0.06.Solid line:
F °°”i2“ear) with ;hg ldireCtiO” ﬁf "r;ear p?'ariza}“on ‘Iﬁ(t) (' other authors it is convenient to use féndependent “gen-
=1, A°=2). Dashed line:F in the plane of circular polarization : P
of F(t) (I=0, A%2=1). Thin solid line: Result for 7/=0 and lin- eralized cross section:
early polarized~(t). Thin dashed lineResult for/=0 and circu-

larly polarizedF(t). Scaled units are used. o@= Broa

2
16
I‘(“):?(waw)z Imy(F,w). (26)

the case of two-photon detachment of Hor frequencies

below the Single—photon threshold, Hy=<1. (NOte that we Note thata-(z) in Eq (26) is expressed in scaled units; to
use the symbofks instead of< since in the presence of a convert it to ordinary units, multiply by the factor
static field the threshold frequencies are not well defmed-1/4(Ea/|EO|)3a4ﬁ/Ea, whereE, is the atomic unit of en-
For the frequency interval considered, the tff® in Eq.  ergy anda is the Bohr radius. For H, for which |Ey|

(25) is negligibly small(see Ref[4], where the one-photon =0.027 751 a.u., this factor is 2.21880 %6 cm’s. Obvi-
detachment rate for Hin the presence of a strong static field gusly, with the use of the exact result for #1F; w), @ in

has been analyzed in defailThus, the laser-field-induced Eq. (26) gives not only the cross section for direct two-
decay rate is proportional t6*=17, and its dependence on photon detachment, but describes also the contributioR$
polarization and frequency is presented in Figs. 5 and 7 for & the rates for static field ionization and stimulated two-
number of values ofF. For moderateF, it is possible to  photon emission as well as the linear in laser intensity cor-
extract the dominantin F) terms from our exact analytical rections to the rates for one-photon absorption and emission.
results forvy;(F;w). To compare these results with those of However, for the considered interval of frequencies and for
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F=0.05, the contributions of all these channels are exponen- A (2ma)?

i ; 2) 5 1 2
tially small and may be neglected. lim of{?=A, s V20— 1/1270"— 1520+ 48
$o>1 15w
1. Alternative approximations and comparison with exact COS¢,
results. The case of collinear geometry —5(49w*— 560+ 16) by | (30
2
As for the analysis of one-photon detachment of ki
Ref.[4], one may analyze different levels of approximationwhere
for taking account of static field effects in calculations of the a0
two-photon detachment amplituda{?), for negative ions: A4 Qe-1D¥ 4, 31
b=z 7 =367 (32)
A= (ylerGe. o(rr et | D). 27

Thus, the parametep, determines both the period and the

The simplest approximatiofdenoted!) consists in neglect- ampl_itude of the pscill_at(_)ry part of the cross sectior_l. Note

ing static-field effects in théstatic-field-dressednitial-state that in the weak field limit the two-photon cross section de-
rﬁ:)ends onF only through the factor (cog,)/#,, which is the

®(r) and in using results for the intermediate-state Gree
/ ; same dependence found for the one-photon detachment cross
functiongg, , and for the final-staté; of the detached elec- section[7,20]

tron that are appropriate for a free electrqn in a static field. A better approximatioridenoted ) involves, in addition

(This approximation may be called a static-field Born ap- he i . included i imation th
roximation) It is not possible to perform an exact analytical to the mteractlons'mc.:u ed in ?‘ppfox'ma?'@.f!t e exact

P account of the static field distortion of the initial stafe),

calculation of the amplitude in Eq27) in approximationl. b f usi h o f
The situation is similar to that for single-photon detachment y means of using the quasistationary wave- unctiog.
For this case the amplitude in ER7) may be calculated

which has been analyzed in Rg4]. Specifically, for single- ) ~2) & LAt
photon detachment the transition amplitude in approximationalytically and the result far'*’ in the approximationl is:
| also cannot be evaluated analytically. However, it can be

evaluated using a saddle-point approximation, in which case-~ ;) 647’ F'
it reduces exactly to the result of assuming a weak static field”1 "~ "' 4

+
) , \ : w 16 20% o°
and performing an asymptotic expansion for the Airy func-

A_,2<1 372 f"’)
I B e —— —_—

tions in the exact analytic result for (7, w). Reasoning F2\2 F23 42
by analogy, we simply define approximatidnfor two- —&Ai® 27 3 —§2(Ai2—Ai’2)6—w 1-—
photon detachment by the weak field, approximate expres- @ @
sion of our analytic result for Iny(F;w). Specifically, for F2h3 20F2 3 F4/3 202
weak fields, asymptotic expansions can be used for the Airy —AiAI’ 1+ —Ai2 (1+ )
functions whose arguments are large and positive, namely 6w ® 10w? 303

&0, €+1, and &,. Taking into account only Airy functions
with the negative argumentt_,=—(E+2w)/FP~(1
—2w)/F?3, and neglecting the imaginary part of Airy func-
tions with other arguments and also thelependence of the
normalization factor in Eq(21), we obtain after some alge- where the notations are the same as for @28). Moreover,
bra the following result in approximation(for the case of a this result coincides exactly with that obtained by Gao and

4/3

— E(E2AI%— A%+ 2Ai Ai')E , (32

linearly polarized laser field collinear witlf): Staraceg 10] [after one performs an analytical calculation of
the integral in their Eq(53) for the caséN=2]. Thus, as was
. AmlalFlB3 pointed out for the case of one-photon detachnjdht for
of2)=Ac—6[(Ai’2—§Ai2)(127w2—152w+48) the perturbative account of a laser field, the method sug-
150 gested in Ref[10] is more accurate than the “static-field
— 8F23(12— 19w)Ai A ' — 12F 434 2], (29) Born approximation” and is equivalent to an exact account

of initial-state effects that are ignored in approximatiok/e
note that, as in the case of approximatidbrfor one-photon
detachment, it is impossible to extract the reg8R) from
our exact results for Iny(F;w) by taking into account the
corrections of higher orders itF compared to those ac-
counted for in approximatioh The reason is that these high
order corrections overlap with similar corrections caused by
rescattering effects. These effects originate from the interac-

(20—1)>F", (29 tion of the detached electron with the binding potentiith

in intermediate states, i.e., after absorption of one photon,

when the asymptotics of Airy functions for large negativeand in the continuum These rescattering effects are ne-
argumentst_, may be used. In particular, for this case, theglected in both approximatiorisandIl. For two-photon de-
result in Eq.(28) reduces to elementary functions : tachment, the account of rescattering effects beyond approxi-

where é=¢ ,, Ai=AI(&_,), AI'=AI'(¢£.,), and A,
=2.6551 is a “renormalization” factor for H.

In the weak static field limit, the oscillatory structure of
cross sections is very simple for “far from threshold” fre-
guencies,
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FIG. 9. F dependence of the two-photon detachment rate of H
for the case of a linearly polarizedl=t 1) laser field and a collinear
field geometry (\ = \/2) atw=0.6487 and~=0.305 976(in scaled
units). Thick solid line: present resultThin solid line: the zero-
range result fotF= 0. Solid points:Results of Mercouris and Nico-
laides[14].

In order to verify the accuracy of the zero-range potential
model for the description of multiphoton detachment of H
: in combined laser and static fields, in Table Il we compare
04 05 06 07 08 09 our results for the two-photon detachment r&fé [calcu-
w (scaled units) lated using Eq.26)] with the nonperturbative, correlated-
electron calculation§l4] for the collinear geometry and the
FIG. 8. Frequency dependencef for linear laser polariza-  following set of field parameterso=0.018 a.u=0.65 sc.u.;
tion (I=1) and for collinear static field geometry faia) F F=2.0x10 %a.u=0.31sc.u.; and for three values &t 0,

& (1073 scaled units )

=0.015 and(b) 7=0.03. Solid line: exact result, Eqs(17) and 2 5x 10 *a.u=0.038 25 sc.u., and 5010 % a.u.
(26). Solid circles:approximationl, Eq. (28). Dashed lineapproxi-  =0.0765sc.u. Since for the laser intensity consideried,
mationll, Eq. (32) (Ref.[10]). Dot-dashed lineapproximation |1 =F2=0.096, the use of a perturbative approach is question-

(Ref.[11]). Dotted line: =0 result, Eqs(17), (23), and(26) (Ref. able, we also calculatef’® for F=0 nonperturbatively,

[17). For H, the scaled units forr® and hw are 2.2188 pased on the exact equations for the complex quasienergy for
x10°% cnf's and 0.027 751 a.u., respectively. the zero-range potential model. This result [i§"=0.5

x 10sec t. Thus we expect that higher order in laser in-
mation | (i.e., using the unperturbed initial statevas tensity corrections cannot change qualitatively our results
performed in Ref[11] together with account of initial-state presented in Table II. In Fig. 9 we present thelependence
effects as in approximatiohl . Thus, in this approximation of the two-photon detachment rate for the frequengy
(denoted|ll) only the interference terms are neglected,=0.65. While the results in Refl14] are presented for only
which can only be taken into account by a simultaneoudew values of 7, we believe that the zero-range potential

treatment of both rescattering and initial state effects. model and the numerical many-electron results are in reason-
The comparison of results calculated in approximatigns able agreement.
[, andlll with our exact calculations, employing Ed47) As a further indication that our zero-range potential model

and (26), is presented in Fig. 8. One observes good agreepredictions are reliable, we present in Fig. 10 predictions for
ment of the results in approximatidhl with our exact re- the ionization rate for H above the two-photon ionization
sults except for a narrow interval of near-threshold frequenthreshold. In order to compare with the results in Fig. 5 of
cies.[Note that the arguments of RdR26] concerning the Ref.[13], we have performed calculations for the same field
(possible inaccuracy of the results in Réfl1] is thus shown ratios u=F/F employed in that paper. Comparison of our
here for the two-photon case to be incorrect. A detailed disresults in Fig. 10 with those in Fig. 5 of Rf13] shows
cussion of these assertions for the one-photon case has beexcellent qualitative agreement belaw=0.03 a.u. Forw
given elsewher¢27].] >0.03 a.u. our predictions show somewhat more oscillatory

TABLE II. Two-photon detachment ratd&® ( in sec'*) of H™ for collinear linearly polarized laser and
static electric fieldsw=0.65 sc.u(=0.018 a.u, F=0.31 sc.u £2x10 % a.u.).

F=0 F=0.03825sc.&2.5x10 %a.u.  F=0.0765sc.u=5x10 *a.u.
Ref.[14] 0.65x 103 0.45x 103 0.36x 10'3
Present work 0.6910'° 0.56x 10'3 0.3x 103
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structure. Quantitatively our results and thosdq 18] agree

to within about 10%.

w (scaled units)

2. Polarization and geometrical effects

The importance of both polarization and geometrical ef-
fects for the two-photon detachment cross section is clear
from Figs. 5 and Awhich show the frequency interval 1/2
=w=1). Compared with the dependence of the one-photon
detachment cross section on both these effegtsch enter
the result only through the scaled parametet,[4]), for n
=2 this dependence is much greater. To illustrate this, we
present here our analytic result for the two-photon cross sec- 04 05 06 07 08 09 1
tion in the approximation:

52 (107? scaled units)

w (scaled units)

47T3a2f1/3{(Ai ’2—§Ai2) FIG. 11. Frequency dependence @f for orthogonal geom-
150° etries for three values of”: (a) #=0.015; (b) F=0.03, (c) F
=0.06.Thick solid line:linear polarization (=1) orthogonal taF.

X[32(2w—1)?—1?(w?+ 24w —16)] Thick dashed linecircular polarization (=0) in the plane orthogo-

23 Ni A ar2 nal to F (i.e., k|| F). Thin solid line:linear polarization (=1) and
+FTAIAN [100(21=3A7C0S2h1) ¢ Thin dashed linecircular polarization (=0) andF=0.
+2(2w—1)(15A%—412-8)]

. thogonal geometrical arrangements, i.e., in which the laser
+ FABAIZ[60A2(1—I orthogon ca 1€ ’
FEAT60AK( cos 1) polarization vector is in the plane orthogonal to the static
—7.5A%+612+12]}. (33 field F. One observes that for the case of linear polarization
o o _ and F#0, there is the characteristic oscillation @ with
One observes that, for an elliptical polarization, with Oincreasing frequency. What is surprising is that this occurs
<|7|<1, o'® depends on the azimuth anglenot only by  for an orthogonal geometry. Such oscillation has not been
means of the parametér?=sirfd (1+ cos 2p), but also by  predicted in one-photon detachment in the orthogonal field
means of the “angle”¢$,, where tanp;= nptan¢ [see Eq. configuration. We surmise that it occurs for the two-photon
(14)]. In Figs. 11 and 12 we extend the results for linearcase because the final state includesave components,
polarization and collinear geometry obtained in Réfl] as  which can be reflected back to the origin by the static field,
well as those shown in Fig. 8 to the cases of circular polarfeading to the observed interference pattern. This interpreta-
ization and orthogonal geometry. tion is supported by the absence of such oscillations in Fig.

Figure 11 shows the frequency dependence of the genetl for the case of circular polarization, in which case the
alized cross section for two-photon detachment of far  final state does not have awave component. Figure 11

o, F A, d)=A,
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FIG. 12. Frequency dependence&ﬂf‘) for collinear or coplanar
geometries for three values of. (a) F=0.015;(b) F=0.03, (c)
F=0.06.Thick solid line:linear polarization (=1) collinear with
. Thick dashed linecircular polarization (=0) coplanar withF.
Thin solid line:linear polarization (=1) with #/=0. Thin dashed
line: circular polarization (=0) with 7=0.

shows also results faF=0. One sees that for linear polar-
ization, the result forF#0 oscillates about the one foF
=0. For the case of circular polarization the curves for

PHYSICAL REVIEW A64 023417

ence effects that vary witlh (or, equivalently, the electron’s
kinetic energy. For both cases of laser polarization, one sees
that the cross section oscillates about its valuefsrO for

high enough frequencies above the zero-field threshold, i.e.,
>0.5. However, asF increases, the oscillations in the re-
gion of the zero field thresholdu(~0.5) are increasingly
lower on average for the case of linear polarization than the
cross section fofF=0. For the case of circular polarization,
this lowering occurs after th&>0 and =0 curves inter-
sect just above the zero-field threshotd= 0.5). This effect

is due to the lowering of the effective threshold by the static
field and the consequent nonzero cross sections for both po-
larizations beloww=0.5.

3. Threshold behavior and modified Wigner's law

As mentioned above and as demonstrated by our results,
static-field-induced effects are most important in the thresh-
old domain[i.e., for the conditions opposite to those in the

inequality (29)], where o(® vanishes atF—0. We present

below the threshold value af®) for the case of linear po-
larization and collinear geometry, which follows from Eqgs.
(28) and (32) for w=1/2:

S{2)th. N]_-llz[ 1— 13_6]:2/313— 15—6]-“4’3b2} , (34)

- 16
o= N]-"m[ 1- 5 bFPY1+16072) 32 F*°

3
X §+327-‘2) —192F2+ 210}'4} (35
where
N=16ma?3YT%(2/3A, be— T
¢’ 35061 (2/3)2

We note the important fact that for two-photon detachment
the static-field modification of the threshold behavior is con-
siderably more significant for even weak static fields than in
the case of single-photon detachment. In particular, in the
weak-field approximation, we have:?™"~ 73 for two-
photon detachment as compared & "~ F for one-
photon detachmenit4]. Moreover, forn=2 the threshold
value of ¢ depends significantly on the polarization and

=0 andF+#0 are essentially identical except for the regionfield geometry, as may be seen from our result for the sim-

around the zero-field threshold, i.eo~0.5. The difference

plest approximationl;

in this frequency region stems from the effective lowering of

the threshold by the static field. ~2h s el 12 1A%cos 2,
Figure 12 shows, in contrast to Fig. 11, that for geom- 0717 (A1, 1) =NF 17+ 8bF " 5 —————

etries in which the laser polarization vector is collinear or

coplanar with the static fieldF, o(? oscillates as a function + 16 2+12

of frequency whether the laser polarization is linear or circu- 10

lar. The reason clearly is that in either case the final-state K

probability amplitude for the electron can be reflected back 2,1 _ o

to the origin by the static field potential, resulting in interfer- +AN(1=1cos2py) 8/ (36
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FIG. 13. Threshold behavior G¥®(7) [i.e., for w=1/2 (in 0 s or o6 os 1
scaled unitg for linear polarization (=1) and the collinear field F
geometry as a function of static field amplitude,Solid line: exact
result [from Egs. (17) and (26)]. Dashed line:approximation| 0.3
[from Eq.(34)]. Dot-dashed lineapproximation | [from Eq.(35)].
Thus, whereas for the case of linear polarizatfeimen the IS b)
swave continuum channel contributes to the cross section o
we find thato(? ™"~ F13 for the case of circular polariza- s
tion (when only thed-wave channel contributgghe field ~
dependence ot " is much more suppressed-(F>).
These results illustrate how a static electric field modifies 04
_signific_antly the We_II-known W_igner threshold laya4] f_or o 0.2 0.4 0.6 0.8 1
ionization of a particle bound in a short-range potential. In- F

stead of the usual low-energy dependeagéE) ~E-* 12 of

the partial cross sectiorier the equivalent for the scattering ~ FIG. 14. Threshold behavior of Im(F;w=1/2)/12=T “)/F*
phaseswhich correspond to the angular momentunof a  for: (a) orthogonal field geometryl €0,1); (b) collinear (=1) or
weakly bound electron in the continuufwith energy E coplanar {=0) field geometry.Solid line: linearly polarized [
=nw—1 for n-photon detachmeptin the presence of a =1) laser field Dashed linecircularly polarized [=0) laser field.
(weak static field the cross sections are finiteEat 0. This ~ Scaled units are used.

well-known qualitative fact follows from one-electron con-

siderations, has been observed experimen{@8}, and has ¢ .0 1 and then decreases, becoming approximately zero

been confirmed by many-electron numerical calculation§On the scale showrfor 7>0.5. However, whereas for the
[12,13. Our analytical results for an arbitrary geometry andcollinear (=1) and coplanar I 0) field,geometries this

laser polarization allow one to formulate the modification of ) . 7
P decrease is essentially monotonic in the ranges(Z 0.5,

Wigner laws in a weak static electric field quantitatively. : ) o
Namely, the threshold behaviors of the cross sections fo r the orthogonal field geometri becomes negative in

small energiesE<F23) of the escaping electron are deter- this intermediate range ¢F, indicating that this higher-order
mined by the characteristic field paramet&??, contribution reduces the overall decay rdtein Eq. (25).
Finally, one observes from Fig. 14 that the variation of the
G(E=0)~(F23)L+12, (37)  threshold value of® with F is less pronounced for a cir-
cularly polarized [=0) laser field than for a linearly polar-
Obviously, if the final continuum state of the escaping elecized (=1) laser field regardless of the field geometry.
tron is a superposition of states with different angular mo-
mental, only the minimal one enters the modified Wigner
law in Eq. (37).
Figure 13 demonstrates the threshold behavio}(&‘(f-) An interesting qualitative result on the frequency behavior
obtained from exact results for Ig(F: @ =1/2) and its com-  of y(F, w) is evident from Figs. 4—7. Namely, although both
parison with results for approximatiorisand I1. One ob- Rey and Imy oscillate forw=1/2, their oscillation patterns

serves that(?'" is in reasonable agreement with the exact(i-€., periods, amplitudes, and signs of k@nd Imy) are
result. However, the approximatidnis reasonable only for Vvery different in the regions below and above the single-
weak static fieldsF and is qualitatively wrong for strong Photon, zero-field thresholdp<1 and w>1. Physically,
static fieldsF. these differences originate from the different physical phe-
Figure 14 demonstrates the threshold behavior ofth¢  nomena that are described by 7, w) for the two fre-
contribution"'® to the total detachment rate in E(®5), guency intervalg.Obviously, Rey, which gives the linear in
extracted from the exact results for WF; w=1/2) for dif-  laser intensity correction to the Stark shift, repeats the pecu-
ferent laser polarizations and field geometries. One observdirities of the w dependence of Iny because they are the
in all cases thal'*) increases from its zero static field"(  real and the imaginary part of the same analytical function,

=0) value asF increases, reaches a maximum in the vicinity e= e(w).] For o<1, two-photon detachment is the only

B. Results for alternative laser polarizations
and field geometries forw>1
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channel that allows laser-induced decay of the quasistation- 265
ary (because of the static figldtate®g(r). For w>1, the
one-photon channel is open; therefore for this case the term
I'®=(1/2)Ima(F:w)F? in EqQ.(25) is dominant. Generally,

for o>1 the next order irF? correction,I'® (i.e., Imy),
describes both above-threshold, two-photon detachment
(with a rate, sayl'{}}) and the linear in laser intensity cor-
rection(say,l“f“)) to the one-photon rat&,(®). However, for
moderateF, it is impossible to present our exact analytical 545
result forT') simply as the sum of {*) andT"{%) since such "0 004 008 012 016 02
a separation is impossible because of the interference be- F (scaled units)

tween these two channels. Nevertheless, the results in Figs. 5

and 7 allow one to obtain some important information on the 3.2
relative magnitudes of the terms discussed. Obviously, the

(total) rate for two-photon detachment is a manifestly posi- 28 A /\ -
24 A \,/’

2.6 H- (a)

2.55

2.5

' (1073 scaled units)

tive observable for the whole interval of frequencies
>1/2. Indeed, for frequencies below the one-photon thresh-
old, where the one-photon detachment r&t& vanishes,
I'®) describes two-photon detachment offheglecting the
exponentially small effects of static field ionization and
stimulated emissigrand it is positive, as it should be. On the
other hand, forw>1 the situation is differentt*® is nega- 1.2
tive for orthogonal field geometrgFig. 5 or its sign oscil-

lates with increasing (Fig. 7). These results imply that, in

the above-threshold region, the nonlinear in laser intensity g 15. F dependence of the total detachment rétéct. Eq.

corrections to thelinear in intensity perturbative result for (55)) 4t =1.5468 and==0.1 for (a) orthogonal andb) collinear
the photodetachment raf&® are more important fof (1=1) or coplanar (=0) field geometriesThick solid line | =1.

quantitatively than the direct two-photon detachment contri-thick dashed line: +0. Thin line: result for F=0. Note that for
bution toI'®). Moreover, the(mainly) negative sign of the  orthogonal field geometries and for the caBe 0, differences be-
nonlinear corrections indicates that, as the intensiy-  tween the results for linearlyl € 1) and circularly (=0) polarized
creases, the slope of the total decay rdtél,), has a ten- light are not observable on the scale of this figure.

dency to decrease. Such behavior is similar to the onset of a

stabilizationlike behavior of the photodetachment rate for
weakly bound level in a strong laser field f6= 0 [29]. On

the oth.e.r hand, f?]r some intervals efthe sign ofF(4)hmay and has been confirmed in Ref&2,13 by accurate nonper-
be positive, and thus, one observes alsgl)/d1>0. There-  ,hative numerical analyses that take into account electron

f(;reﬁ a rrr:odzrate ﬁtatic figld may provide signifilcant ‘;_Or;érdcorrelation effects. One sees in Fig. 15 that regardless of the
of the pholodetachment decay rate in a strong laser field. geometry or the type of laser polarization, the rBfg; o0s-

) - . . ! .
The frequency dependence 6" in the above-threshold - cijates about itsF= 0 value until, at sufficiently large values

domain is qlear from Figs. 5 and 7'_ To illustrate tﬁeancng) of F, static field detachment becomes dominant. One ob-
depar;denmes of the total laser-induced rdfg,s =1 serves also that these oscillations are of much smaller ampli-
+I7, we present results for the fre_quenﬁyz 1.5468 that tude for orthogonal field configurations than for collinebr (
has been used in the recent experimi@@l for measuring  _ 1y o coplanar (=0) field configurations. In Fig. 16 we

the angular distribution in two-photon detachment of bly see that in general as the laser amplitédincreases’ ..

a linearly polarized laser fieldNote that the total CrosS S€C- tands to reach a maximum and then decreases. However, for
tions for w=w; measured in the experimei80], o  the orthogonal field configurations these maxima lie within a
=(3.6£1.7)x10 ¥ cn? and ¢@=(1.3£0.5)x 10" *® cm*  narrow range, whereas for the colline&r=(1) and coplanar
sec, are in good agreement with our calculated results for thd = 0) field configurations the maxima take much lower val-
zero-range potential model(for F=0), o=3.648 ues for the highest static field values shown; also, for the
X107 cn? and ¢(®¥=0.962< 10 *® cmsec] In Fig. 15 lowest nonzero static field value, the maxima are higher than
we present ther dependence df ;s for a fixed value off  for the =0 maximum.
and for different field geometries and laser polarizations. Our numerical results for the polarizability and hyperpo-
Similarly, in Fig. 16 we present the laser amplitUéielepen- larizability allow an estimation of the critical amplitude of
dence ofl',s up to values forF at which'® andI'®  the laser field, at which the termsF?2 and ~F* on the
become comparable. right-hand siddrhs) of Eq. (15) have comparable amplitude,
For a linearly polarized laser field in the collinear geom-thereby implying that perturbation theory knfor the Stark
etry [indicated by the thick solid line in Fig. 18)], the  shift and width(i.e., the decay rajebreaks down. This criti-
static-field-dependent oscillatory structure of the photodec€al field is determined by the relation betwee(F; ») and

1.6 (b)

[ (1073 scaled units)

0 0.04 0.08 0.12 0.16 0.2
F (scaled units)

Jachment rates is well known from earlidowest order in
the laser field model calculationgas discussed in Ref4])
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0.16 0.16 ]
7 2
0.12 (a) // 0.12 (c) /%
r va H- r H-
0.08 7 0.08 FIG. 16. F dependence of the
7 total detachment ratdcf. Eg.
0.04 /// rah 0.04 (25)], T, at w=1.5468 for a num-
Z- ber values of the static field
%0 o0z o4 o6 o8 1 12 %0 oz o4 06 o8 1 12 strength 7 for (a) collinear (
F =1) geometry; (b) coplanar (
=0) geometry;(c) orthogonal (
0.16 0416 ] =1) geometry; andd) orthogo-
s A nal (1=0) geometry.Thick solid
0.12 (b) // H- 0.12 (d) /4 . line: F=0.2. Thick dot-dashed
7 H- line: F=0.15. Thick dashed line:
T 008 s T oos F=0.06. Thin solid line: F=0.
y o4 Scaled units are used.
0.04 2 0.04
0 0
0 02 04 06 08 A 1.2 0 02 04 06 08 1 1.2
F

¥(F: »), and, obviously, it depends significantly on the field (€.9., as in H') with both laser and static electric fields. The
geometry and the polarization state Bft). Moreover, it laser field effects are taken into account perturbatively as-
may be different for the real and imaginary parts of thesuming that, for frequencies comparable with the electron
quasienergy. As an example, in Fig. 17 we present the frebinding energy, the two lowest orders of perturbation theory
quency dependence of the laser field amplitéde for the  suffice to give reasonable results up to moderate values of
case of a linearly polarized laser fielb<(1) in the collinear  the laser field amplitude. On the other hand, it is well known
field geometry for the situation in which the modulus of thethat static-field ionization effects cannot be analyzed pertur-
second term on the rhs of EAQLS) equals 10% of the modu- patively in the strength of the static field. Thus, in our for-

lus of the first term on the rhs of E4LY), i.e., mulation these effects are taken into account exactly using
- guasistationaryor resonancestates having the proper out-
|a(F )| : . . i
Fer=1/0.6T———. (3g)  going wave asymptotics for an electron in a static field. We
' |Y(F o) discussed generally the atomic response to a monochromatic

of théaser figld in terms of the dynamic hypgrpolarizability tensor
d generalized for the case of a decaying strong external
field(s)] quantum system. This generalization was performed
using the complex quasienergy approach with properly nor-
V. CONCLUSIONS malized quasistationary wave functiopd. After establish-
ing the general structure of the hyperpolarizability tensor

We have performed an analysis of second order in lasefusing general symmetry argumentsr an atomic system in
intensity effects in the interaction of a weakly bound electrona strong static electric field in terms of five irreducible com-
ponents, we performed analytical calculations of these com-
ponents for the zero-range potential model in terms of Airy
functions, in a way similar to those used to obtain the dy-
namic polarizability tensor for this model potential in Ref.
[4].

Our analytical results and numerical evaluations for
higher-order effects in the laser intensity demonstrate fea-
tures of the interaction of a bound electron with photons in
the presence of a static electric field that are quite different
. g from those found in our analysis of the linear in intensity
0 - case[4]. First, they show that the typical oscillation pattern

0.5 ! 15 2 25 in the frequency dependence of both real and imaginary parts
w of the nonlinear susceptibilities exists for any geometry of

FIG. 17. Frequency dependence of the critical laser field amplithe static and laser fields, including the case of orthogonal
tude, F, , in Eq. (39) for the case of a linearly polarized£1)  geometry(when the vectodF is orthogonal to the plane of
laser field and a collinear field geometrs € 1/2). Solid line: #  the polarization ellipse of a laser figldVloreover, this oscil-
=0.03.Dotted line: F=0. Scaled units are used. lation pattern is extremely sensitive not only to the geometry,

One sees from Fig. 17 that perturbative estimations
decay rate are possible up Fo=0.2. Also, this critical fiel
increases monotonically with increasiag

2.5

2 F
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but also to the polarization state &{t). Second, qualita- demonstrate that the cross sections for photoprocesses are
tively we found that both the periods and the amplitudes ofinite at thresholds and for weak they are determined by
oscillations are rather different for the frequency intervalsthe characteristic paramet&f’® and by the minimal value of
w>1 andw<1. These differences stem from the differentthe angular momenturh of the detached electron. Thus,
physical processes that are described by the imaginary pattiese results present the static-electric-field-induced modifi-
of the hyperpolarizability in these two frequency intervals: cation of Wigner’s law for the threshold behavior of cross
these are, respectively, the direct two-photon detachffi@nt sections of photoprocesses from a weakly bound system.
®w<1) and the stimulated re-emission of a photon in single-
photon detachmergfor o>1). This second channébut not
above-threshold, two-photon detachmegives the domi-
nant correction to the total photodetachment rate for not too
strong laser fieldsi.e., for fields that may be treated pertur-  The authors thank I. I. Fabrikant for useful discussions.
batively). This work was supported in part by RFBR Grant No. 00-02-
Finally, our general results for an arbitrary field geometry17843, by INTAS-RFBR Grant No. 97-693, by Russian Min-
and laser polarization have allowed a detailed analysis of thistry of Education Grant No. E00-3.2-518M.V.F. and
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